SARS-CoV-2感染降低精子质量的机制研究进展
Research Advances in the Mechanisms Underlying SARS-CoV-2-Induced Decline in Sperm Quality
DOI: 10.12677/jcpm.2025.43316, PDF, HTML, XML,   
作者: 邓 航, 张培海:成都中医药大学附属医院泌尿外科,四川 成都
关键词: SARS-CoV-2精子质量不育SARS-CoV-2 Sperm Quality Infertility
摘要: SARS-CoV-2是一种新型冠状病毒,其主要通过血管紧张素转换酶2 (ACE2)入侵靶点细胞,可导致感染者出现呼吸系统、神经系统、心血管系统以及生殖系统症状。本文通过总结SARS-CoV-2降低精子质量的相关机制,发现SARS-CoV-2主要通过睾丸炎症反应、氧化应激反应、下丘脑-垂体-性腺轴,睾丸微循环障碍等途径影响精子的发生和成熟,从而导致男性精子质量下降。
Abstract: SARS-CoV-2, a novel coronavirus, primarily invades host cells via the angiotensin-converting enzyme 2 (ACE2) receptor and can induce symptoms affecting the respiratory, nervous, cardiovascular, and reproductive systems in infected individuals. This article synthesizes current research on the mechanisms by which SARS-CoV-2 reduces sperm quality, revealing that the virus primarily impairs spermatogenesis and sperm maturation through testicular inflammatory responses, oxidative stress responses, dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis, and testicular microcirculatory disturbances, ultimately leading to diminished sperm quality.
文章引用:邓航, 张培海. SARS-CoV-2感染降低精子质量的机制研究进展[J]. 临床个性化医学, 2025, 4(3): 60-66. https://doi.org/10.12677/jcpm.2025.43316

1. 引言

SARS-CoV-2是一种新型冠状病毒,其主要通过血管紧张素转换酶2 (ACE2)和跨膜丝氨酸蛋白酶2入侵靶点细胞[1],而ACE2在SARS-CoV-2感染中起着至关重要的作用。ACE2不仅在肺组织中有丰富表达,并且在神经系统、心血管系统和生殖系统等亦大量存在。因此感染SARS-CoV-2不仅可以出现头痛、胸闷等症状,亦可出现附睾炎、精子质量异常等男性生殖系统疾病[2]-[4]

研究发现[5],大多数SARS-CoV-2感染者会表现出精子总活力下降。同时,部分精液样品的精子进行性活动力、浓度和体积也明显降低。目前为止,大多数研究在SARS-CoV-2感染者精液样本中未发现SARS-CoV-2 [6]。少数几项研究发现了精液中SARS-CoV-2的存在[7],但这可能和样本被患者的气溶胶或其他体液污染有关。根据以往研究显示病毒直接感染精子的证据尚不充分,且阳性检出率极低(<5%)。精子损伤更可能由全身性炎症反应及氧化应激等机制介导,而非病毒直接作用。未来需扩大样本量并采用单细胞测序技术,以明确病毒在生殖组织中的定位及复制能力。

2. 炎症反应

2.1. 睾丸炎症反应

睾丸是男性重要的生殖器官,睾丸实质主要由生精小管构成,生精小管是产生精子的直接场所,精子质量与睾丸的功能密切相关。由于睾丸细胞中高度表达ACE2,因此SARS-CoV-2可通过与ACE2结合直接感染损伤睾丸细胞,导致炎症发生。Li H, Xiao等[8] [9]在SARS-CoV-2患者中观察到输精管炎症损伤,间质水肿、充血、炎症细胞浸润、红细胞渗出等组织病理学改变,提示SARS-CoV-2可能通过炎症损害男性生殖系统。

2.2. 全身炎症反应

SARS-CoV-2感染机体后可诱导免疫细胞因子“瀑布式”释放,引发“炎症风暴”[10],导致噬血细胞性淋巴组织细胞增多症。噬血细胞性淋巴组织细胞增多症是一种重要的全身性炎症综合征,是导致SARS-CoV-2患者组织损伤和多器官功能障碍的公认机制。这种免疫应答引起的多器官损伤包括睾丸损伤,它可能对精子发生产生负面影响,从而对精液质量和男性生育能力造成不利影响[11]

此外,白细胞、CD68+巨噬细胞和CD3 + T淋巴细胞浸润到睾丸间质组织中,可产生干扰素,使睾酮的产生减少,这也与精子发生异常有关[12] [13]。重度SARS-CoV-2感染患者的血浆中细胞因子(IL-2、IL-6、IL-7、IL-10、TNF-α和MCP-1)水平较高[14]

现有证据表明,睾丸细胞中这些炎症因子如IL-6和TNF-α之间的失衡可导致睾丸炎[15]。因此,SARS-CoV-2可通过以上途径引发睾丸炎症反应,从而导致精子发生的微环境紊乱,造成精子质量下降。

3. 氧化应激

活性氧(ROS)是氧化反应中产生的不可避免的副产物,是一种有毒的代谢物,但是在正常生理水平下,ROS可以通过调节细胞内信号级联,介导精子成熟、获能、顶体反应和受精等重要生理机制。当氧化剂和抗氧化剂之间的平衡遭到破坏,活性氧过剩时就会发生氧化应激(OS) [16]

氧化应激(Oxidative Stress, OS)是SARS-CoV-2感染引发精子损伤的核心机制之一。活性氧(ROS)在生理浓度下参与精子获能、顶体反应等关键过程,但过量ROS可破坏氧化还原平衡[17],导致精子结构与功能异常[18] [19]

3.1. ROS对精子细胞膜的影响

精子细胞膜极易受到ROS诱导的脂质过氧化作用的影响。有证据表明,活性氧的增加与精子活力的降低有关[20] [21],ROS中的超氧阴离子( O 2 )主要由线粒体电子传递链泄漏产生,可攻击精子细胞膜磷脂中的不饱和脂肪酸,引发脂质过氧化,导致膜流动性下降及顶体反应障碍[22]。SARS-CoV-2患者的ROS水平发生了显著变化,脂质过氧化水平升高[23]。它促进了膜流动性的破坏和精子三磷酸腺苷的快速损失,降低了精子的活力与生存能力。

3.2. ROS对精子DNA的影响

此外,当精子暴露于人工产生的ROS研究环境下时,各种类型的DNA损伤显著增加[24]。高水平的活性氧介导了不育男性精子中常见的DNA断裂[25] [26]。作为ROS组成之一的过氧化氢(H2O2)可穿透细胞膜,直接损伤精子核DNA,诱导单链断裂及碱基修饰,增加DNA碎片化指数[27]。而羟基自由基(-OH)作为氧化能力最强的ROS,可无差别破坏蛋白质巯基和DNA双链结构,导致精子活力丧失及遗传信息传递异常[28]。由于缺乏保护性组蛋白、DNA结合蛋白和有效的修复系统,线粒体DNA容易受到氧化损伤[29]。与此同时,功能失调的线粒体产生的三磷酸腺苷水平较低,而三磷酸腺苷水平的下降会在细胞周期中抑制精子干细胞前体的产生,导致精子生成不足或发育停滞[30]。由于DNA的结构完整性很大程度上决定了受精的成功率和胚胎的发育,因此这些活性氧诱导的损伤,尤其是精子DNA的断裂可能会对生殖结果产生不利影响。

3.3. 抗氧化剂的潜在保护作用

精浆中天然抗氧化系统(如超氧化物歧化酶、谷胱甘肽过氧化物酶)可通过清除ROS维持氧化平衡。临床研究表明,外源性补充抗氧化剂(如维生素C/E、N-乙酰半胱氨酸)可显著改善COVID-19康复患者的精子参数[31]。Lenzi [32]等通过随机对照试验证实,谷胱甘肽治疗可降低DFI并提高精子活力。然而,抗氧化剂的剂量效应及长期安全性仍需进一步验证。

SARS-CoV-2感染可显著升高患者血浆及精浆中ROS水平。重症感染者ROS浓度可达健康人群的9倍以上,且与精子活力、形态及DFI呈负相关[33]。Falahieh等发现,感染后14天患者精子DFI高达33.1% (正常值 < 15%),而120天后虽有所改善,但形态异常仍未完全恢复[34],提示ROS介导的损伤具有持续性;且患者精浆总抗氧化能力(TAC)仍低于基线水平,提示需延长抗氧化治疗窗口。未来研究应结合代谢组学分析,动态监测氧化应激标志物(如8-OHdG、MDA),以制定个体化给药方案。

4. 下丘脑–垂体–性腺轴

下丘脑–垂体–性腺轴(HPG)是下丘脑、垂体、性腺三者之间通过促性腺激素释放激素(GnRH)、促性腺激素(FSH)、性腺激素等参与实现反馈与负反馈来调控人类生殖和性行为的主要内分泌系统。下丘脑–垂体–性腺轴与男性精子的产生与发育密切相关[35] [36]。下丘脑–垂体–睾丸轴可以精确地调控精子的发生过程,下丘脑脉冲式地释放促性腺激素释放激素,GnRH刺激腺垂体分泌促性腺激素和促黄体生成素(LH),FSH作用于Sertoli细胞,LH作用于睾丸间质细胞,FSH可提高Sertoli细胞生成男性激素的能力,促使精子形成和成熟[37];LH可刺激睾丸间质细胞发育,促进睾酮(T)分泌[38];T是促进男性生殖器官发育和维持男性性功能的主要激素,生成于睾丸间质细胞中,可维持机体内高浓度雄激素环境,而保持高浓度的雄激素环境是男性机体内精子产生的必要条件[39]

有研究[40]表明SARS-CoV-2可通过降低神经细胞氧浓度、引起细胞炎症因子的过度活化、导致微血管病变以及引发胶质细胞功能障碍等途径,可能是通过干扰下丘脑细胞的正常生理活动,影响其GnRH的分泌,从而干扰下丘脑–垂体–睾丸轴对精子的正常调控。

在一组从SARS-CoV-2康复的男性中,一项为期7个月的随访研究显示,10%的患者的睾酮(T)水平进一步下降,这表明性腺功能持续低下,特别是在感染后并发症较严重的病例中。而且,即使睾酮水平恢复后,男性的LH和17β-雌二醇水平也出现明显下降[41]。相比之下,Apaydin等人[42]的研究表明,在康复后6个月的随访中,睾酮水平较低的男性中,48.2%的受试者伴有性腺功能减退持续存在。

这些研究表明,SARS-CoV-2感染直接或间接地破坏了男性内分泌系统,扰乱了正常的性激素水平,对精子的生成造成了不利影响。

5. 微循环障碍

睾丸具有丰富、复杂的微血管系统,稳定的血流供应对维持睾丸正常功能及内环境起到极其重要的作用。睾丸微循环的结构和功能变化会在很大程度上影响睾丸的功能。

SARS-CoV-2感染的情况下,细胞膜结合的ACE2跨膜转运蛋白将被内化,导致膜表面受体密度降低。由于ACE2主要负责AngII向血管紧张素1-7的转化,因此ACE2密度的降低和ACE2活性的下调会导致Ang II的积累,而血管紧张素II可以发挥促血管收缩、促纤维化和促炎的作用[43]。活化的M1表型巨噬细胞(干扰素-7)对炎症细胞因子IL-1和IL-6的刺激增加以及AngII的过度活性会导致内皮活化、通透性增加和粘附分子的共同表达,从而产生血栓前表型[44] [45]

此外,这可以通过其他物质(如纤溶酶原激活物抑制剂因子I(PAI)、组织因子(TF)和血管性血友病因子(vWF))的增加来证实,这些物质会产生血流动力学变化,使内皮发炎、预粘连和血栓前体的形成。有研究表明SARS-CoV-2感染后,会出现持续的组织损伤[46],导致血管内皮炎。

研究表明,微循环障碍是导致男性不育的重要病理因素之一[47]。虽然SARS-CoV-2感染患者群体中血栓栓塞性疾病的发病率尚不清楚,但是根据一些病例收集报告[48] [49]的结果,可以认为SARS-CoV-2的血栓性并发症是常见的。尽管上述病理变化与男性不育密切相关,但直接证据表明SARS-CoV-2特异性导致睾丸微循环障碍的研究仍有限。目前仅有个别病例报告描述了感染后睾丸缺血性损伤[50] [51],尚缺乏大样本组织学或影像学数据支持。因此,未来需结合多模态成像(如超声造影)和分子标记物检测,系统评估感染后睾丸微血管功能变化。

6. 总结与展望

本文总结了SARS-CoV-2感染对降低精子质量的相关机制,包括睾丸炎症反应,氧化应激反应,下丘脑-垂体-性腺轴,睾丸微循环障碍等四个方面。鉴于病毒变异及重复感染的风险,建议未来联合多学科方法进行深入研究,开展以下工作:(1) 明确不同类型ROS的时空分布特征及其与精子亚结构损伤的关联并设计前瞻性队列研究,评估抗炎与抗氧化联合疗法的临床效果。(2) 构建SARS-CoV-2蛋白(如Spike蛋白)与宿主生殖细胞相互作用的分子动力学模型,筛选潜在干预靶点。(3) 利用类器官模型模拟SARS-CoV-2对睾丸微循环的直接影响。(4) 开展多中心前瞻性队列研究,追踪SARS-CoV-2康复患者(尤其是重复感染者)的精液参数、激素水平及子代健康结局,建立长期生殖风险预警体系。

当前,新冠疫情依然在全球范围内呈现散发的小流行,急性感染后患有长期症状的患者与多次感染患者数量仍然在持续增加,病毒时刻都在变异中。未来我们应当继续进行更多、更深层次的关于SARS-CoV-2感染影响男性生育力的研究,以期能够尽早的阻止病情进展,提高男性生育力。

参考文献

[1] Tian, Y. and Zhou, L. (2021) Evaluating the Impact of COVID-19 on Male Reproduction. Reproduction, 161, R37-R44.
https://doi.org/10.1530/rep-20-0523
[2] Huang, C., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China (Vol 395, pg 497, 2020). Lancet, 395, 496.
[3] Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X. and Shan, H. (2020) Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 158, 1831-1833.e3.
https://doi.org/10.1053/j.gastro.2020.02.055
[4] Zhang, Y., Zheng, L., Liu, L., Zhao, M., Xiao, J. and Zhao, Q. (2020) Liver Impairment in COVID‐19 Patients: A Retrospective Analysis of 115 Cases from a Single Centre in Wuhan City, China. Liver International, 40, 2095-2103.
https://doi.org/10.1111/liv.14455
[5] Leng, T., Guo, Z., Sang, Z., Xin, Q. and Chen, F. (2023) Effect of COVID-19 on Sperm Parameters: Pathologic Alterations and Underlying Mechanisms. Journal of Assisted Reproduction and Genetics, 40, 1623-1629.
https://doi.org/10.1007/s10815-023-02795-y
[6] Chen, F., Zhu, S., Dai, Z., Hao, L., Luan, C., Guo, Q., et al. (2021) Effects of COVID-19 and mRNA Vaccines on Human Fertility. Human Reproduction, 37, 5-13.
https://doi.org/10.1093/humrep/deab238
[7] Gonzalez, D.C., Kajal, K., Raghav, P., et al. (2020) A Systematic Review on the Investigation of SARS-CoV-2 in Semen. Research and Reports in Urology, 12, 615-621.
[8] Li, H., Xiao, X., Zhang, J., Zafar, M.I., Wu, C., Long, Y., et al. (2020) Impaired Spermatogenesis in COVID-19 Patients. EClinicalMedicine, 28, Article ID: 100604.
https://doi.org/10.1016/j.eclinm.2020.100604
[9] Yang, M., Chen, S., Huang, B., Zhong, J., Su, H., Chen, Y., et al. (2020) Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. European Urology Focus, 6, 1124-1129.
https://doi.org/10.1016/j.euf.2020.05.009
[10] 邓小博, 马欢欢, 俞荣, 等. 新冠病毒感染后细胞免疫研究进展[J]. 中华医院感染学杂志, 2022, 32(10): 1590-1595.
[11] Banihani, S.A. (2021) Human Semen Quality as Affected by SARS‐CoV‐2 Infection: An Up‐to‐Date Review. Andrologia, 54, e14295.
https://doi.org/10.1111/and.14295
[12] Hedger, M.P. and Meinhardt, A. (2003) Cytokines and the Immune-Testicular Axis. Journal of Reproductive Immunology, 58, 1-26.
https://doi.org/10.1016/s0165-0378(02)00060-8
[13] Paul, W.E. and Seder, R.A. (1994) Lymphocyte Responses and Cytokines. Cell, 76, 241-251.
https://doi.org/10.1016/0092-8674(94)90332-8
[14] Tripathy, A.S., Vishwakarma, S., Trimbake, D., Gurav, Y.K., Potdar, V.A., Mokashi, N.D., et al. (2021) Pro-Inflammatory CXCL-10, TNF-α, IL-1β, and IL-6: Biomarkers of SARS-CoV-2 Infection. Archives of Virology, 166, 3301-3310.
https://doi.org/10.1007/s00705-021-05247-z
[15] Chen, Y., Wang, J., Zhang, Q., Xiang, Z., Li, D. and Han, X. (2017) Microcystin-Leucine Arginine Exhibits Immunomodulatory Roles in Testicular Cells Resulting in Orchitis. Environmental Pollution, 229, 964-975.
https://doi.org/10.1016/j.envpol.2017.07.081
[16] Schönrich, G., Raftery, M.J. and Samstag, Y. (2020) Devilishly Radical Network in COVID-19: Oxidative Stress, Neutrophil Extracellular Traps (NETs), and T Cell Suppression. Advances in Biological Regulation, 77, Article ID: 100741.
https://doi.org/10.1016/j.jbior.2020.100741
[17] Sikka, S. (2001) Relative Impact of Oxidative Stress on Male Reproductive Function. Current Medicinal Chemistry, 8, 851-862.
https://doi.org/10.2174/0929867013373039
[18] Juárez‐Rojas, L., Casillas, F., López, A., Betancourt, M., Ommati, M.M. and Retana‐Márquez, S. (2022) Physiological Role of Reactive Oxygen Species in Testis and Epididymal Spermatozoa. Andrologia, 54, e14367.
https://doi.org/10.1111/and.14367
[19] Agarwal, A., Aitken, R.J. and Alvarez, J.G. (2012) Studies on Men’s Health and Fertility. Humana Press.
[20] Agarwal, A., Ikemoto, I. and Loughlin, K.R. (1994) Relationship of Sperm Parameters with Levels of Reactive Oxygen Species in Semen Specimens. Journal of Urology, 152, 107-110.
https://doi.org/10.1016/s0022-5347(17)32829-x
[21] Armstrong, J.S., Rajasekaran, M., Chamulitrat, W., Gatti, P., Hellstrom, W.J. and Sikka, S.C. (1999) Characterization of Reactive Oxygen Species Induced Effects on Human Spermatozoa Movement and Energy Metabolism. Free Radical Biology and Medicine, 26, 869-880.
https://doi.org/10.1016/s0891-5849(98)00275-5
[22] Sanocka, D. and Kurpisz, M. (2004) Reactive Oxygen Species and Sperm Cells. Reproductive Biology and Endocrinology, 2, [page].
https://doi.org/10.1186/1477-7827-2-12
[23] Pincemail, J., Cavalier, E., Charlier, C., Cheramy–Bien, J., Brevers, E., Courtois, A., et al. (2021) Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants, 10, Article 257.
https://doi.org/10.3390/antiox10020257
[24] Kemal Duru, N., Morshedi, M. and Oehninger, S. (2000) Effects of Hydrogen Peroxide on DNA and Plasma Membrane Integrity of Human Spermatozoa. Fertility and Sterility, 74, 1200-1207.
https://doi.org/10.1016/s0015-0282(00)01591-0
[25] Fraga, C.G., Motchnik, P.A., Shigenaga, M.K., Helbock, H.J., Jacob, R.A. and Ames, B.N. (1991) Ascorbic Acid Protects against Endogenous Oxidative DNA Damage in Human Sperm. Proceedings of the National Academy of Sciences of the United States of America, 88, 11003-11006.
https://doi.org/10.1073/pnas.88.24.11003
[26] Fraga, C.G., Motchnik, P.A., Wyrobek, A.J., Rempel, D.M. and Ames, B.N. (1996) Smoking and Low Antioxidant Levels Increase Oxidative Damage to Sperm DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 351, 199-203.
https://doi.org/10.1016/0027-5107(95)00251-0
[27] Zeynep, C., Canan, K., Gulsan, A., et al. (2022) Evaluation of Sperm DNA Fragmentation in Male Infertility. Andrologia, 54, e14587.
[28] Kodama, H., Yamaguchi, R., Fukuda, J., Kasai, H. and Tanaka, T. (1997) Increased Oxidative Deoxyribonucleic Acid Damage in the Spermatozoa of Infertile Male Patients. Fertility and Sterility, 68, 519-524.
https://doi.org/10.1016/s0015-0282(97)00236-7
[29] Dada, R., Shamsi, M., Kumar, R., Bhatt, A., Bamezai, R.N.K., Kumar, R., et al. (2008) Mitochondrial DNA Mutations in Etiopathogenesis of Male Infertility. Indian Journal of Urology, 24, 150-154.
https://doi.org/10.4103/0970-1591.40606
[30] Bisht, S., Faiq, M., Tolahunase, M. and Dada, R. (2017) Oxidative Stress and Male Infertility. Nature Reviews Urology, 14, 470-485.
https://doi.org/10.1038/nrurol.2017.69
[31] Alahmar, A. (2019) Role of Oxidative Stress in Male Infertility: An Updated Review. Journal of Human Reproductive Sciences, 12, 4-18.
https://doi.org/10.4103/jhrs.jhrs_150_18
[32] Lenzi, A., Culasso, F., Gandini, L., Lombardo, F. and Dondero, F. (1993) Andrology: Placebo-Controlled, Double-Blind, Cross-Over Trial of Glutathione Therapy in Male Infertility. Human Reproduction, 8, 1657-1662.
https://doi.org/10.1093/oxfordjournals.humrep.a137909
[33] Veenith, T., Martin, H., Le Breuilly, M., Whitehouse, T., Gao-Smith, F., Duggal, N., et al. (2022) High Generation of Reactive Oxygen Species from Neutrophils in Patients with Severe COVID-19. Scientific Reports, 12, Article No. 10484.
https://doi.org/10.1038/s41598-022-13825-7
[34] Falahieh, F.M., Zarabadipour, M., Mirani, M., Abdiyan, M., Dinparvar, M., Alizadeh, H., et al. (2021) Effects of Moderate COVID-19 Infection on Semen Oxidative Status and Parameters 14 and 120 Days after Diagnosis. Reproduction, Fertility and Development, 33, 683-690.
https://doi.org/10.1071/rd21153
[35] Oyola, M.G. and Handa, R.J. (2017) Hypothalamic-Pituitary-Adrenal and Hypothalamic-Pituitary-Gonadal Axes: Sex Differences in Regulation of Stress Responsivity. Stress, 20, 476-494.
https://doi.org/10.1080/10253890.2017.1369523
[36] Sengupta, P. and Cho, C. (2019) The Pathophysiology of Male Infertility. In: Rizk, B., Agarwal, A. and Sabanegh Jr., E., Eds., Male Infertility in Reproductive Medicine, CRC Press, 1-9.
https://doi.org/10.1201/9780429485763-1
[37] 杨跃伟. 375例无精症的男性不育症患者生殖激素与睾丸体积相关性研究[J]. 四川解剖学杂志, 2013, 21(2): 12-13.
[38] 宋明哲, 叶丽君, 尹彪, 等. 精浆和血清生殖激素与精液质量的关系[J]. 生殖医学杂志, 2016, 25(4): 341-346.
[39] 刘继龙, 陈枚燕, 林春莲, 等. 男性不育患者精子形态与生殖激素关系的初步研究[J]. 贵州医药, 2013, 37(7): 589-591.
[40] Pattanaik, A., Bhandarkar B, S., Lodha, L. and Marate, S. (2023) SARS-CoV-2 and the Nervous System: Current Perspectives. Archives of Virology, 168, Article No. 171.
https://doi.org/10.1007/s00705-023-05801-x
[41] Salonia, A., Pontillo, M., Capogrosso, P., Pozzi, E., Ferrara, A.M., Cotelessa, A., et al. (2022) Testosterone in Males with COVID‐19: A 12‐Month Cohort Study. Andrology, 11, 17-23.
https://doi.org/10.1111/andr.13322
[42] Apaydin, T., Sahin, B., Dashdamirova, S., Dincer Yazan, C., Elbasan, O., Ilgin, C., et al. (2022) The Association of Free Testosterone Levels with Coronavirus Disease 2019. Andrology, 10, 1038-1046.
https://doi.org/10.1111/andr.13152
[43] Wu, L., O'Kane, A.M., Peng, H., Bi, Y., Motriuk-Smith, D. and Ren, J. (2020) SARS-CoV-2 and Cardiovascular Complications: From Molecular Mechanisms to Pharmaceutical Management. Biochemical Pharmacology, 178, Article ID: 114114.
https://doi.org/10.1016/j.bcp.2020.114114
[44] Escher, R., Breakey, N. and Lämmle, B. (2020) Severe COVID-19 Infection Associated with Endothelial Activation. Thrombosis Research, 190, 62.
https://doi.org/10.1016/j.thromres.2020.04.014
[45] Aird, W.C. (2007) Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds. Circulation Research, 100, 174-190.
https://doi.org/10.1161/01.res.0000255690.03436.ae
[46] Zachariah, U., Nair, S.C., Goel, A., Balasubramanian, K.A., Mackie, I., Elias, E., et al. (2020) Targeting Raised Von Willebrand Factor Levels and Macrophage Activation in Severe COVID-19: Consider Low Volume Plasma Exchange and Low Dose Steroid. Thrombosis Research, 192, 2.
https://doi.org/10.1016/j.thromres.2020.05.001
[47] 顾磊, 金保方, 张新东. 睾丸微循环结构及功能调控的研究进展[J]. 微循环学杂志, 2014, 24(3): 65-67.
[48] Danzi, G.B., Loffi, M., Galeazzi, G. and Gherbesi, E. (2020) Acute Pulmonary Embolism and COVID-19 Pneumonia: A Random Association? European Heart Journal, 41, 1858-1858.
https://doi.org/10.1093/eurheartj/ehaa254
[49] Klok, F.A., Kruip, M.J.H.A., van der Meer, N.J.M., Arbous, M.S., Gommers, D.A.M.P.J., Kant, K.M., et al. (2020) Incidence of Thrombotic Complications in Critically Ill ICU Patients with Covid-19. Thrombosis Research, 191, 145-147.
https://doi.org/10.1016/j.thromres.2020.04.013
[50] Casey, K., Iteen, A., Nicolini, R. and Auten, J. (2020) COVID-19 Pneumonia with Hemoptysis: Acute Segmental Pulmonary Emboli Associated with Novel Coronavirus Infection. The American Journal of Emergency Medicine, 38, 1544.e1-1544.e3.
https://doi.org/10.1016/j.ajem.2020.04.011
[51] Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I., Ohana, M., Delabranche, X., et al. (2020) High Risk of Thrombosis in Patients with Severe SARS-CoV-2 Infection: A Multicenter Prospective Cohort Study. Intensive Care Medicine, 46, 1089-1098.
https://doi.org/10.1007/s00134-020-06062-x