[1]
|
Tavakoli, S. and Klar, A.S. (2020) Advanced Hydrogels as Wound Dressings. Biomolecules, 10, Article 1169. https://doi.org/10.3390/biom10081169
|
[2]
|
Guan, J., Wu, C., He, Y. and Lu, F. (2023) Skin-Associated Adipocytes in Skin Barrier Immunity: A Mini-Review. Frontiers in Immunology, 14, Article 1116548. https://doi.org/10.3389/fimmu.2023.1116548
|
[3]
|
Liu, W., Gao, R., Yang, C., Feng, Z., Ou-Yang, W., Pan, X., et al. (2022) ECM-Mimetic Immunomodulatory Hydrogel for Methicillin-Resistant Staphylococcus aureus-Infected Chronic Skin Wound Healing. Science Advances, 8, eabn7006. https://doi.org/10.1126/sciadv.abn7006
|
[4]
|
Chin, J.S., Madden, L., Chew, S.Y. and Becker, D.L. (2019) Drug Therapies and Delivery Mechanisms to Treat Perturbed Skin Wound Healing. Advanced Drug Delivery Reviews, 149, 2-18. https://doi.org/10.1016/j.addr.2019.03.006
|
[5]
|
Gu, Y.N., Xu, X.H., Wang, Y.P., Li, Y.T., Liang, Z., Yu, Z., Peng, Y.Z. and Song, B.Q. (2024) Effects of Cerium Oxide Nanoen-Zyme-Gelatin Methacrylate Anhydride Hydrogel in the Repair of Infected Full-Thickness Skin Defect Wounds in Mice. Chinese Journal of Burns and Wounds, 40, 131-140.
|
[6]
|
Hao, R.N., Ye, X.L., Xu, B.L., Sun, Y., Liu, H.Y., Rao, F., Xue, J.J. (2023) Application and Advances of Nanozyme-Loaded Tissue Engineering Scaffolds in Wound Repair. Chinese Journal of Burns and Wounds, 39, 591-595.
|
[7]
|
Chen, J., Zhang, S., Chen, X., Wang, L. and Yang, W. (2022) A Self‐Assembled Fmoc‐Diphenylalanine Hydrogel‐Encapsulated Pt Nanozyme as Oxidase‐ and Peroxidase‐Like Breaking Ph Limitation for Potential Antimicrobial Application. Chemistry—A European Journal, 28, e202104247. https://doi.org/10.1002/chem.202104247
|
[8]
|
Shen, J., Chen, A., Cai, Z., Chen, Z., Cao, R., Liu, Z., et al. (2022) Exhausted Local Lactate Accumulation via Injectable Nanozyme-Functionalized Hydrogel Microsphere for Inflammation Relief and Tissue Regeneration. Bioactive Materials, 12, 153-168. https://doi.org/10.1016/j.bioactmat.2021.10.013
|
[9]
|
Jin, X., Zhang, W., Shan, J., He, J., Qian, H., Chen, X., et al. (2022) Thermosensitive Hydrogel Loaded with Nickel-Copper Bimetallic Hollow Nanospheres with SOD and CAT Enzymatic-Like Activity Promotes Acute Wound Healing. ACS Applied Materials & Interfaces, 14, 50677-50691. https://doi.org/10.1021/acsami.2c17242
|
[10]
|
Jia, Z., Lv, X., Hou, Y., Wang, K., Ren, F., Xu, D., et al. (2021) Mussel-Inspired Nanozyme Catalyzed Conductive and Self-Setting Hydrogel for Adhesive and Antibacterial Bioelectronics. Bioactive Materials, 6, 2676-2687. https://doi.org/10.1016/j.bioactmat.2021.01.033
|
[11]
|
Sang, Y., Li, W., Liu, H., Zhang, L., Wang, H., Liu, Z., et al. (2019) Construction of Nanozyme‐Hydrogel for Enhanced Capture and Elimination of Bacteria. Advanced Functional Materials, 29, Article 1900518. https://doi.org/10.1002/adfm.201900518
|
[12]
|
Liu, X., Wan, Z., Chen, K., Yan, Y., Li, X., Wang, Y., et al. (2024) Mated-Atom Nanozymes with Efficient Assisted NAD+ Replenishment for Skin Regeneration. Nano Letters, 24, 4924-4935. https://doi.org/10.1021/acs.nanolett.4c00546
|
[13]
|
Zhao, H., Huang, J., Li, Y., Lv, X., Zhou, H., Wang, H., et al. (2020) Ros-Scavenging Hydrogel to Promote Healing of Bacteria Infected Diabetic Wounds. Biomaterials, 258, Article 120286. https://doi.org/10.1016/j.biomaterials.2020.120286
|
[14]
|
万春云, 汪庆, 李思敏, 孙岩, 张晓婷, 陈信任, 李双双, 魏贺红. 群体感应对细菌生物膜及细菌耐药性影响的研究进展[J]. 生态毒理学报, 2023, 18(1): 149-159.
|
[15]
|
Ayyakannu Sundaram, G. (2025) Advanced Peptide Nanozymes with Dual Antifungal Mechanisms: Cutting-Edge Innovations in Combatting Antimicrobial Resistance. Current Microbiology, 82, Article No. 106. https://doi.org/10.1007/s00284-025-04094-4
|
[16]
|
Zheng, S., Tu, Y., Li, B., Qu, G., Li, A., Peng, X., et al. (2025) Antimicrobial Peptide Biological Activity, Delivery Systems and Clinical Translation Status and Challenges. Journal of Translational Medicine, 23, Article No. 292. https://doi.org/10.1186/s12967-025-06321-9
|
[17]
|
Huang, Y., Ren, J. and Qu, X. (2019) Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chemical Reviews, 119, 4357-4412. https://doi.org/10.1021/acs.chemrev.8b00672
|
[18]
|
Ayatollahi Mousavi, S.A., Mokhtari, A., Barani, M., Izadi, A., Amirbeigi, A., Ajalli, N., et al. (2023) Advances of Liposomal Mediated Nanocarriers for the Treatment of Dermatophyte Infections. Heliyon, 9, e18960. https://doi.org/10.1016/j.heliyon.2023.e18960
|
[19]
|
Wang, B., Zhang, W., Pan, Q., Tao, J., Li, S., Jiang, T., et al. (2023) Hyaluronic Acid-Based CuS Nanoenzyme Biodegradable Microneedles for Treating Deep Cutaneous Fungal Infection without Drug Resistance. Nano Letters, 23, 1327-1336. https://doi.org/10.1021/acs.nanolett.2c04539
|
[20]
|
Kurian, A.G., Singh, R.K., Sagar, V., Lee, J. and Kim, H. (2024) Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. Nano-Micro Letters, 16, Article No. 110. https://doi.org/10.1007/s40820-024-01323-6
|
[21]
|
Bardi, G., Boselli, L. and Pompa, P.P. (2023) Anti-Inflammatory Potential of Platinum Nanozymes: Mechanisms and Perspectives. Nanoscale, 15, 14284-14300. https://doi.org/10.1039/d3nr03016d
|
[22]
|
Jiang, T., Chen, W., Lu, C., Yang, J., Zeng, Z., Li, W., et al. (2024) A Multifunctional Nanozyme Integrating Antioxidant, Antimicrobial and Pro-Vascularity for Skin Wound Management. International Journal of Nanomedicine, 19, 3217-3232. https://doi.org/10.2147/ijn.s452216
|
[23]
|
Sotiriou, G.A., Blattmann, C.O. and Deligiannakis, Y. (2016) Nanoantioxidant-Driven Plasmon Enhanced Proton-Coupled Electron Transfer. Nanoscale, 8, 796-803. https://doi.org/10.1039/c5nr04942c
|
[24]
|
石径, 田顺风, 马淑平, 姜燕飞, 罗永康, 赵春月. 胶原蛋白肽改善和延缓皮肤衰老作用功效及机制的研究进展[J]. 食品科学, 2024, 45(21): 316-322.
|
[25]
|
Badalkhani, O., Pires, P.C., Mohammadi, M., Babaie, S., Paiva-Santos, A.C. and Hamishehkar, H. (2023) Nanogel Containing Gamma-Oryzanol-Loaded Nanostructured Lipid Carriers and TiO2/MBBT: A Synergistic Nanotechnological Approach of Potent Natural Antioxidants and Nanosized UV Filters for Skin Protection. Pharmaceuticals, 16, Article 670. https://doi.org/10.3390/ph16050670
|
[26]
|
Chen, H., Chou, Y., Young, T. and Cheng, N. (2019) Inhibition of Melanin Synthesis and Melanosome Transfer by Chitosan Biomaterials. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108, 1239-1250. https://doi.org/10.1002/jbm.b.34472
|
[27]
|
Liu, F., Qu, L., Li, H., He, J., Wang, L., Fang, Y., et al. (2022) Advances in Biomedical Functions of Natural Whitening Substances in the Treatment of Skin Pigmentation Diseases. Pharmaceutics, 14, Article 2308. https://doi.org/10.3390/pharmaceutics14112308
|
[28]
|
Egbuna, C., Parmar, V.K., Jeevanandam, J., Ezzat, S.M., Patrick-Iwuanyanwu, K.C., Adetunji, C.O., et al. (2021) Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. Journal of Toxicology, 2021, Article 9954443. https://doi.org/10.1155/2021/9954443
|
[29]
|
Menichetti, A., Mordini, D. and Montalti, M. (2024) Penetration of Microplastics and Nanoparticles through Skin: Effects of Size, Shape, and Surface Chemistry. Journal of Xenobiotics, 15, Article 6. https://doi.org/10.3390/jox15010006
|
[30]
|
Wang, M., Lai, X., Shao, L. and Li, L. (2018) Evaluation of Immunoresponses and Cytotoxicity from Skin Exposure to Metallic Nanoparticles. International Journal of Nanomedicine, 13, 4445-4459. https://doi.org/10.2147/ijn.s170745
|