[1]
|
Tian, Y. and Zhou, L. (2021) Evaluating the Impact of COVID-19 on Male Reproduction. Reproduction, 161, R37-R44. https://doi.org/10.1530/rep-20-0523
|
[2]
|
Huang, C., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China (Vol 395, pg 497, 2020). Lancet, 395, 496.
|
[3]
|
Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X. and Shan, H. (2020) Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 158, 1831-1833.e3. https://doi.org/10.1053/j.gastro.2020.02.055
|
[4]
|
Zhang, Y., Zheng, L., Liu, L., Zhao, M., Xiao, J. and Zhao, Q. (2020) Liver Impairment in COVID‐19 Patients: A Retrospective Analysis of 115 Cases from a Single Centre in Wuhan City, China. Liver International, 40, 2095-2103. https://doi.org/10.1111/liv.14455
|
[5]
|
Leng, T., Guo, Z., Sang, Z., Xin, Q. and Chen, F. (2023) Effect of COVID-19 on Sperm Parameters: Pathologic Alterations and Underlying Mechanisms. Journal of Assisted Reproduction and Genetics, 40, 1623-1629. https://doi.org/10.1007/s10815-023-02795-y
|
[6]
|
Chen, F., Zhu, S., Dai, Z., Hao, L., Luan, C., Guo, Q., et al. (2021) Effects of COVID-19 and mRNA Vaccines on Human Fertility. Human Reproduction, 37, 5-13. https://doi.org/10.1093/humrep/deab238
|
[7]
|
Gonzalez, D.C., Kajal, K., Raghav, P., et al. (2020) A Systematic Review on the Investigation of SARS-CoV-2 in Semen. Research and Reports in Urology, 12, 615-621.
|
[8]
|
Li, H., Xiao, X., Zhang, J., Zafar, M.I., Wu, C., Long, Y., et al. (2020) Impaired Spermatogenesis in COVID-19 Patients. EClinicalMedicine, 28, Article ID: 100604. https://doi.org/10.1016/j.eclinm.2020.100604
|
[9]
|
Yang, M., Chen, S., Huang, B., Zhong, J., Su, H., Chen, Y., et al. (2020) Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. European Urology Focus, 6, 1124-1129. https://doi.org/10.1016/j.euf.2020.05.009
|
[10]
|
邓小博, 马欢欢, 俞荣, 等. 新冠病毒感染后细胞免疫研究进展[J]. 中华医院感染学杂志, 2022, 32(10): 1590-1595.
|
[11]
|
Banihani, S.A. (2021) Human Semen Quality as Affected by SARS‐CoV‐2 Infection: An Up‐to‐Date Review. Andrologia, 54, e14295. https://doi.org/10.1111/and.14295
|
[12]
|
Hedger, M.P. and Meinhardt, A. (2003) Cytokines and the Immune-Testicular Axis. Journal of Reproductive Immunology, 58, 1-26. https://doi.org/10.1016/s0165-0378(02)00060-8
|
[13]
|
Paul, W.E. and Seder, R.A. (1994) Lymphocyte Responses and Cytokines. Cell, 76, 241-251. https://doi.org/10.1016/0092-8674(94)90332-8
|
[14]
|
Tripathy, A.S., Vishwakarma, S., Trimbake, D., Gurav, Y.K., Potdar, V.A., Mokashi, N.D., et al. (2021) Pro-Inflammatory CXCL-10, TNF-α, IL-1β, and IL-6: Biomarkers of SARS-CoV-2 Infection. Archives of Virology, 166, 3301-3310. https://doi.org/10.1007/s00705-021-05247-z
|
[15]
|
Chen, Y., Wang, J., Zhang, Q., Xiang, Z., Li, D. and Han, X. (2017) Microcystin-Leucine Arginine Exhibits Immunomodulatory Roles in Testicular Cells Resulting in Orchitis. Environmental Pollution, 229, 964-975. https://doi.org/10.1016/j.envpol.2017.07.081
|
[16]
|
Schönrich, G., Raftery, M.J. and Samstag, Y. (2020) Devilishly Radical Network in COVID-19: Oxidative Stress, Neutrophil Extracellular Traps (NETs), and T Cell Suppression. Advances in Biological Regulation, 77, Article ID: 100741. https://doi.org/10.1016/j.jbior.2020.100741
|
[17]
|
Sikka, S. (2001) Relative Impact of Oxidative Stress on Male Reproductive Function. Current Medicinal Chemistry, 8, 851-862. https://doi.org/10.2174/0929867013373039
|
[18]
|
Juárez‐Rojas, L., Casillas, F., López, A., Betancourt, M., Ommati, M.M. and Retana‐Márquez, S. (2022) Physiological Role of Reactive Oxygen Species in Testis and Epididymal Spermatozoa. Andrologia, 54, e14367. https://doi.org/10.1111/and.14367
|
[19]
|
Agarwal, A., Aitken, R.J. and Alvarez, J.G. (2012) Studies on Men’s Health and Fertility. Humana Press.
|
[20]
|
Agarwal, A., Ikemoto, I. and Loughlin, K.R. (1994) Relationship of Sperm Parameters with Levels of Reactive Oxygen Species in Semen Specimens. Journal of Urology, 152, 107-110. https://doi.org/10.1016/s0022-5347(17)32829-x
|
[21]
|
Armstrong, J.S., Rajasekaran, M., Chamulitrat, W., Gatti, P., Hellstrom, W.J. and Sikka, S.C. (1999) Characterization of Reactive Oxygen Species Induced Effects on Human Spermatozoa Movement and Energy Metabolism. Free Radical Biology and Medicine, 26, 869-880. https://doi.org/10.1016/s0891-5849(98)00275-5
|
[22]
|
Sanocka, D. and Kurpisz, M. (2004) Reactive Oxygen Species and Sperm Cells. Reproductive Biology and Endocrinology, 2, [page]. https://doi.org/10.1186/1477-7827-2-12
|
[23]
|
Pincemail, J., Cavalier, E., Charlier, C., Cheramy–Bien, J., Brevers, E., Courtois, A., et al. (2021) Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants, 10, Article 257. https://doi.org/10.3390/antiox10020257
|
[24]
|
Kemal Duru, N., Morshedi, M. and Oehninger, S. (2000) Effects of Hydrogen Peroxide on DNA and Plasma Membrane Integrity of Human Spermatozoa. Fertility and Sterility, 74, 1200-1207. https://doi.org/10.1016/s0015-0282(00)01591-0
|
[25]
|
Fraga, C.G., Motchnik, P.A., Shigenaga, M.K., Helbock, H.J., Jacob, R.A. and Ames, B.N. (1991) Ascorbic Acid Protects against Endogenous Oxidative DNA Damage in Human Sperm. Proceedings of the National Academy of Sciences of the United States of America, 88, 11003-11006. https://doi.org/10.1073/pnas.88.24.11003
|
[26]
|
Fraga, C.G., Motchnik, P.A., Wyrobek, A.J., Rempel, D.M. and Ames, B.N. (1996) Smoking and Low Antioxidant Levels Increase Oxidative Damage to Sperm DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 351, 199-203. https://doi.org/10.1016/0027-5107(95)00251-0
|
[27]
|
Zeynep, C., Canan, K., Gulsan, A., et al. (2022) Evaluation of Sperm DNA Fragmentation in Male Infertility. Andrologia, 54, e14587.
|
[28]
|
Kodama, H., Yamaguchi, R., Fukuda, J., Kasai, H. and Tanaka, T. (1997) Increased Oxidative Deoxyribonucleic Acid Damage in the Spermatozoa of Infertile Male Patients. Fertility and Sterility, 68, 519-524. https://doi.org/10.1016/s0015-0282(97)00236-7
|
[29]
|
Dada, R., Shamsi, M., Kumar, R., Bhatt, A., Bamezai, R.N.K., Kumar, R., et al. (2008) Mitochondrial DNA Mutations in Etiopathogenesis of Male Infertility. Indian Journal of Urology, 24, 150-154. https://doi.org/10.4103/0970-1591.40606
|
[30]
|
Bisht, S., Faiq, M., Tolahunase, M. and Dada, R. (2017) Oxidative Stress and Male Infertility. Nature Reviews Urology, 14, 470-485. https://doi.org/10.1038/nrurol.2017.69
|
[31]
|
Alahmar, A. (2019) Role of Oxidative Stress in Male Infertility: An Updated Review. Journal of Human Reproductive Sciences, 12, 4-18. https://doi.org/10.4103/jhrs.jhrs_150_18
|
[32]
|
Lenzi, A., Culasso, F., Gandini, L., Lombardo, F. and Dondero, F. (1993) Andrology: Placebo-Controlled, Double-Blind, Cross-Over Trial of Glutathione Therapy in Male Infertility. Human Reproduction, 8, 1657-1662. https://doi.org/10.1093/oxfordjournals.humrep.a137909
|
[33]
|
Veenith, T., Martin, H., Le Breuilly, M., Whitehouse, T., Gao-Smith, F., Duggal, N., et al. (2022) High Generation of Reactive Oxygen Species from Neutrophils in Patients with Severe COVID-19. Scientific Reports, 12, Article No. 10484. https://doi.org/10.1038/s41598-022-13825-7
|
[34]
|
Falahieh, F.M., Zarabadipour, M., Mirani, M., Abdiyan, M., Dinparvar, M., Alizadeh, H., et al. (2021) Effects of Moderate COVID-19 Infection on Semen Oxidative Status and Parameters 14 and 120 Days after Diagnosis. Reproduction, Fertility and Development, 33, 683-690. https://doi.org/10.1071/rd21153
|
[35]
|
Oyola, M.G. and Handa, R.J. (2017) Hypothalamic-Pituitary-Adrenal and Hypothalamic-Pituitary-Gonadal Axes: Sex Differences in Regulation of Stress Responsivity. Stress, 20, 476-494. https://doi.org/10.1080/10253890.2017.1369523
|
[36]
|
Sengupta, P. and Cho, C. (2019) The Pathophysiology of Male Infertility. In: Rizk, B., Agarwal, A. and Sabanegh Jr., E., Eds., Male Infertility in Reproductive Medicine, CRC Press, 1-9. https://doi.org/10.1201/9780429485763-1
|
[37]
|
杨跃伟. 375例无精症的男性不育症患者生殖激素与睾丸体积相关性研究[J]. 四川解剖学杂志, 2013, 21(2): 12-13.
|
[38]
|
宋明哲, 叶丽君, 尹彪, 等. 精浆和血清生殖激素与精液质量的关系[J]. 生殖医学杂志, 2016, 25(4): 341-346.
|
[39]
|
刘继龙, 陈枚燕, 林春莲, 等. 男性不育患者精子形态与生殖激素关系的初步研究[J]. 贵州医药, 2013, 37(7): 589-591.
|
[40]
|
Pattanaik, A., Bhandarkar B, S., Lodha, L. and Marate, S. (2023) SARS-CoV-2 and the Nervous System: Current Perspectives. Archives of Virology, 168, Article No. 171. https://doi.org/10.1007/s00705-023-05801-x
|
[41]
|
Salonia, A., Pontillo, M., Capogrosso, P., Pozzi, E., Ferrara, A.M., Cotelessa, A., et al. (2022) Testosterone in Males with COVID‐19: A 12‐Month Cohort Study. Andrology, 11, 17-23. https://doi.org/10.1111/andr.13322
|
[42]
|
Apaydin, T., Sahin, B., Dashdamirova, S., Dincer Yazan, C., Elbasan, O., Ilgin, C., et al. (2022) The Association of Free Testosterone Levels with Coronavirus Disease 2019. Andrology, 10, 1038-1046. https://doi.org/10.1111/andr.13152
|
[43]
|
Wu, L., O'Kane, A.M., Peng, H., Bi, Y., Motriuk-Smith, D. and Ren, J. (2020) SARS-CoV-2 and Cardiovascular Complications: From Molecular Mechanisms to Pharmaceutical Management. Biochemical Pharmacology, 178, Article ID: 114114. https://doi.org/10.1016/j.bcp.2020.114114
|
[44]
|
Escher, R., Breakey, N. and Lämmle, B. (2020) Severe COVID-19 Infection Associated with Endothelial Activation. Thrombosis Research, 190, 62. https://doi.org/10.1016/j.thromres.2020.04.014
|
[45]
|
Aird, W.C. (2007) Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds. Circulation Research, 100, 174-190. https://doi.org/10.1161/01.res.0000255690.03436.ae
|
[46]
|
Zachariah, U., Nair, S.C., Goel, A., Balasubramanian, K.A., Mackie, I., Elias, E., et al. (2020) Targeting Raised Von Willebrand Factor Levels and Macrophage Activation in Severe COVID-19: Consider Low Volume Plasma Exchange and Low Dose Steroid. Thrombosis Research, 192, 2. https://doi.org/10.1016/j.thromres.2020.05.001
|
[47]
|
顾磊, 金保方, 张新东. 睾丸微循环结构及功能调控的研究进展[J]. 微循环学杂志, 2014, 24(3): 65-67.
|
[48]
|
Danzi, G.B., Loffi, M., Galeazzi, G. and Gherbesi, E. (2020) Acute Pulmonary Embolism and COVID-19 Pneumonia: A Random Association? European Heart Journal, 41, 1858-1858. https://doi.org/10.1093/eurheartj/ehaa254
|
[49]
|
Klok, F.A., Kruip, M.J.H.A., van der Meer, N.J.M., Arbous, M.S., Gommers, D.A.M.P.J., Kant, K.M., et al. (2020) Incidence of Thrombotic Complications in Critically Ill ICU Patients with Covid-19. Thrombosis Research, 191, 145-147. https://doi.org/10.1016/j.thromres.2020.04.013
|
[50]
|
Casey, K., Iteen, A., Nicolini, R. and Auten, J. (2020) COVID-19 Pneumonia with Hemoptysis: Acute Segmental Pulmonary Emboli Associated with Novel Coronavirus Infection. The American Journal of Emergency Medicine, 38, 1544.e1-1544.e3. https://doi.org/10.1016/j.ajem.2020.04.011
|
[51]
|
Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I., Ohana, M., Delabranche, X., et al. (2020) High Risk of Thrombosis in Patients with Severe SARS-CoV-2 Infection: A Multicenter Prospective Cohort Study. Intensive Care Medicine, 46, 1089-1098. https://doi.org/10.1007/s00134-020-06062-x
|