|
[1]
|
Zhu, Q., Li, Y., Ma, J., Ma, H. and Liang, X. (2023) Potential Factors Result in Diminished Ovarian Reserve: A Comprehensive Review. Journal of Ovarian Research, 16, Article No. 208. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
许英, 王晔, 陈颖. 重组人生长激素对卵巢储备功能减退患者早发LH峰及临床妊娠结局的影响[J]. 中国妇产科临床杂志, 2024, 25(6): 483-486.
|
|
[3]
|
Lv, Z., Lv, Z., Song, L., Zhang, Q. and Zhu, S. (2023) Role of LncRNAs in the Pathogenic Mechanism of Human Decreased Ovarian Reserve. Frontiers in Genetics, 14, Article 1056061. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
卵巢储备功能减退临床诊治专家共识专家组, 中华预防医学会生育力保护分会生殖内分泌生育保护学组. 卵巢储备功能减退临床诊治专家共识[J]. 生殖医学杂志, 2022, 31(4): 425-434.
|
|
[5]
|
Yu, R., Jin, H., Huang, X., Lin, J. and Wang, P. (2018) Comparison of Modified Agonist, Mild-Stimulation and Antagonist Protocols for in Vitro Fertilization in Patients with Diminished Ovarian Reserve. Journal of International Medical Research, 46, 2327-2337. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Duan, W. and Cheng, Y. (2021) Sequential Therapy for Kidney-Tonifying via Traditional Chinese Medicine Effectively Improves the Reproductive Potential and Quality of Life of Women with Decreased Ovarian Reserve: A Randomized Controlled Study. American Journal of Translational Research, 13, 3165-3173.
|
|
[7]
|
Zhang, C.X., Lin, Y.L., Lu, F.F., et al. (2023) Krüppel-Like Factor 12 Regulates Aging Ovarian Granulosa Cell Apoptosis by Repressing SPHK1 Transcription and Sphingosine-1-Phosphate (S1P) Production. Journal of Biological Chemistry, 299, Article ID: 105126. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Han, Y., Yao, R., Yang, Z., Li, S., Meng, W., Zhang, Y., et al. (2022) Interleukin-4 Activates the PI3K/AKT Signaling to Promote Apoptosis and Inhibit the Proliferation of Granulosa Cells. Experimental Cell Research, 412, Article ID: 113002. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, C., Chu, D., Kalantar‐Zadeh, K., George, J., Young, H.A. and Liu, G. (2021) Cytokines: From Clinical Significance to Quantification. Advanced Science, 8, e2004433. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hu, B., Huang, S. and Yin, L. (2020) The Cytokine Storm and COVID‐19. Journal of Medical Virology, 93, 250-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gu, Y., Zuo, X., Zhang, S., Ouyang, Z., Jiang, S., Wang, F., et al. (2021) The Mechanism behind Influenza Virus Cytokine Storm. Viruses, 13, Article 1362. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Caricchio, R. and Gallucci, S. (2024) Systemic Lupus Erythematosus and Cytokine Storm. In: Cron, R.Q. and Behrens, E.M., Eds., Cytokine Storm Syndrome, Springer, 355-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tsoukas, P. and Yeung, R.S.M. (2024) Kawasaki Disease-Associated Cytokine Storm Syndrome. In: Cron, R.Q. and Behrens, E.M., Eds., Cytokine Storm Syndrome, Springer, 365-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kaminska, P., Tempes, A., Scholz, E. and Malik, A.R. (2024) Cytokines on the Way to Secretion. Cytokine & Growth Factor Reviews, 79, 52-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tan, W., Zou, J., Yoshida, S., Jiang, B. and Zhou, Y. (2020) The Role of Inflammation in Age-Related Macular Degeneration. International Journal of Biological Sciences, 16, 2989-3001. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lliberos, C., Liew, S.H., Mansell, A. and Hutt, K.J. (2021) The Inflammasome Contributes to Depletion of the Ovarian Reserve during Aging in Mice. Frontiers in Cell and Developmental Biology, 8, Article 628473. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Navarro-Pando, J.M., Alcocer-Gómez, E., Castejón-Vega, B., Navarro-Villarán, E., Condés-Hervás, M., Mundi-Roldan, M., et al. (2021) Inhibition of the NLRP3 Inflammasome Prevents Ovarian Aging. Science Advances, 7, eabc7409. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lliberos, C., Liew, S.H., Zareie, P., La Gruta, N.L., Mansell, A. and Hutt, K. (2021) Evaluation of Inflammation and Follicle Depletion during Ovarian Ageing in Mice. Scientific Reports, 11, Article No. 278. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, X., Li, C., Yang, J., Lin, M., Zhou, X., Su, Z., et al. (2025) Associations of the Levels of Adipokines and Cytokines in Individual Follicles with in Vitro Fertilization Outcomes in Women with Different Ovarian Reserves. Journal of Ovarian Research, 18, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Broderick, L. and Hoffman, H.M. (2022) IL-1 and Autoinflammatory Disease: Biology, Pathogenesis and Therapeutic Targeting. Nature Reviews Rheumatology, 18, 448-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, Y., Che, M., Xin, J., Zheng, Z., Li, J. and Zhang, S. (2020) The Role of Il-1β and TNF-α in Intervertebral Disc Degeneration. Biomedicine & Pharmacotherapy, 131, Article ID: 110660. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Cao, M., Yuan, C., Chen, X., He, G., Chen, T., Zong, J., et al. (2024) METTL3 Deficiency Leads to Ovarian Insufficiency Due to Il-1β Overexpression in Theca Cells. Free Radical Biology and Medicine, 222, 72-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Oeckinghaus, A. and Ghosh, S. (2009) The NF-κB Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1, a000034. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sun, J., Gan, L., Lv, S., Wang, T., Dai, C. and Sun, J. (2023) Exposure to Di-(2-Ethylhexyl) Phthalate Drives Ovarian Dysfunction by Inducing Granulosa Cell Pyroptosis via the SLC39A5/NF-κB/NLRP3 Axis. Ecotoxicology and Environmental Safety, 252, Article ID: 114625. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xin, L., Li, F., Yu, H., Xiong, Q., Hou, Q. and Meng, Y. (2023) Honokiol Alleviates Radiation‐induced Premature Ovarian Failure via Enhancing Nrf2. American Journal of Reproductive Immunology, 90, e13769. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Herrero, Y., Pascuali, N., Velázquez, C., Oubiña, G., Hauk, V., de Zúñiga, I., et al. (2022) SARS-CoV-2 Infection Negatively Affects Ovarian Function in ART Patients. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1868, Article ID: 166295. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jang, D., Lee, A., Shin, H., Song, H., Park, J., Kang, T., et al. (2021) The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22, Article 2719. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N. and Williamson, B. (1975) An Endotoxin-Induced Serum Factor That Causes Necrosis of Tumors. Proceedings of the National Academy of Sciences of the United States of America, 72, 3666-3670. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
张金磊, 孔令俊, 李想, 等. TNF-α在肌少症发生发展中的机制浅析[J]. 中国骨质疏松杂志, 2024, 30(9): 1367-1371.
|
|
[30]
|
Semenzato, G. (1990) Tumour Necrosis Factor: A Cytokine with Multiple Biological Activities. British Journal of Cancer, 61, 354-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Guo, Y., Hu, K., Li, Y., Lu, C., Ling, K., Cai, C., et al. (2022) Targeting TNF-α for COVID-19: Recent Advanced and Controversies. Frontiers in Public Health, 10, Article 833967. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sun, M., Qiao, F., Xu, Z., Liu, Y., Xu, C., Wang, H., et al. (2023) Aristolochic Acid I Exposure Triggers Ovarian Dysfunction by Activating NLRP3 Inflammasome and Affecting Mitochondrial Homeostasis. Free Radical Biology and Medicine, 204, 313-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Huang, Y., Zhang, Q., Cao, W., Zhang, Q., Wang, L. and Lai, D. (2023) TNF-α and IFN-γ Prestimulation Enhances the Therapeutic Efficacy of Human Amniotic Epithelial Stem Cells in Chemotherapy-Induced Ovarian Dysfunction. Inflammation and Regeneration, 43, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hunter, C.A. and Jones, S.A. (2015) IL-6 as a Keystone Cytokine in Health and Disease. Nature Immunology, 16, 448-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sanverdi, I., Kilicci, C., Cogendez, E., Abide Yayla, C. and Ozkaya, E. (2017) Utility of Complete Blood Count Parameters to Detect Premature Ovarian Insufficiency in Cases with Oligomenorrhea/amenorrhea. Journal of Clinical Laboratory Analysis, 32, e22372. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, Y., Zhang, J., Zhang, T., Wu, Y., Xi, Y., Wu, T., et al. (2024) Circulating Interleukin-6 Mediates PM2.5-Induced Ovarian Injury by Suppressing the PPARγ Pathway. Research, 7, Article ID: 0538. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shi, J., An, D., Ye, J., Fu, R. and Zhao, A. (2022) Effect of Early Inflammatory Reaction on Ovarian Reserve after Laparoscopic Cystectomy for Ovarian Endometriomas. Journal of Obstetrics and Gynaecology, 42, 3124-3128. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
York, A.G., Skadow, M.H., Oh, J., Qu, R., Zhou, Q.D., Hsieh, W., et al. (2024) IL-10 Constrains Sphingolipid Metabolism to Limit Inflammation. Nature, 627, 628-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wei, W., Zhao, Y., Zhang, Y., Jin, H. and Shou, S. (2022) The Role of IL-10 in Kidney Disease. International Immunopharmacology, 108, Article ID: 108917. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yang, P., Chou, C., Huang, C., Wen, W., Chen, H., Shun, C., et al. (2021) Obesity Alters Ovarian Folliculogenesis through Disrupted Angiogenesis from Increased IL-10 Production. Molecular Metabolism, 49, Article ID: 101189. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lu, G., Wang, Q., Xie, Z., Liang, S., Li, H., Shi, L., et al. (2021) Moxibustion Ameliorates Ovarian Reserve in Rats by Mediating NRF2/HO-1/NLRP3 Anti-Inflammatory Pathway. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 8817858. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lopez-Corbeto, M., Martínez-Mateu, S., Pluma, A., Ferrer, R., López-Lasanta, M., De Agustín, J.J., et al. (2021) The Ovarian Reserve as Measured by the Anti-Müllerian Hormone Is Not Diminished in Patients with Rheumatoid Arthritis Compared to the Healthy Population. Clinical and Experimental Rheumatology, 39, 337-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhao, N., Zhang, C., Ding, J., Wu, H., Cheng, W., Li, M., et al. (2022) Altered T Lymphocyte Subtypes and Cytokine Profiles in Follicular Fluid Associated with Diminished Ovary Reserve. American Journal of Reproductive Immunology, 87, e13522. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024) TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduction and Targeted Therapy, 9, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Oktem, O. and Urman, B. (2010) Understanding Follicle Growth in Vivo. Human Reproduction, 25, 2944-2954. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
He, Y., Gan, M., Ma, J., Liang, S., Chen, L., Niu, L., et al. (2025) TGF-β Signaling in the Ovary: Emerging Roles in Development and Disease. International Journal of Biological Macromolecules, 306, Article ID: 141455. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, W., Xu, J., Wang, J., Zhang, J. and Deng, D. (2024) Regulation of Curcumin on Follicle Initiation Rate in Diminished Ovarian Reserve. Combinatorial Chemistry & High Throughput Screening. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Haddad, Y.H., Said, R.S., Kamel, R., Morsy, E.M.E. and El-Demerdash, E. (2020) Phytoestrogen Genistein Hinders Ovarian Oxidative Damage and Apoptotic Cell Death-Induced by Ionizing Radiation: Co-Operative Role of ER-β, TGF-β, and FOXL-2. Scientific Reports, 10, Article No. 13551. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wang, D., Weng, Y., Zhang, Y., Wang, R., Wang, T., Zhou, J., et al. (2020) Exposure to Hyperandrogen Drives Ovarian Dysfunction and Fibrosis by Activating the NLRP3 Inflammasome in Mice. Science of the Total Environment, 745, Article ID; 141049. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Xu, X., Yang, H., Chen, J., Hua, L., Wang, R., Liu, T., et al. (2022) Moxibustion Attenuates Inflammation and Alleviates Axial Spondyloarthritis in Mice: Possible Role of APOE in the Inhibition of the WNT Pathway. Journal of Traditional and Complementary Medicine, 12, 518-528. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zuo, C., Zhang, C., Zhang, H., Gou, C., Lei, H., Tian, F., et al. (2025) Moxibustion Alleviates Inflammation via SIRT5-Mediated Post-Translational Modification and Macrophage Polarization. Inflammation. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Liu, D., Wu, Y.L., Li, C., et al. (2021) Warming Moxibustion Attenuates Inflammation and Cartilage Degradation in Experimental Rabbit Knee Osteoarthriti. Journal of Traditional Chinese Medicine, 41, 959-967.
|
|
[53]
|
Yang, L.J., Wu, J., Yang, L., et al. (2019) [Effect on Follicular Development and Pregnancy Outcome Treated with Acupuncture and Moxibustion Therapy of Tiaochongren Gushenyuan in Patients with Luteal Phase Defect]. Chinese Acupuncture & Moxibustion, 39, 927-931.
|
|
[54]
|
卢鸽, 解子婧, 汪倩, 等. 针刺对卵巢储备功能减退模型大鼠血清炎性因子及卵巢组织Nrf2/HO-1/NLRP3信号通路的影响[J]. 中医杂志, 2020, 61(15): 1350-1356.
|
|
[55]
|
胡恒, 储继军, 李哲, 等. 基于TLR4/MyD88/NF-κB信号通路探讨益经汤改善卵巢储备功能减退大鼠卵巢炎症反应的作用机制[J]. 中国实验方剂学杂志, 2025, 31(11): 20-30.
|