炎症细胞因子与卵巢储备功能减退的相关性研究进展
Research Progress on the Correlation between Inflammatory Cytokines and Diminished Ovarian Reserve
DOI: 10.12677/jcpm.2025.43312, PDF, HTML, XML,    科研立项经费支持
作者: 李 姣, 薛 艳, 张媛媛*:延安大学附属医院妇产科,陕西 延安
关键词: 卵巢储备功能减退炎症细胞因子Diminished Ovarian Reserve Inflammatory Cytokines
摘要: 卵巢储备功能减退(diminished ovarian reserve, DOR)是育龄期女性常见的生殖内分泌疾病,其表现为与年龄、遗传或环境等因素相关的卵子数量和质量下降。长期的慢性炎症会加速身体衰老,从而累及卵巢储备(ovarian reserve, OR),对女性的生殖健康及心理健康造成负面影响。文章综述了不同炎症因子及相关信号通路与DOR发生发展的研究进展,为寻找DOR的病因及早期临床干预提供新思路。
Abstract: Diminished ovarian reserve (DOR) is a common reproductive endocrine disorder among women of childbearing age, characterized by a decline in the quantity and quality of eggs related to factors such as age, genetics, or environment. Chronic inflammation over a long period can accelerate the aging of the body and thereby affect ovarian reserve (OR), having a negative impact on the reproductive health and mental health of women. This article reviews the research progress on different inflammatory factors and related signaling pathways related to the occurrence and development of DOR, providing new ideas for finding the causes of DOR and conducting early clinical intervention.
文章引用:李姣, 薛艳, 张媛媛. 炎症细胞因子与卵巢储备功能减退的相关性研究进展[J]. 临床个性化医学, 2025, 4(3): 32-39. https://doi.org/10.12677/jcpm.2025.43312

1. 引言

卵巢储备(ovarian reserve, OR)是指卵母细胞的质量和数量情况[1]。卵巢储备功能减退(diminished ovarian reserve, DOR)是指卵巢中储存的卵母细胞质量和数量的减少,临床上主要表现为类绝经期症状、月经紊乱及不孕等,影响着10%~35%育龄期妇女的生育能力[2]。近年来,随着社会经济发展和生育年龄的推迟,DOR的发病率逐渐上升,且患病人群逐渐趋于年轻化,已成为女性生殖健康领域的重要问题[3]。DOR的诊断目前没有单一的检测指标。2022年我国专家共识提出[4]:评估卵巢储备功能需检测抗苗勒氏管激素(anti-Müllerian hormone, AMH)、窦卵泡计数(antral follicle count, AFC)及基础卵泡刺激素(follicle-stimulating hormone, FSH)水平,同时结合患者年龄因素进行综合分析。在DOR的临床干预方面,现代医学与传统中医学已形成各具特色的治疗体系。目前的治疗方案大多取决于医生的临床经验。针对有生育需求的患者,促排卵治疗推荐采用个体化控制性促排卵(controlled ovarian hyperstimulation, COS)方案,即选择应用克罗米芬(clomiphene citrate, CC)、来曲唑(letrozole, LE)、促性腺激素(gonadotropin, Gn)等药物,有效改善成熟卵泡数量及卵母细胞质量,治疗后临床妊娠率显著提升。辅助生殖技术应用也会提高妊娠成功率[5]。研究表明,采用中医序贯补肾疗法干预3个月经周期,DOR患者的FSH及黄体生成素(luteinizing hormone, LH)水平显著降低,雌二醇(estradiol,E2)、AMH及AFC均显著升高[6]。然而,不论应用何种方案,DOR患者生殖预后仍存在明显局限。

DOR目前没有明确的病因,其受多种因素的影响,如遗传、不健康的生活方式、环境污染、盆腔炎症及生殖系统炎症等[7]。近些年研究表明,炎症细胞因子在DOR的发生发展中扮演着重要角色。炎症与卵泡生成和排卵密切相关,卵泡液中炎症细胞因子水平的升高可以诱导卵巢颗粒细胞(granular cell, GCs)凋亡,使卵母细胞质量和数量下降,进而导致不孕[8]。本文旨在综述炎症细胞因子与DOR相关性的最新研究进展,为深入理解DOR的病理生理机制和开发新的诊疗策略提供参考。

2. 炎症细胞因子

细胞因子是具有生物活性的小分子分泌蛋白,由多种免疫细胞(如B淋巴细胞、T淋巴细胞、自然杀伤(NK)细胞、单核/巨噬细胞、肥大细胞等)分泌,参与免疫细胞成熟、生长以及应答能力的动态调节过程,是免疫系统的重要介质[9]。细胞因子的异常分泌或过量产生(如在细胞因子风暴期间)会导致多器官功能衰竭甚至死亡,有研究表明,细胞因子风暴与新冠肺炎的严重程度有关,并且也是新冠肺炎导致死亡的一个关键因素[10]。严重的流感病毒感染[11]、系统性红斑狼疮[12]及川崎病[13]等疾病的发生、发展也被证明与细胞因子风暴有着密切的关联。因此,细胞因子的水平被视为评估临床病症的重要指标。

根据其作用不同,细胞因子可被分为促炎及抗炎两种类型。促炎细胞因子包括IL-1β、IL-6、IL-8、IL-12、TNF-α和IFN-γ等,可介导炎症反应,且倾向于刺激免疫功能正常的细胞。相反,IL-4、IL-10、IL-11、IL-13、IL-1受体拮抗剂(IL-1RA)和转化生长因子-β (TGF-β)等抗炎细胞因子可抑制炎症反应并抑制免疫应答[14] [15]。在宿主免疫系统内,促炎性细胞因子与抗炎性细胞因子之间的动态平衡起到了关键作用,这种平衡通过调控和介导炎症反应来影响机体状态。

3. 炎症细胞因子与DOR的发生发展

不少研究表明,炎症会对女性生育能力产生负面影响,甚至非生殖系统的慢性炎症也会对OR产生不利影响。GCs及血清中炎症细胞因子水平的动态变化对卵泡闭锁起调控作用,此外,抑制卵巢中的炎症反应后,年龄依赖的卵巢衰老能够得以延缓,生育窗口期得以延长[16]-[18]。多种炎症细胞因子的存在影响着卵泡生成和排卵,并与卵母细胞成熟和胚胎发育有关[19]

3.1. 促炎细胞因子

(1) IL-1β:作为IL-1大家族中的成员之一,IL-1β主要在巨噬细胞、单核细胞及中性粒细胞中大量表达,涉及炎症反应的多种机制。IL-1β通常以非活性状态(pro-IL-1β)存在,当机体受到损伤后,炎症小体(如NLRP3)的激活有效驱动Caspase蛋白酶依赖性裂解作用,从而使pro-IL-1β转变为活性状态,并介导细胞焦亡[20]。激活后的IL-1β从细胞中释放出来,通过与同一细胞或邻近细胞的IL-1R1结合,触发下游的IRAK4及MK2 等信号通路,进一步增加促炎因子及炎症小体的表达[21]

有研究表明,小鼠的卵泡膜细胞中IL-1β水平的增加诱导了GCs凋亡,并导致E2合成量减少,从而加剧了卵巢功能的减退。探究其具体作用机制后发现,IL-1β以旁分泌方式发挥作用,抑制了卵巢GCs中的cAMP-PKA通路,并激活了核因子-κB (NF-κB)通路,使GCs中活性氧(ROS)的水平显著上调,导致细胞内Ca2+平衡紊乱和线粒体损伤,最终介导GCs的凋亡[22]。NF-κB是一个可诱导的转录因子家族,广泛涉及各种免疫及炎症反应过程[23]。由NF-κB信号通路介导的卵巢GCs焦亡,不仅造成卵巢体积的缩小,所有发育阶段的卵泡数量均显著减少,同时,GCs的增殖能力及生殖内分泌功能均受损[24]。Xin [25]等研究发现,卵巢中IL-1β的表达水平与其中Bax、Caspase 3等细胞凋亡相关蛋白水平的趋势一致,且同时影响雌性小鼠血清E2和AMH水平。有趣的是,一项关于COVID-19患者的研究发现,康复患者的卵泡液中IL-1β的水平降低,她们的卵母细胞质量和预期生殖结果均受到不良影响,这可能是由于较低的IL-1β水平会减少TNF-α的产生,从而使卵巢血管形成受损[26]

(2) TNF-α:肿瘤坏死因子(tumor necrosis factor, TNF)是一种由157个氨基酸组成的同源三聚体蛋白,主要由活化的巨噬细胞、NK细胞及T淋巴细胞产生,其能够引起肿瘤细胞出血性坏死,在炎症反应及病原体免疫等方面具有广泛的作用[27]。1975年Carswell等人[28]首次发现TNF介导内毒素诱导的肿瘤坏死。后来研究者们将来源于巨噬细胞的TNF称为TNF-α,来源于活化T淋巴细胞的淋巴毒素(lymphotoxin, LT)称为TNF-β [29] [30]。TNF-α是急性及慢性全身性炎症反应的主要多效性介质,它能够同时调控细胞凋亡与增殖,并促进其他趋化因子和细胞因子的生成[31]。TNF-α对DOR发生发展的影响存在不同争议。Navarro等[17]研究在DOR患者的血清中检测到了更高水平的TNF-α。一项动物研究表明,马兜铃酸(AAI)通过激活NLRP3炎性小体通路,上调卵巢中NF-κB和TNF-α的表达,引发卵巢炎症与纤维化改变,同时破坏线粒体复合物功能及线粒体的融合-分裂平衡,从而阻止卵泡发育,并增加闭锁卵泡的数量[32]。Huang等[33]研究发现,用促炎因子TNF-α和IFN-γ进行适当的预刺激可显著增加促血管生成因子和基质金属蛋白酶(MMP)的分泌,通过促进血管生成和减少卵巢纤维化来达到有效修复经化疗损伤的卵巢功能。

(3) IL-6:IL-6在炎症中通常起促炎作用,来源于大部分的基质细胞和免疫系统细胞,各种炎症因子、脂肪因子及外来刺激均可促进IL-6的合成。与CRP相比,IL-6可以更好的预测疾病的活动状态[34]。研究结果显示[8],与健康个体相比,卵巢功能低下患者卵泡液和GCs中的IL-6水平升高,且GCs增殖能力减弱,细胞凋亡增加。另有临床研究发现,卵巢功能减退患者血清IL-6和IL-21水平显著高于同龄健康女性[35]。Chen等[36]研究证实,IL-6水平的升高在介导PM2.5诱导的卵巢损伤中起关键作用。进一步探究其机制发现,IL-6通过抑制过氧化物酶体增殖物激活受体(PPARγ)通路进而影响卵泡膜间质细胞(TIC)中睾酮的合成,使GCs合成的E2减少,并诱导GCs凋亡,最终导致卵巢功能的损伤。Shi等[37]回顾性分析了炎症反应对腹腔镜膀胱切除术后卵巢子宫内膜异位症患者OR的影响,发现术前及术后3天的AMH水平与IL-6水平均成反比,故而推测IL-6水平升高与OR的损伤有关。

3.2. 抗炎细胞因子

(1) IL-10:IL-10是一种多效性细胞因子,对先天免疫细胞和适应性免疫细胞的免疫激活过程具有抑制作用[38]。IL-10家族的细胞因子包括IL-10、IL-19、IL-20、IL-22、IL-24、IL-26、IL-28A、IL-28B和IL-29,其中IL-10所涉及的研究较为广泛[39],该细胞因子通过调节炎症因子和免疫反应,对卵巢中卵泡生成及闭锁的进程产生影响[40]。研究表明,DOR大鼠经艾灸治疗后,其外周血中抗炎细胞因子IL-10上调,促炎因子TNF-α降低,同时,大鼠卵巢中出现了更多窦卵泡[41]。Mireia等[42]在研究类风湿关节炎患者的卵巢功能时,观察到血清中AMH和IL-10水平之间存在显著的负性相关。另有研究发现,DOR患者GCs中CD8 T细胞的数量以及CD8/CD4 T细胞的比例均高于卵巢功能正常的不孕妇女,同时发现CD8 T细胞中干扰素-γ (IFN-γ)的阳性比例较高,而CD4 T细胞中IL-10的阳性比例较低[43]。根据以上研究结果我们可以推测,IL-10对女性生殖系统中的OR起着重要的正向作用。

(2) TGF-β:TGF-β超家族成员包括TGF-β、骨形态发生蛋白(BMP)、生长与分化因子(GDF)、激活素和抑制素等,该家族在胚胎发育和形态形成过程中发挥着重要作用。细胞存活、代谢、生长、增殖、分化、粘附、迁移和死亡都受TGF-β的调节。正确的TGF-β信号转导对于机体的稳态维持至关重要,而异常的TGF-β信号转导会导致各种类型的疾病[44]。TGF-β配体超家族的许多成员通过激活初级卵泡向窦前卵泡和窦卵泡阶段的转变,从而促进卵巢发育[45]。当TGF-β超家族配体与TGF-β II型受体结合时,便会启动其信号传导过程。不同的配体会与各自的特定配体结合,招募并磷酸化特定的Ⅰ型受体,并激活下游的SMAD信号通路,TGF-β1/SMAD4信号通路已被证明可以上调MORC2表达,从而抑制卵泡闭锁并促进卵泡生长及发育[46]。Li等[47]研究发现,姜黄素显著增加了TGF-β和AMH的表达水平,并使DOR大鼠卵巢的原始卵泡和生长卵泡显著增加。令人惊讶的是,有研究指出了TGF-β表达的上调可刺激卵泡耗竭及促进GCs细胞凋亡,并且明确了其对E2的分泌产生负面影响。该研究还对经辐射后的大鼠体内注射大豆中的植物激素木黄酮,通过阻断TGF-β信号通路进而保护了原始卵泡储备免受辐射损伤[48]。因此,TGF-β对OR的影响仍然存在争议,还需更多的研究以解释其不同的作用机制。

4. DOR相关抗炎信号通路

4.1. NLRP3信号通路

有研究证明,NLRP3基因抑制对雌性小鼠的生育力有明显的保护作用。MCC950为NLRP3抑制剂,将其经腹膜内注射入雌性小鼠体内后,小鼠血清中AMH水平显著提高,且卵巢组织中的窦卵泡占比升高,闭锁卵泡占比降低[17]。Wang等[49]研究表明,使用NLRP3的特异性抑制剂INF39后,GSDMD的裂解被下调,高雄激素暴露下的GCs焦亡从而被抑制,同时,小鼠的卵泡生成有所改善。艾灸的抗炎作用已在不少研究中得到证实[50]-[52],因为其具有温和的近红外线刺激作用,它也被用于生殖系统疾病的治疗[53]。Ge等[41]研究表明,艾灸激活了Nrf2/HO-1抗炎信号通路,同时抑制了炎性小体NLRP3的水平,进而使DOR大鼠GCs中FSH水平降低,并上调了GCs中E2水平,对DOR的卵巢功能起到有效的改善作用。针刺可通过上调Nrf2/HO-1信号通路进一步降低NLRP3的表达,进而促进血清中的抗炎细胞因子IL-10和抑制促炎细胞因子IL-21的释放,改善卵巢的炎症反应,保护卵巢功能[54]

4.2. NF-κB信号通路

接受JSH-23处理后,通过抑制GCs中的NF-κB减少了细胞焦亡,从而挽救了因环境因素造成的卵巢损伤[24]。TLR4/MyD88/NF-κB是炎症的经典途径,其中TLR4可作为LPS受体被其激活,通过MyD88将细胞外信号传导至胞内,并经过一系列复杂的信号级联反应,最终介导下游NF-κB的激活。接受益经汤灌胃处理的DOR模型组大鼠,其体内的TLR4/MyD88/NF-κB信号通路有效被抑制,且较高剂量的治疗效果比较低剂量的显著[55]

5. 小结

综上所述,促炎细胞因子和抗炎细胞因子对卵泡的生长及发育进程均可起到促进和抑制的双向作用,这表明炎症细胞因子在卵巢功能调控中的复杂性。炎症因子及相应信号通路可作为DOR治疗靶点,但仍需大量的研究来深入探索其作用机制。任何会引起卵巢中卵泡数量减少、发育异常或卵子低质量的内源性或外源性因素,都会导致DOR,因此,通过干预炎症因子来达到DOR的早期治疗对提高育龄期妇女的生育能力有重要意义。

基金项目

中国高校产学研创新基金(编号:2023HT055)。

NOTES

*通讯作者。

参考文献

[1] Zhu, Q., Li, Y., Ma, J., Ma, H. and Liang, X. (2023) Potential Factors Result in Diminished Ovarian Reserve: A Comprehensive Review. Journal of Ovarian Research, 16, Article No. 208.
https://doi.org/10.1186/s13048-023-01296-x
[2] 许英, 王晔, 陈颖. 重组人生长激素对卵巢储备功能减退患者早发LH峰及临床妊娠结局的影响[J]. 中国妇产科临床杂志, 2024, 25(6): 483-486.
[3] Lv, Z., Lv, Z., Song, L., Zhang, Q. and Zhu, S. (2023) Role of LncRNAs in the Pathogenic Mechanism of Human Decreased Ovarian Reserve. Frontiers in Genetics, 14, Article 1056061.
https://doi.org/10.3389/fgene.2023.1056061
[4] 卵巢储备功能减退临床诊治专家共识专家组, 中华预防医学会生育力保护分会生殖内分泌生育保护学组. 卵巢储备功能减退临床诊治专家共识[J]. 生殖医学杂志, 2022, 31(4): 425-434.
[5] Yu, R., Jin, H., Huang, X., Lin, J. and Wang, P. (2018) Comparison of Modified Agonist, Mild-Stimulation and Antagonist Protocols for in Vitro Fertilization in Patients with Diminished Ovarian Reserve. Journal of International Medical Research, 46, 2327-2337.
https://doi.org/10.1177/0300060518770346
[6] Duan, W. and Cheng, Y. (2021) Sequential Therapy for Kidney-Tonifying via Traditional Chinese Medicine Effectively Improves the Reproductive Potential and Quality of Life of Women with Decreased Ovarian Reserve: A Randomized Controlled Study. American Journal of Translational Research, 13, 3165-3173.
[7] Zhang, C.X., Lin, Y.L., Lu, F.F., et al. (2023) Krüppel-Like Factor 12 Regulates Aging Ovarian Granulosa Cell Apoptosis by Repressing SPHK1 Transcription and Sphingosine-1-Phosphate (S1P) Production. Journal of Biological Chemistry, 299, Article ID: 105126.
https://doi.org/10.1016/j.jbc.2023.105126
[8] Han, Y., Yao, R., Yang, Z., Li, S., Meng, W., Zhang, Y., et al. (2022) Interleukin-4 Activates the PI3K/AKT Signaling to Promote Apoptosis and Inhibit the Proliferation of Granulosa Cells. Experimental Cell Research, 412, Article ID: 113002.
https://doi.org/10.1016/j.yexcr.2021.113002
[9] Liu, C., Chu, D., Kalantar‐Zadeh, K., George, J., Young, H.A. and Liu, G. (2021) Cytokines: From Clinical Significance to Quantification. Advanced Science, 8, e2004433.
https://doi.org/10.1002/advs.202004433
[10] Hu, B., Huang, S. and Yin, L. (2020) The Cytokine Storm and COVID‐19. Journal of Medical Virology, 93, 250-256.
https://doi.org/10.1002/jmv.26232
[11] Gu, Y., Zuo, X., Zhang, S., Ouyang, Z., Jiang, S., Wang, F., et al. (2021) The Mechanism behind Influenza Virus Cytokine Storm. Viruses, 13, Article 1362.
https://doi.org/10.3390/v13071362
[12] Caricchio, R. and Gallucci, S. (2024) Systemic Lupus Erythematosus and Cytokine Storm. In: Cron, R.Q. and Behrens, E.M., Eds., Cytokine Storm Syndrome, Springer, 355-364.
https://doi.org/10.1007/978-3-031-59815-9_24
[13] Tsoukas, P. and Yeung, R.S.M. (2024) Kawasaki Disease-Associated Cytokine Storm Syndrome. In: Cron, R.Q. and Behrens, E.M., Eds., Cytokine Storm Syndrome, Springer, 365-383.
https://doi.org/10.1007/978-3-031-59815-9_25
[14] Kaminska, P., Tempes, A., Scholz, E. and Malik, A.R. (2024) Cytokines on the Way to Secretion. Cytokine & Growth Factor Reviews, 79, 52-65.
https://doi.org/10.1016/j.cytogfr.2024.08.003
[15] Tan, W., Zou, J., Yoshida, S., Jiang, B. and Zhou, Y. (2020) The Role of Inflammation in Age-Related Macular Degeneration. International Journal of Biological Sciences, 16, 2989-3001.
https://doi.org/10.7150/ijbs.49890
[16] Lliberos, C., Liew, S.H., Mansell, A. and Hutt, K.J. (2021) The Inflammasome Contributes to Depletion of the Ovarian Reserve during Aging in Mice. Frontiers in Cell and Developmental Biology, 8, Article 628473.
https://doi.org/10.3389/fcell.2020.628473
[17] Navarro-Pando, J.M., Alcocer-Gómez, E., Castejón-Vega, B., Navarro-Villarán, E., Condés-Hervás, M., Mundi-Roldan, M., et al. (2021) Inhibition of the NLRP3 Inflammasome Prevents Ovarian Aging. Science Advances, 7, eabc7409.
https://doi.org/10.1126/sciadv.abc7409
[18] Lliberos, C., Liew, S.H., Zareie, P., La Gruta, N.L., Mansell, A. and Hutt, K. (2021) Evaluation of Inflammation and Follicle Depletion during Ovarian Ageing in Mice. Scientific Reports, 11, Article No. 278.
https://doi.org/10.1038/s41598-020-79488-4
[19] Li, X., Li, C., Yang, J., Lin, M., Zhou, X., Su, Z., et al. (2025) Associations of the Levels of Adipokines and Cytokines in Individual Follicles with in Vitro Fertilization Outcomes in Women with Different Ovarian Reserves. Journal of Ovarian Research, 18, Article No. 11.
https://doi.org/10.1186/s13048-025-01594-6
[20] Broderick, L. and Hoffman, H.M. (2022) IL-1 and Autoinflammatory Disease: Biology, Pathogenesis and Therapeutic Targeting. Nature Reviews Rheumatology, 18, 448-463.
https://doi.org/10.1038/s41584-022-00797-1
[21] Wang, Y., Che, M., Xin, J., Zheng, Z., Li, J. and Zhang, S. (2020) The Role of Il-1β and TNF-α in Intervertebral Disc Degeneration. Biomedicine & Pharmacotherapy, 131, Article ID: 110660.
https://doi.org/10.1016/j.biopha.2020.110660
[22] Cao, M., Yuan, C., Chen, X., He, G., Chen, T., Zong, J., et al. (2024) METTL3 Deficiency Leads to Ovarian Insufficiency Due to Il-1β Overexpression in Theca Cells. Free Radical Biology and Medicine, 222, 72-84.
https://doi.org/10.1016/j.freeradbiomed.2024.05.048
[23] Oeckinghaus, A. and Ghosh, S. (2009) The NF-κB Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1, a000034.
https://doi.org/10.1101/cshperspect.a000034
[24] Sun, J., Gan, L., Lv, S., Wang, T., Dai, C. and Sun, J. (2023) Exposure to Di-(2-Ethylhexyl) Phthalate Drives Ovarian Dysfunction by Inducing Granulosa Cell Pyroptosis via the SLC39A5/NF-κB/NLRP3 Axis. Ecotoxicology and Environmental Safety, 252, Article ID: 114625.
https://doi.org/10.1016/j.ecoenv.2023.114625
[25] Xin, L., Li, F., Yu, H., Xiong, Q., Hou, Q. and Meng, Y. (2023) Honokiol Alleviates Radiation‐induced Premature Ovarian Failure via Enhancing Nrf2. American Journal of Reproductive Immunology, 90, e13769.
https://doi.org/10.1111/aji.13769
[26] Herrero, Y., Pascuali, N., Velázquez, C., Oubiña, G., Hauk, V., de Zúñiga, I., et al. (2022) SARS-CoV-2 Infection Negatively Affects Ovarian Function in ART Patients. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1868, Article ID: 166295.
https://doi.org/10.1016/j.bbadis.2021.166295
[27] Jang, D., Lee, A., Shin, H., Song, H., Park, J., Kang, T., et al. (2021) The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22, Article 2719.
https://doi.org/10.3390/ijms22052719
[28] Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N. and Williamson, B. (1975) An Endotoxin-Induced Serum Factor That Causes Necrosis of Tumors. Proceedings of the National Academy of Sciences of the United States of America, 72, 3666-3670.
https://doi.org/10.1073/pnas.72.9.3666
[29] 张金磊, 孔令俊, 李想, 等. TNF-α在肌少症发生发展中的机制浅析[J]. 中国骨质疏松杂志, 2024, 30(9): 1367-1371.
[30] Semenzato, G. (1990) Tumour Necrosis Factor: A Cytokine with Multiple Biological Activities. British Journal of Cancer, 61, 354-361.
https://doi.org/10.1038/bjc.1990.78
[31] Guo, Y., Hu, K., Li, Y., Lu, C., Ling, K., Cai, C., et al. (2022) Targeting TNF-α for COVID-19: Recent Advanced and Controversies. Frontiers in Public Health, 10, Article 833967.
https://doi.org/10.3389/fpubh.2022.833967
[32] Sun, M., Qiao, F., Xu, Z., Liu, Y., Xu, C., Wang, H., et al. (2023) Aristolochic Acid I Exposure Triggers Ovarian Dysfunction by Activating NLRP3 Inflammasome and Affecting Mitochondrial Homeostasis. Free Radical Biology and Medicine, 204, 313-324.
https://doi.org/10.1016/j.freeradbiomed.2023.05.009
[33] Huang, Y., Zhang, Q., Cao, W., Zhang, Q., Wang, L. and Lai, D. (2023) TNF-α and IFN-γ Prestimulation Enhances the Therapeutic Efficacy of Human Amniotic Epithelial Stem Cells in Chemotherapy-Induced Ovarian Dysfunction. Inflammation and Regeneration, 43, Article No. 57.
https://doi.org/10.1186/s41232-023-00309-y
[34] Hunter, C.A. and Jones, S.A. (2015) IL-6 as a Keystone Cytokine in Health and Disease. Nature Immunology, 16, 448-457.
https://doi.org/10.1038/ni.3153
[35] Sanverdi, I., Kilicci, C., Cogendez, E., Abide Yayla, C. and Ozkaya, E. (2017) Utility of Complete Blood Count Parameters to Detect Premature Ovarian Insufficiency in Cases with Oligomenorrhea/amenorrhea. Journal of Clinical Laboratory Analysis, 32, e22372.
https://doi.org/10.1002/jcla.22372
[36] Chen, Y., Zhang, J., Zhang, T., Wu, Y., Xi, Y., Wu, T., et al. (2024) Circulating Interleukin-6 Mediates PM2.5-Induced Ovarian Injury by Suppressing the PPARγ Pathway. Research, 7, Article ID: 0538.
https://doi.org/10.34133/research.0538
[37] Shi, J., An, D., Ye, J., Fu, R. and Zhao, A. (2022) Effect of Early Inflammatory Reaction on Ovarian Reserve after Laparoscopic Cystectomy for Ovarian Endometriomas. Journal of Obstetrics and Gynaecology, 42, 3124-3128.
https://doi.org/10.1080/01443615.2022.2106559
[38] York, A.G., Skadow, M.H., Oh, J., Qu, R., Zhou, Q.D., Hsieh, W., et al. (2024) IL-10 Constrains Sphingolipid Metabolism to Limit Inflammation. Nature, 627, 628-635.
https://doi.org/10.1038/s41586-024-07098-5
[39] Wei, W., Zhao, Y., Zhang, Y., Jin, H. and Shou, S. (2022) The Role of IL-10 in Kidney Disease. International Immunopharmacology, 108, Article ID: 108917.
https://doi.org/10.1016/j.intimp.2022.108917
[40] Yang, P., Chou, C., Huang, C., Wen, W., Chen, H., Shun, C., et al. (2021) Obesity Alters Ovarian Folliculogenesis through Disrupted Angiogenesis from Increased IL-10 Production. Molecular Metabolism, 49, Article ID: 101189.
https://doi.org/10.1016/j.molmet.2021.101189
[41] Lu, G., Wang, Q., Xie, Z., Liang, S., Li, H., Shi, L., et al. (2021) Moxibustion Ameliorates Ovarian Reserve in Rats by Mediating NRF2/HO-1/NLRP3 Anti-Inflammatory Pathway. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 8817858.
https://doi.org/10.1155/2021/8817858
[42] Lopez-Corbeto, M., Martínez-Mateu, S., Pluma, A., Ferrer, R., López-Lasanta, M., De Agustín, J.J., et al. (2021) The Ovarian Reserve as Measured by the Anti-Müllerian Hormone Is Not Diminished in Patients with Rheumatoid Arthritis Compared to the Healthy Population. Clinical and Experimental Rheumatology, 39, 337-343.
https://doi.org/10.55563/clinexprheumatol/73txen
[43] Zhao, N., Zhang, C., Ding, J., Wu, H., Cheng, W., Li, M., et al. (2022) Altered T Lymphocyte Subtypes and Cytokine Profiles in Follicular Fluid Associated with Diminished Ovary Reserve. American Journal of Reproductive Immunology, 87, e13522.
https://doi.org/10.1111/aji.13522
[44] Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024) TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduction and Targeted Therapy, 9, Article No. 61.
https://doi.org/10.1038/s41392-024-01764-w
[45] Oktem, O. and Urman, B. (2010) Understanding Follicle Growth in Vivo. Human Reproduction, 25, 2944-2954.
https://doi.org/10.1093/humrep/deq275
[46] He, Y., Gan, M., Ma, J., Liang, S., Chen, L., Niu, L., et al. (2025) TGF-β Signaling in the Ovary: Emerging Roles in Development and Disease. International Journal of Biological Macromolecules, 306, Article ID: 141455.
https://doi.org/10.1016/j.ijbiomac.2025.141455
[47] Li, W., Xu, J., Wang, J., Zhang, J. and Deng, D. (2024) Regulation of Curcumin on Follicle Initiation Rate in Diminished Ovarian Reserve. Combinatorial Chemistry & High Throughput Screening.
https://doi.org/10.2174/0113862073327087240926065629
[48] Haddad, Y.H., Said, R.S., Kamel, R., Morsy, E.M.E. and El-Demerdash, E. (2020) Phytoestrogen Genistein Hinders Ovarian Oxidative Damage and Apoptotic Cell Death-Induced by Ionizing Radiation: Co-Operative Role of ER-β, TGF-β, and FOXL-2. Scientific Reports, 10, Article No. 13551.
https://doi.org/10.1038/s41598-020-70309-2
[49] Wang, D., Weng, Y., Zhang, Y., Wang, R., Wang, T., Zhou, J., et al. (2020) Exposure to Hyperandrogen Drives Ovarian Dysfunction and Fibrosis by Activating the NLRP3 Inflammasome in Mice. Science of the Total Environment, 745, Article ID; 141049.
https://doi.org/10.1016/j.scitotenv.2020.141049
[50] Xu, X., Yang, H., Chen, J., Hua, L., Wang, R., Liu, T., et al. (2022) Moxibustion Attenuates Inflammation and Alleviates Axial Spondyloarthritis in Mice: Possible Role of APOE in the Inhibition of the WNT Pathway. Journal of Traditional and Complementary Medicine, 12, 518-528.
https://doi.org/10.1016/j.jtcme.2022.04.002
[51] Zuo, C., Zhang, C., Zhang, H., Gou, C., Lei, H., Tian, F., et al. (2025) Moxibustion Alleviates Inflammation via SIRT5-Mediated Post-Translational Modification and Macrophage Polarization. Inflammation.
https://doi.org/10.1007/s10753-025-02239-y
[52] Liu, D., Wu, Y.L., Li, C., et al. (2021) Warming Moxibustion Attenuates Inflammation and Cartilage Degradation in Experimental Rabbit Knee Osteoarthriti. Journal of Traditional Chinese Medicine, 41, 959-967.
[53] Yang, L.J., Wu, J., Yang, L., et al. (2019) [Effect on Follicular Development and Pregnancy Outcome Treated with Acupuncture and Moxibustion Therapy of Tiaochongren Gushenyuan in Patients with Luteal Phase Defect]. Chinese Acupuncture & Moxibustion, 39, 927-931.
[54] 卢鸽, 解子婧, 汪倩, 等. 针刺对卵巢储备功能减退模型大鼠血清炎性因子及卵巢组织Nrf2/HO-1/NLRP3信号通路的影响[J]. 中医杂志, 2020, 61(15): 1350-1356.
[55] 胡恒, 储继军, 李哲, 等. 基于TLR4/MyD88/NF-κB信号通路探讨益经汤改善卵巢储备功能减退大鼠卵巢炎症反应的作用机制[J]. 中国实验方剂学杂志, 2025, 31(11): 20-30.