|
[1]
|
Tavakoli, S. and Klar, A.S. (2020) Advanced Hydrogels as Wound Dressings. Biomolecules, 10, Article 1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Guan, J., Wu, C., He, Y. and Lu, F. (2023) Skin-Associated Adipocytes in Skin Barrier Immunity: A Mini-Review. Frontiers in Immunology, 14, Article 1116548. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liu, W., Gao, R., Yang, C., Feng, Z., Ou-Yang, W., Pan, X., et al. (2022) ECM-Mimetic Immunomodulatory Hydrogel for Methicillin-Resistant Staphylococcus aureus-Infected Chronic Skin Wound Healing. Science Advances, 8, eabn7006. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chin, J.S., Madden, L., Chew, S.Y. and Becker, D.L. (2019) Drug Therapies and Delivery Mechanisms to Treat Perturbed Skin Wound Healing. Advanced Drug Delivery Reviews, 149, 2-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gu, Y.N., Xu, X.H., Wang, Y.P., Li, Y.T., Liang, Z., Yu, Z., Peng, Y.Z. and Song, B.Q. (2024) Effects of Cerium Oxide Nanoen-Zyme-Gelatin Methacrylate Anhydride Hydrogel in the Repair of Infected Full-Thickness Skin Defect Wounds in Mice. Chinese Journal of Burns and Wounds, 40, 131-140.
|
|
[6]
|
Hao, R.N., Ye, X.L., Xu, B.L., Sun, Y., Liu, H.Y., Rao, F., Xue, J.J. (2023) Application and Advances of Nanozyme-Loaded Tissue Engineering Scaffolds in Wound Repair. Chinese Journal of Burns and Wounds, 39, 591-595.
|
|
[7]
|
Chen, J., Zhang, S., Chen, X., Wang, L. and Yang, W. (2022) A Self‐Assembled Fmoc‐Diphenylalanine Hydrogel‐Encapsulated Pt Nanozyme as Oxidase‐ and Peroxidase‐Like Breaking Ph Limitation for Potential Antimicrobial Application. Chemistry—A European Journal, 28, e202104247. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Shen, J., Chen, A., Cai, Z., Chen, Z., Cao, R., Liu, Z., et al. (2022) Exhausted Local Lactate Accumulation via Injectable Nanozyme-Functionalized Hydrogel Microsphere for Inflammation Relief and Tissue Regeneration. Bioactive Materials, 12, 153-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jin, X., Zhang, W., Shan, J., He, J., Qian, H., Chen, X., et al. (2022) Thermosensitive Hydrogel Loaded with Nickel-Copper Bimetallic Hollow Nanospheres with SOD and CAT Enzymatic-Like Activity Promotes Acute Wound Healing. ACS Applied Materials & Interfaces, 14, 50677-50691. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jia, Z., Lv, X., Hou, Y., Wang, K., Ren, F., Xu, D., et al. (2021) Mussel-Inspired Nanozyme Catalyzed Conductive and Self-Setting Hydrogel for Adhesive and Antibacterial Bioelectronics. Bioactive Materials, 6, 2676-2687. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sang, Y., Li, W., Liu, H., Zhang, L., Wang, H., Liu, Z., et al. (2019) Construction of Nanozyme‐Hydrogel for Enhanced Capture and Elimination of Bacteria. Advanced Functional Materials, 29, Article 1900518. [Google Scholar] [CrossRef]
|
|
[12]
|
Liu, X., Wan, Z., Chen, K., Yan, Y., Li, X., Wang, Y., et al. (2024) Mated-Atom Nanozymes with Efficient Assisted NAD+ Replenishment for Skin Regeneration. Nano Letters, 24, 4924-4935. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) Ros-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
万春云, 汪庆, 李思敏, 孙岩, 张晓婷, 陈信任, 李双双, 魏贺红. 群体感应对细菌生物膜及细菌耐药性影响的研究进展[J]. 生态毒理学报, 2023, 18(1): 149-159.
|
|
[15]
|
Ayyakannu Sundaram, G. (2025) Advanced Peptide Nanozymes with Dual Antifungal Mechanisms: Cutting-Edge Innovations in Combatting Antimicrobial Resistance. Current Microbiology, 82, Article No. 106. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zheng, S., Tu, Y., Li, B., Qu, G., Li, A., Peng, X., et al. (2025) Antimicrobial Peptide Biological Activity, Delivery Systems and Clinical Translation Status and Challenges. Journal of Translational Medicine, 23, Article No. 292. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Huang, Y., Ren, J. and Qu, X. (2019) Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chemical Reviews, 119, 4357-4412. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ayatollahi Mousavi, S.A., Mokhtari, A., Barani, M., Izadi, A., Amirbeigi, A., Ajalli, N., et al. (2023) Advances of Liposomal Mediated Nanocarriers for the Treatment of Dermatophyte Infections. Heliyon, 9, e18960. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, B., Zhang, W., Pan, Q., Tao, J., Li, S., Jiang, T., et al. (2023) Hyaluronic Acid-Based CuS Nanoenzyme Biodegradable Microneedles for Treating Deep Cutaneous Fungal Infection without Drug Resistance. Nano Letters, 23, 1327-1336. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kurian, A.G., Singh, R.K., Sagar, V., Lee, J. and Kim, H. (2024) Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. Nano-Micro Letters, 16, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bardi, G., Boselli, L. and Pompa, P.P. (2023) Anti-Inflammatory Potential of Platinum Nanozymes: Mechanisms and Perspectives. Nanoscale, 15, 14284-14300. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jiang, T., Chen, W., Lu, C., Yang, J., Zeng, Z., Li, W., et al. (2024) A Multifunctional Nanozyme Integrating Antioxidant, Antimicrobial and Pro-Vascularity for Skin Wound Management. International Journal of Nanomedicine, 19, 3217-3232. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sotiriou, G.A., Blattmann, C.O. and Deligiannakis, Y. (2016) Nanoantioxidant-Driven Plasmon Enhanced Proton-Coupled Electron Transfer. Nanoscale, 8, 796-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
石径, 田顺风, 马淑平, 姜燕飞, 罗永康, 赵春月. 胶原蛋白肽改善和延缓皮肤衰老作用功效及机制的研究进展[J]. 食品科学, 2024, 45(21): 316-322.
|
|
[25]
|
Badalkhani, O., Pires, P.C., Mohammadi, M., Babaie, S., Paiva-Santos, A.C. and Hamishehkar, H. (2023) Nanogel Containing Gamma-Oryzanol-Loaded Nanostructured Lipid Carriers and TiO2/MBBT: A Synergistic Nanotechnological Approach of Potent Natural Antioxidants and Nanosized UV Filters for Skin Protection. Pharmaceuticals, 16, Article 670. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chen, H., Chou, Y., Young, T. and Cheng, N. (2019) Inhibition of Melanin Synthesis and Melanosome Transfer by Chitosan Biomaterials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108, 1239-1250. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, F., Qu, L., Li, H., He, J., Wang, L., Fang, Y., et al. (2022) Advances in Biomedical Functions of Natural Whitening Substances in the Treatment of Skin Pigmentation Diseases. Pharmaceutics, 14, Article 2308. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Egbuna, C., Parmar, V.K., Jeevanandam, J., Ezzat, S.M., Patrick-Iwuanyanwu, K.C., Adetunji, C.O., et al. (2021) Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. Journal of Toxicology, 2021, Article 9954443. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Menichetti, A., Mordini, D. and Montalti, M. (2024) Penetration of Microplastics and Nanoparticles through Skin: Effects of Size, Shape, and Surface Chemistry. Journal of Xenobiotics, 15, Article 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, M., Lai, X., Shao, L. and Li, L. (2018) Evaluation of Immunoresponses and Cytotoxicity from Skin Exposure to Metallic Nanoparticles. International Journal of Nanomedicine, 13, 4445-4459. [Google Scholar] [CrossRef] [PubMed]
|