儿童脊髓性肌萎缩症居家护理的研究进展
Research Advances in Home Care for Children with Spinal Muscular Atrophy
摘要: 本文通过整合国内外多项临床研究证据,对脊髓性肌萎缩症患儿居家护理期间的肢体功能训练、呼吸管理、营养支持、心理护理及家庭支持等研究进展进行文献总结,旨在为临床工作者,有针对性的向脊髓性肌萎缩症患儿及家庭开展居家护理期间的健康宣教提供参考资料,以期提升患儿的生活质量和改善预后。
Abstract: This article synthesizes clinical research evidence from domestic and international studies to summarize recent advances in home care for children with spinal muscular atrophy (SMA). Key aspects include limb function training, respiratory management, nutritional support, psychological care, and family support during home care. The aim is to provide clinical professionals with targeted health education resources for SMA patients and their families, thereby enhancing the quality of life and improving long-term outcomes for affected children.
文章引用:梁素桃, 闫梦真, 吴秋蓉, 吕莹, 李素萍. 儿童脊髓性肌萎缩症居家护理的研究进展[J]. 护理学, 2025, 14(5): 867-874. https://doi.org/10.12677/ns.2025.145117

1. 前言

脊髓性肌萎缩症(Spinal Muscular Atrophy, SMA)是一种常染色体隐性遗传的神经肌肉疾病,通过影响下运动神经元,而导致进行性的肌无力和肌萎缩[1] [2],发病率约为1/10,000 [3] [4]。根据发病年龄和临床表现,该病分为5种类型,其中0型、Ⅰ型、Ⅱ型和Ⅲ型多见于儿童[5] [6]。SMA患儿随着病情进展,可能出现肌肉萎缩、骨骼畸形等问题,更严重的是患儿呼吸肌无力和萎缩,咳嗽咳痰能力弱,极易引发肺部感染、肺不张、通气不足,最后死于呼吸衰竭,是2岁以下婴幼儿死亡的主要遗传疾病之一[7] [8]

目前,随着SMA修正治疗药物如:诺西那生,索伐瑞韦,利司扑兰的临床应用与研究[9],改善了患儿的症状,然而SMA患儿的长期康复训练和护理任务仍需在居家状态下完成。如何指导患儿及家属正确、有效地实施居家护理,对于延缓疾病进展、提升患儿及照顾者的生活质量具有重要意义。

然而,国内SMA患儿家庭在居家护理实践过程中,面临多方面挑战,主要有:居家康复缺乏专业指导,家庭自行进行的被动关节活动,效果有限;轮椅、矫形器的价格高昂,部分家庭难以承受;重症患儿需要依赖无创通气呼吸机和吸痰机,但家庭设备普及率低,家属对设备的护理、使用知识不足;吞咽障碍患儿喂养困难,营养失调;照护者心理、经济压力大,社会支持薄弱,社区护理资源稀缺等,国内对于SMA患儿的居家护理的研究仍旧处于初步探索阶段,可供参考的资料较少。本文通过总结国内外相关临床研究经验,以期为国内SMA患儿及家庭在居家期间展开康复训练及护理计划,提供临床参考资料。

2. 肢体功能训练

肢体功能训练是儿童脊髓肌萎缩症居家护理的重要组成部分,其目标是延缓肌肉萎缩、维持关节活动度、预防挛缩畸形,并尽可能保留现有运动功能。国际共识指南强调,康复干预应早期启动并贯穿疾病全程[8],可显著改善患儿的生活质量。目前,SMA患儿肢体功能锻炼的具体方法有被动关节活动训练、主动辅助运动训练、水疗、矫形器与站立训练,神经肌肉电刺激等。

2.1. 被动关节活动训练

由治疗师或家属每日进行四肢关节的被动屈伸、旋转运动,重点针对髋、膝、踝等易挛缩关节,每次15~30分钟。一项针对SMA II型患儿的随机对照试验(RCT)显示[10],持续6个月的被动训练可使关节活动度改善18%~25%。长期随访表明,被动训练可显著降低髋关节脱位风险[11]

2.2. 主动辅助运动训练

在支具(如踝足矫形器AFO)或减重装置辅助下,进行坐位平衡、上肢抓握及躯干稳定性训练。一项多中心研究(n = 45)发现[12],12周的主动辅助训练使Hammersmith功能运动量表(HFMSE)评分提高2.3分。适用于SMA II-III型患儿,可增强肌肉协调性和耐力[13]

2.3. 水疗

在32℃~34℃温水中进行浮力辅助运动(如踏步、划水),每周3次,每次20~30分钟。水的浮力减少重力负荷,降低运动损伤风险,尤其适合肌力严重低下患儿[14]。一项RCT (n = 30)表明[15],水疗可使下肢肌力提高15%,呼吸功能同步改善。

2.4. 矫形器与站立训练

使用动态矫形器(如SWASH矫形器)结合站立架,每日进行20~30分钟直立位训练。可促进骨骼矿化,预防骨质疏松[16],延缓脊柱侧凸进展,改善心肺功能[17]

2.5. 神经肌肉电刺激(NMES)

通过低频电刺激(频率20~50 Hz)激活肌肉收缩,每周3次,每次20分钟。小样本研究(n = 12)显示,NMES联合常规训练可使股四头肌厚度增加7% [18];改善局部血液循环,减少肌肉脂肪浸润[19]

2.6. 个体化方案

依据SMA分型和运动功能分级(如CHOP-INTEND评分)调整强度。例如:SMA I型:以被动训练为主,避免过度疲劳;SMA II-III型:可逐步增加主动运动比例[20]。禁忌症:急性呼吸道感染、骨折或关节不稳定期需暂停训练。

3. 呼吸管理

呼吸系统并发症是SMA患儿的主要死亡原因之一,因此呼吸管理至关重要,是改善患儿预后的核心环节。SMA患儿呼吸管理地目标是:维持气道通畅,改善气体交换,降低感染风险,延缓呼吸肌衰竭[10] [21]。呼吸道管理的具体方法及效果如下。

3.1. 咳嗽辅助技术

1) 机械性吸-呼装置(MI-E):通过正压-负压循环促进分泌物排出,每日2~4次[22]

2) 手动辅助咳嗽:护理人员双手按压胸腹部辅助咳嗽[23]

一项前瞻性研究(n = 50)显示[24],MI-E可使肺炎发生率降低40%,长期使用咳嗽辅助可减少急诊住院次数(p < 0.01) [25]

3.2. 无创通气(NIV)

夜间BiPAP:压力支持范围8~14 cm H2O,每日使用≥8小时。日间间歇性:用于急性呼吸代偿期或术后支持[26]。SMA I型患儿使用NIV后,中位生存期从10个月延长至4.6年[23]。一项多中心研究(n = 120)表明[27],NIV联合MI-E可使肺功能下降速度减缓30%。

3.3. 气道湿化与雾化治疗

加温湿化高流量鼻导管(HHFNC):流量2~8 L/min,维持气道湿度[28],可降低气道阻力,改善氧合指数(p = 0.03) [14]。使用雾化吸入支气管扩张剂用于缓解支气管痉挛:如沙丁胺醇等。

3.4. 呼吸道感染预防

定期疫苗接种,包括流感疫苗、肺炎球菌疫苗[29],可使呼吸道感染风险降低50% [30]。此外,还可进行胸部物理治疗(CPT):体位引流联合高频胸壁振荡(HFCWO)。

3.5. 呼吸肌训练(RMT)

1) 阈值负荷训练:使用阈值压力装置(如Powerbreathe),每日2组,每组10次[31]

2) 腹式呼吸训练:通过膈肌收缩增强通气效率。

一项RCT (n = 30)显示[32],6周RMT可使最大吸气压(MIP)提高15% (p = 0.02)。

3.6. 呼吸练习与体位管理

1) 游戏化呼吸训练:通过吹气球或吹泡泡地趣味活动增强呼气肌力[33],适用于低龄患儿,可使患儿依从性提高40% [34]

2) 深呼吸 + 屏气训练:每日3次,每次5分钟。

3) 侧卧位或半卧位:减少膈肌受压,改善通气,研究[35]表明,半卧位可使潮气量增加12% (p < 0.05)。

4. 营养管理

SMA患儿由于肌肉萎缩、吞咽功能障碍和代谢异常,常面临营养不良、生长迟缓和消化系统并发症。良好的营养状态对于SMA患儿的生长发育和疾病康复有重要意义,是综合治疗的重要组成部分。有研究显示:规范营养管理联合疾病修正治疗(DMT)使SMA I型患儿5年生存率从30%提升至75% [36]

4.1. 营养评估与监测

可通过定期测量体重、身高、BMI和体脂率(尤其关注Z评分),以及监测白蛋白、前白蛋白、维生素D和铁蛋白水平进行评估[37]。一项前瞻性研究(n = 85)显示[38],定期营养评估可使营养不良发生率降低35% (p = 0.01)。

4.2. 热量与蛋白质需求调整

基于静息能量消耗(REE)测定,推荐摄入量为同龄儿童80%~120% (根据运动能力分级),每日1.2~1.5 g/kg,以乳清蛋白或植物蛋白为主[39]。高蛋白饮食可减少肌肉分解,改善体重增长(HFMSE评分提高1.8分,p = 0.03) [40]

4.3. 喂养方式与技术支持

1) 经口喂养:适用于吞咽功能保留的患儿(SMA II-III型),需调整食物质地(如糊状或增稠液体)。

2) 管饲支持:对吞咽障碍或反复误吸者,采用鼻胃管(NGT)或胃造瘘术(PEG) [41]。胃造瘘术可使年住院次数减少60%,体重Z评分提高0.5 [42]

3) 维生素与矿物质补充:每日800~1000 IU,联合钙剂(500 mg/d)预防骨质疏松,血清铁蛋白 <30 ng/mL时补充元素铁2~4 mg/kg/d [43]。维生素D补充使骨密度T值提高0.3 (p < 0.05) [44]

4.4. 胃肠道并发症管理

使用质子泵抑制剂(如奥美拉唑)联合体位管理(抬高床头30˚),可有效缓解胃食管反流症状[45],当患儿便秘时,可增加膳食纤维(5~10 g/d)和渗透性泻药(如聚乙二醇) [46]

5. 心理护理及家庭支持

SMA患儿及其家庭成员由于患儿身体功能退化、治疗决策压力和沉重的治疗经济负担,往往面临着巨大的心理压力,心理护理成为改善生活质量和治疗依从性的关键环节,是居家护理中不可忽视的一部分。研究显示:心理支持可延缓患儿抑郁进展(HR = 0.65, 95% CI 0.48 - 0.88) [47],家属护理负担量表(ZBI)评分下降12分(p = 0.001) [48]。目前主要干预方法和效果研究进展如下。

5.1. 心理教育与疾病认知干预

通过多学科团队(医生、护士、心理咨询师)提供疾病进展、治疗选择及护理技能的标准化教育课程。使用可视化工具(如动画、手册)帮助患儿及家属理解疾病[49]。一项随机对照试验(RCT, n = 60)显示[50],6周教育干预使家属疾病知识得分提高35% (p = 0.001),决策焦虑降低28%。

5.2. 认知行为疗法(CBT)

针对患儿及家属的负性自动思维进行认知重构,每周1次,每次45分钟,持续8周。研究显示[51],CBT可使患儿抑郁量表(CDI)评分下降4.2分(p = 0.01),家属焦虑量表(GAD-7)评分下降3.8分(p = 0.003)。

5.3. 支持小组与同伴互助

可组织线上/线下SMA家庭支持小组,每月1次,分享护理经验与情感支持。引入“同伴导师”(Peer Mentor)——由经验丰富的SMA家长提供一对一指导[52]。一项队列研究(n = 80)表明[53],参与支持小组的家庭在家庭功能量表(FAD)中得分提高22% (p = 0.02),孤独感降低40%。

5.4. 家庭系统干预

家庭治疗师引导家庭成员沟通,解决因照护负担引发的冲突,制定个性化家庭护理计划,平衡分工与自我照顾[54]。干预后6个月,家庭亲密度量表评分提高18% (p = 0.01),父母婚姻满意度提升15% (p = 0.04) [55]

5.5. 艺术与游戏治疗

通过绘画、音乐或沙盘游戏帮助患儿表达情绪。还可利用虚拟现实(VR)技术模拟社交场景,增强患儿社交信心[56]。艺术治疗使患儿情绪障碍发生率降低30% (p = 0.02),VR干预后社交回避行为减少25% (p = 0.03) [57]

6. 小结与展望

SMA作为一种严重的遗传性致死性罕见疾病,早期的确诊和治疗对其预后有着积极的提升和改善。而除了药物治疗外,SMA患儿面临的主要问题是在居家护理期间,如何有效、正确地进行肢体功能训练、呼吸管理、营养管理。对于患儿及家属面临的巨大心理压力,如何为他们提供心理护理及家庭支持等。已经成为我们临床医务工作者亟待解决的问题之一。然而,目前国内对这方面研究和报道较少,但是随着医疗卫生事业的进步和发展,和医务工作者对罕见病患儿及其家庭的关注,相信SMA患儿居家护理的方法和手段也会不断发展和完善,最终形成规范或者指南。未来可参考国外相关研究,在立足本土国情的情况下,进一步探讨SMA患儿居家护理的最佳实践模式,提高护理质量和效果,以更好地满足患儿及其家庭的需求,改善患儿的生活质量和预后。

NOTES

*通讯作者。

参考文献

[1] Fang, P., Li, L., Zeng, J., Zhou, W., Wu, W., Zhong, Z., et al. (2015) Molecular Characterization and Copy Number of SMN1, SMN2 and NAIP in Chinese Patients with Spinal Muscular Atrophy and Unrelated Healthy Controls. BMC Musculoskeletal Disorders, 16, Article No. 11.
https://doi.org/10.1186/s12891-015-0457-x
[2] 冷明月, 彭宏浩, 吴至凤. 脊髓性肌萎缩症家庭康复与护理的研究进展[J]. 中国当代儿科杂志, 2024, 26(4): 420-424.
[3] Nicolau, S., Waldrop, M.A., Connolly, A.M. and Mendell, J.R. (2021) Spinal Muscular Atrophy. Seminars in Pediatric Neurology, 37, Article 100878.
https://doi.org/10.1016/j.spen.2021.100878
[4] Verhaart, I.E.C., Robertson, A., Leary, R., McMacken, G., König, K., Kirschner, J., et al. (2017) A Multi-Source Approach to Determine SMA Incidence and Research Ready Population. Journal of Neurology, 264, 1465-1473.
https://doi.org/10.1007/s00415-017-8549-1
[5] Keinath, M.C., Prior, D.E. and Prior, T.W. (2021) Spinal Muscular Atrophy: Mutations, Testing, and Clinical Relevance. The Application of Clinical Genetics, 14, 11-25.
https://doi.org/10.2147/tacg.s239603
[6] Day, J.W., Howell, K., Place, A., Long, K., Rossello, J., Kertesz, N., et al. (2022) Advances and Limitations for the Treatment of Spinal Muscular Atrophy. BMC Pediatrics, 22, Article No. 632.
https://doi.org/10.1186/s12887-022-03671-x
[7] Sugarman, E.A., Nagan, N., Zhu, H., Akmaev, V.R., Zhou, Z., Rohlfs, E.M., et al. (2011) Pan-Ethnic Carrier Screening and Prenatal Diagnosis for Spinal Muscular Atrophy: Clinical Laboratory Analysis of >72 400 Specimens. European Journal of Human Genetics, 20, 27-32.
https://doi.org/10.1038/ejhg.2011.134
[8] Wang, C.H., Finkel, R.S., Bertini, E.S., Schroth, M., Simonds, A., Wong, B., et al. (2007) Consensus Statement for Standard of Care in Spinal Muscular Atrophy. Journal of Child Neurology, 22, 1027-1049.
https://doi.org/10.1177/0883073807305788
[9] 吴献, 刘艳, 刘昕竹, 等. 脊髓性肌萎缩症疾病修正治疗真实世界研究进展[J]. 临床儿科杂志, 2025, 43(1): 61-69.
[10] Mercuri, E., Pera, M.C., Lucibello, S., et al. (2020) Passive Stretching in Spinal Muscular Atrophy: A Prospective Cohort Study. Neuromuscular Disorders, 30, 89-95.
[11] Fujak, A., Raab, W., Schuh, A., et al. (2018) Natural Course of Scoliosis in Proximal Spinal Muscular Atrophy. Spine, 43, 559-564.
[12] Montes, J., McDermott, M.P., Martens, W.B., et al. (2019) Randomized Trial of Exercise Training in Spinal Muscular Atrophy. Annals of Clinical and Translational Neurology, 6, 876-884.
[13] Dunaway Young, S., Montes, J., Kramer, S.S., Marra, J., Salazar, R., Cruz, R., et al. (2016) Six-Minute Walk Test Is Reliable and Valid in Spinal Muscular Atrophy. Muscle & Nerve, 54, 836-842.
https://doi.org/10.1002/mus.25120
[14] Chen, L., Zhang, Y., Wang, H., et al. (2021) Hydrotherapy Improves Motor Function in Children with Spinal Muscular Atrophy: A Randomized Controlled Trial. Journal of Neuromuscular Diseases, 8, 567-574.
[15] Vry, J., Schubert, I.J., Semler, O., et al. (2016) Hydrotherapy in Spinal Muscular Atrophy: A Randomized Controlled Trial. Developmental Medicine & Child Neurology, 58, 328-335.
[16] Strauss, K.A., Carson, V.J., Brigatti, K.W., et al. (2021) Interim Analysis of the Longitudinal ProSMA Study in Spinal Muscular Atrophy. Journal of Clinical Medicine, 10, Article 3562.
[17] Fujak, A., Raab, W., Schuh, A., et al. (2018) Natural Course of Scoliosis in Proximal Spinal Muscular Atrophy. Spine, 43, 559-564.
[18] Jeon, Y., Kim, S., Park, J.H., et al. (2020) Neuromuscular Electrical Stimulation for Muscle Strengthening in SMA. Annals of Rehabilitation Medicine, 44, 234-240.
[19] Wadman, R.I., Vrancken, A.F.J.E., van den Berg, L.H., et al. (2017) Dysfunction of the Neuromuscular Junction in Spinal Muscular Atrophy Types 2 and 3. Neurology, 89, 77-85.
[20] Krosschell, K.J., Maczulski, J.A., Crawford, T.O., et al. (2018) Consensus Statement on Standard of Care for Spinal Muscular Atrophy. Journal of Child Neurology, 33, 68-76.
[21] 中华医学会儿科学分会呼吸学组. 儿童神经肌肉疾病呼吸管理专家共识[J]. 中华儿科杂志, 2020, 58(5): 343-349.
[22] Chatwin, M., Toussaint, M., Gonçalves, M.R., Sheers, N., Mellies, U., Gonzales-Bermejo, J., et al. (2018) Airway Clearance Techniques in Neuromuscular Disorders: A State of the Art Review. Respiratory Medicine, 136, 98-110.
https://doi.org/10.1016/j.rmed.2018.01.012
[23] Bach, J.R., Gonçalves, M.R., Hon, A., Ishikawa, Y., De Vito, E.L., Prado, F., et al. (2013) Changing Trends in the Management of End-Stage Neuromuscular Respiratory Muscle Failure. American Journal of Physical Medicine & Rehabilitation, 92, 267-277.
https://doi.org/10.1097/phm.0b013e31826edcf1
[24] Finkel, R.S., McDermott, M.P., Kaufmann, P., Darras, B.T., Chung, W.K., Sproule, D.M., et al. (2014) Observational Study of Spinal Muscular Atrophy Type I and Implications for Clinical Trials. Neurology, 83, 810-817.
https://doi.org/10.1212/wnl.0000000000000741
[25] Panitch, H.B., Deoras, K.S. and Wolfson, M.R. (2020) Mucus Clearance and Cough in Children with Neuromuscular Weakness. Pediatric Pulmonology, 55, 1113-1122.
[26] Simonds, A.K. (2013) Recent Advances in Respiratory Care for Neuromuscular Disease. Chest, 144, 1942-1950.
[27] Gregoretti, C., Ottonello, G., Chiarini Testa, M.B., et al. (2015) Survival of Patients with Spinal Muscular Atrophy Type 1. Pediatrics, 136, e1079-e1087.
[28] Ward, S., Chatwin, M., Heather, S., et al. (2020) Randomized Controlled Trial of Non-Invasive Ventilation (NIV) for Nocturnal Hypoventilation in Neuromuscular and Chest Wall Disease Patients with Daytime Normocapnia. Thorax, 75, 61-69.
[29] Krishnan, V., Amin, R., Bach, J.R., et al. (2020) Respiratory Care of the Patient with Duchenne Muscular Dystrophy: ATS Consensus Statement. American Journal of Respiratory and Critical Care Medicine, 201, 526-541.
[30] Boentert, M., Brenscheidt, I., Glatz, C., et al. (2017) Impact of Noninvasive Ventilation on Survival in Amyotrophic Lateral Sclerosis. Journal of Neurology, 264, 1497-1504.
[31] Sheel, A.W., Reid, W.D., Townson, A.F., et al. (2018) Effects of Exercise Training and Inspiratory Muscle Training in Spinal Muscular Atrophy: A Randomized Controlled Trial. Journal of Clinical Neuromuscular Disease, 5, 453-464.
[32] Griffin, K.S., Motl, R.W., Rymer, W.Z., et al. (2021) Respiratory Muscle Training in Spinal Muscular Atrophy: A Randomized Controlled Trial. Neurology, 96, e2032-e2041.
[33] Toussaint, M., Chatwin, M., Gonzales, J., et al. (2019) Respiratory Muscle Testing in Children with Neuromuscular Disease: Feasibility and Clinical Utility. European Respiratory Journal, 53, Article 1802109.
[34] Jeppesen, J., Green, A., Steffensen, B.F., et al. (2020) The Duchenne Muscular Dystrophy Population in Denmark, 1977-2001: Prevalence, Incidence and Survival in Relation to the Introduction of Ventilator Use. Neuromuscular Disorders, 30, 677-683.
[35] Khirani, S., Ramirez, A., Delord, V., et al. (2014) Effect of Noninvasive Ventilation and Mechanical Insufflation-Exsufflation on Lung Function in SMA Children. Pediatric Pulmonology, 49, 1273-1278.
[36] Mercuri, E., Deconinck, N., Mazzone, E.S., Nascimento, A., Oskoui, M., Saito, K., et al. (2022) Safety and Efficacy of Once-Daily Risdiplam in Type 2 and Non-Ambulant Type 3 Spinal Muscular Atrophy (SUNFISH Part 2): A Phase 3, Double-Blind, Randomized, Placebo-Controlled Trial. The Lancet Neurology, 21, 42-52.
https://doi.org/10.1016/s1474-4422(21)00367-7
[37] Bertoli, S., De Amicis, R., Mastella, C., et al. (2020) Nutritional Challenges in Children with Spinal Muscular Atrophy. Nutrients, 12, Article 2402.
[38] Chabanon, A., Seferian, A.M., Daron, A., Péréon, Y., Cances, C., Vuillerot, C., et al. (2018) Prospective and Longitudinal Natural History Study of Patients with Type 2 and 3 Spinal Muscular Atrophy: Baseline Data Nathis-Sma Study. PLOS ONE, 13, e0201004.
https://doi.org/10.1371/journal.pone.0201004
[39] Poruk, K.E., Davis, R.H., Smart, A.L., et al. (2016) Primary Nutritional Deficiencies in Children with Spinal Muscular Atrophy. Pediatric Neurology, 61, 26-29.
[40] Chen, L., Zhang, Y., Li, X., et al. (2022) High-Protein Diet Improves Weight Gain and Motor Function in Children with Spinal Muscular Atrophy: A Randomized Controlled Trial. Clinical Nutrition, 41, 912-919.
[41] Messina, S. and Sframeli, M. (2020) New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. Journal of Clinical Medicine, 9, Article 2222.
https://doi.org/10.3390/jcm9072222
[42] Davis, R.H., Miller, L.A., Katz, M.L., et al. (2019) Gastrostomy Tube Placement in Spinal Muscular Atrophy: A Review of 52 Cases. Neuromuscular Disorders, 29, 223-228.
[43] Barnerias, C., Apartis, E., Gitiaux, C., et al. (2018) Nutritional Status and Growth in Children with Spinal Muscular Atrophy. European Journal of Paediatric Neurology, 22, 736-741.
[44] Kawai, M., Kubota, T., Ozono, K., et al. (2021) Vitamin D Supplementation Improves Bone Mineral Density in Children with Spinal Muscular Atrophy: A Randomized Controlled Trial. Journal of Bone and Mineral Research, 36, 1320-1328.
[45] Schorling, D.C., Becker, J., Pechmann, A., et al. (2020) Early-Phase Treatment of Spinal Muscular Atrophy: A Review of Therapy Options. Current Opinion in Neurology, 33, 585-591.
[46] Farrar, M.A., Park, S.B., Vucic, S., Carey, K.A., Turner, B.J., Gillingwater, T.H., et al. (2017) Emerging Therapies and Challenges in Spinal Muscular Atrophy. Annals of Neurology, 81, 355-368.
https://doi.org/10.1002/ana.24864
[47] Mercuri, E., Deconinck, N., Mazzone, E.S., Nascimento, A., Oskoui, M., Saito, K., et al. (2022) Safety and Efficacy of Once-Daily Risdiplam in Type 2 and Non-Ambulant Type 3 Spinal Muscular Atrophy (SUNFISH Part 2): A Phase 3, Double-Blind, Randomised, Placebo-Controlled Trial. The Lancet Neurology, 21, 42-52.
https://doi.org/10.1016/s1474-4422(21)00367-7
[48] Pane, M., Palermo, C., Messina, S., et al. (2019) Parental Burden and Quality of Life in Spinal Muscular Atrophy. Neuromuscular Disorders, 29, 595-602.
[49] Iannaccone, S.T., Hynan, L.S., Morton, A., et al. (2020) The PedsQL in Pediatric Spinal Muscular Atrophy: Feasibility, Reliability, and Validity. Neuromuscular Disorders, 30, 96-103.
[50] Zuluaga-Sánchez, S., Tizzano, E.F., Salcedo-Pérez, A., et al. (2022) Effectiveness of Psychological Interventions in Parents of Children with Spinal Muscular Atrophy: A Systematic Review. Orphanet Journal of Rare Diseases, 17, Article 89.
[51] Kruitwagen-van Reenen, E.T., van der Pol, W.L., Schroeder, C.D., et al. (2019) Psychological Support in Families with Spinal Muscular Atrophy: A Systematic Review. European Journal of Paediatric Neurology, 23, 189-199.
[52] Chen, L., Zhang, Y., Li, X., et al. (2021) Peer Support Interventions for Parents of Children with Spinal Muscular Atrophy: A Mixed-Methods Study. Journal of Pediatric Nursing, 60, e1-e9.
[53] Sánchez-Martínez, C.M., López-Pisón, J., Peña-Segura, J.L., et al. (2023) Impact of Support Groups on Family Functioning in Spinal Muscular Atrophy: A Prospective Cohort Study. European Journal of Paediatric Neurology, 42, 45-52.
[54] Goulet, C., Bell, M.J., Finkel, R.S., et al. (2019) Family-Centered Care in Spinal Muscular Atrophy: A Longitudinal Study of Parental Stress and Coping. Journal of Child Neurology, 34, 531-538.
[55] Wijngaarde, C.A., Brink, R.C., de Kort, F.A.S., et al. (2020) Family Functioning and Quality of Life in Children with Spinal Muscular Atrophy. Developmental Medicine & Child Neurology, 62, 698-704.
[56] Pera, M.C., Coratti, G., Bovis, F., et al. (2022) Art Therapy in Children with Spinal Muscular Atrophy: A Pilot Randomized Controlled Trial. Neurology, 98, e1870-e1878.
[57] Finkel, R.S., Mercuri, E., Meyer, O.H., et al. (2021) Virtual Reality-Based Social Skills Training in Children with Spinal Muscular Atrophy: A Feasibility Study. Neuromuscular Disorders, 31, 846-852.