[1]
|
Murray, C.J.L., Aravkin, A.Y., Zheng, P., Abbafati, C., Abbas, K.M., Abbasi-Kangevari, M., et al. (2020) Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 1223-1249. https://doi.org/10.1016/s0140-6736(20)30752-2
|
[2]
|
Zhu, C., Maharajan, K., Liu, K. and Zhang, Y. (2021) Role of Atmospheric Particulate Matter Exposure in COVID-19 and Other Health Risks in Human: A Review. Environmental Research, 198, Article ID: 111281. https://doi.org/10.1016/j.envres.2021.111281
|
[3]
|
Hamanaka, R.B. and Mutlu, G.M. (2018) Particulate Matter Air Pollution: Effects on the Cardiovascular System. Frontiers in Endocrinology, 9, Article 680. https://doi.org/10.3389/fendo.2018.00680
|
[4]
|
Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S., Mortimer, K., et al. (2019) Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies' Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest, 155, 409-416. https://doi.org/10.1016/j.chest.2018.10.042
|
[5]
|
Xing, Y.F., Xu, Y.H., Shi, M.H., et al. (2016) The Impact of PM2.5 on the Human Respiratory System. Journal of Thoracic Disease, 8, E69-E74.
|
[6]
|
Hou, D., Ge, Y., Chen, C., Tan, Q., Chen, R., Yang, Y., et al. (2020) Associations of Long-Term Exposure to Ambient Fine Particulate Matter and Nitrogen Dioxide with Lung Function: A Cross-Sectional Study in China. Environment International, 144, Article ID: 105977. https://doi.org/10.1016/j.envint.2020.105977
|
[7]
|
Tian, F., Qi, J., Wang, L., Yin, P., Qian, Z.(., Ruan, Z., et al. (2020) Differentiating the Effects of Ambient Fine and Coarse Particles on Mortality from Cardiopulmonary Diseases: A Nationwide Multicity Study. Environment International, 145, Article ID: 106096. https://doi.org/10.1016/j.envint.2020.106096
|
[8]
|
Liang, L., Cai, Y., Barratt, B., Lyu, B., Chan, Q., Hansell, A.L., et al. (2019) Associations between Daily Air Quality and Hospitalisations for Acute Exacerbation of Chronic Obstructive Pulmonary Disease in Beijing, 2013-17: An Ecological Analysis. The Lancet Planetary Health, 3, e270-e279. https://doi.org/10.1016/s2542-5196(19)30085-3
|
[9]
|
Yang, M., Chu, C., Bloom, M.S., Li, S., Chen, G., Heinrich, J., et al. (2018) Is Smaller Worse? New Insights about Associations of PM1 and Respiratory Health in Children and Adolescents. Environment International, 120, 516-524. https://doi.org/10.1016/j.envint.2018.08.027
|
[10]
|
Liu, Y., Pan, J., Zhang, H., Shi, C., Li, G., Peng, Z., et al. (2019) Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. American Journal of Respiratory and Critical Care Medicine, 200, 24-32. https://doi.org/10.1164/rccm.201810-1823oc
|
[11]
|
Zhang, Z., Chai, P., Wang, J., Ye, Z., Shen, P., Lu, H., et al. (2019) Association of Particulate Matter Air Pollution and Hospital Visits for Respiratory Diseases: A Time-Series Study from China. Environmental Science and Pollution Research, 26, 12280-12287. https://doi.org/10.1007/s11356-019-04397-7
|
[12]
|
Han, X., Liu, Y., Gao, H., Ma, J., Mao, X., Wang, Y., et al. (2017) Forecasting PM2.5 Induced Male Lung Cancer Morbidity in China Using Satellite Retrieved PM2.5 and Spatial Analysis. Science of the Total Environment, 607, 1009-1017. https://doi.org/10.1016/j.scitotenv.2017.07.061
|
[13]
|
Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., et al. (2017) Health Burden Attributable to Ambient PM2.5 in China. Environmental Pollution, 223, 575-586. https://doi.org/10.1016/j.envpol.2017.01.060
|
[14]
|
Yang, L., Li, C. and Tang, X. (2020) The Impact of PM2.5 on the Host Defense of Respiratory System. Frontiers in Cell and Developmental Biology, 8, Article 91. https://doi.org/10.3389/fcell.2020.00091
|
[15]
|
Glencross, D.A., Ho, T., Camiña, N., Hawrylowicz, C.M. and Pfeffer, P.E. (2020) Air Pollution and Its Effects on the Immune System. Free Radical Biology and Medicine, 151, 56-68. https://doi.org/10.1016/j.freeradbiomed.2020.01.179
|
[16]
|
Goto, D.M., Lança, M., Obuti, C.A., Galvão Barbosa, C.M., Nascimento Saldiva, P.H., Trevisan Zanetta, D.M., et al. (2011) Effects of Biomass Burning on Nasal Mucociliary Clearance and Mucus Properties after Sugarcane Harvesting. Environmental Research, 111, 664-669. https://doi.org/10.1016/j.envres.2011.03.006
|
[17]
|
Jia, J., Xia, J., Zhang, R., Bai, Y., Liu, S., Dan, M., et al. (2019) Investigation of the Impact of PM2.5 on the Ciliary Motion of Human Nasal Epithelial Cells. Chemosphere, 233, 309-318. https://doi.org/10.1016/j.chemosphere.2019.05.274
|
[18]
|
Montgomery, M.T., Sajuthi, S.P., Cho, S., Everman, J.L., Rios, C.L., Goldfarbmuren, K.C., et al. (2020) Genome-Wide Analysis Reveals Mucociliary Remodeling of the Nasal Airway Epithelium Induced by Urban PM2.5. American Journal of Respiratory Cell and Molecular Biology, 63, 172-184. https://doi.org/10.1165/rcmb.2019-0454oc
|
[19]
|
Wang, J., Zhu, M., Wang, L., Chen, C. and Song, Y. (2019) Amphiregulin Potentiates Airway Inflammation and Mucus Hypersecretion Induced by Urban Particulate Matter via the EGFR-PI3Kα-AKT/ERK Pathway. Cellular Signalling, 53, 122-131. https://doi.org/10.1016/j.cellsig.2018.10.002
|
[20]
|
Memon, T.A., Nguyen, N.D., Burrell, K.L., Scott, A.F., Almestica-Roberts, M., Rapp, E., et al. (2020) Wood Smoke Particles Stimulate MUC5AC Overproduction by Human Bronchial Epithelial Cells through TRPA1 and EGFR Signaling. Toxicological Sciences, 174, 278-290. https://doi.org/10.1093/toxsci/kfaa006
|
[21]
|
Chen, Z., Wu, Y., Wang, P., Wu, Y., Li, Z., Zhao, Y., et al. (2016) Autophagy Is Essential for Ultrafine Particle-Induced Inflammation and Mucus Hyperproduction in Airway Epithelium. Autophagy, 12, 297-311. https://doi.org/10.1080/15548627.2015.1124224
|
[22]
|
Caraballo, J.C., Yshii, C., Westphal, W., Moninger, T. and Comellas, A.P. (2011) Ambient Particulate Matter Affects Occludin Distribution and Increases Alveolar Transepithelial Electrical Conductance. Respirology, 16, 340-349. https://doi.org/10.1111/j.1440-1843.2010.01910.x
|
[23]
|
Zhao, R., Guo, Z., Zhang, R., Deng, C., Xu, J., Dong, W., et al. (2017) Nasal Epithelial Barrier Disruption by Particulate Matter ≤ 2.5μm via Tight Junction Protein Degradation. Journal of Applied Toxicology, 38, 678-687. https://doi.org/10.1002/jat.3573
|
[24]
|
London, N.R., Tharakan, A., Rule, A.M., Lane, A.P., Biswal, S. and Ramanathan, M. (2016) Air Pollutant-Mediated Disruption of Sinonasal Epithelial Cell Barrier Function Is Reversed by Activation of the NRF2 Pathway. Journal of Allergy and Clinical Immunology, 138, 1736-1738.e4. https://doi.org/10.1016/j.jaci.2016.06.027
|
[25]
|
Song, C., Liu, L., Chen, J., Hu, Y., Li, J., Wang, B., et al. (2019) Evidence for the Critical Role of the PI3K Signaling Pathway in Particulate Matter-Induced Dysregulation of the Inflammatory Mediators COX-2/PGE2 and the Associated Epithelial Barrier Protein Filaggrin in the Bronchial Epithelium. Cell Biology and Toxicology, 36, 301-313. https://doi.org/10.1007/s10565-019-09508-1
|
[26]
|
Vargas Buonfiglio, L.G., Mudunkotuwa, I.A., Abou Alaiwa, M.H., Vanegas Calderón, O.G., Borcherding, J.A., Gerke, A.K., et al. (2017) Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid. Environmental Health Perspectives, 125, Article ID: 077003. https://doi.org/10.1289/ehp876
|
[27]
|
Chen, X., Liu, J., Zhou, J., Wang, J., Chen, C., Song, Y., et al. (2018) Urban Particulate Matter (PM) Suppresses Airway Antibacterial Defence. Respiratory Research, 19, Article No. 5. https://doi.org/10.1186/s12931-017-0700-0
|
[28]
|
Robinson, R.K., Birrell, M.A., Adcock, J.J., Wortley, M.A., Dubuis, E.D., Chen, S., et al. (2018) Mechanistic Link between Diesel Exhaust Particles and Respiratory Reflexes. Journal of Allergy and Clinical Immunology, 141, 1074-1084.e9. https://doi.org/10.1016/j.jaci.2017.04.038
|
[29]
|
Lv, H., Yue, J., Chen, Z., Chai, S., Cao, X., Zhan, J., et al. (2016) Effect of Transient Receptor Potential Vanilloid-1 on Cough Hypersensitivity Induced by Particulate Matter 2.5. Life Sciences, 151, 157-166. https://doi.org/10.1016/j.lfs.2016.02.064
|
[30]
|
Mushtaq, N., Ezzati, M., Hall, L., Dickson, I., Kirwan, M., Png, K.M.Y., et al. (2011) Adhesion of Streptococcus Pneumoniae to Human Airway Epithelial Cells Exposed to Urban Particulate Matter. Journal of Allergy and Clinical Immunology, 127, 1236-1242.e2. https://doi.org/10.1016/j.jaci.2010.11.039
|
[31]
|
Liu, C., Lee, T., Chen, Y., Liang, C., Wang, S., Lue, J., et al. (2018) PM2.5-Induced Oxidative Stress Increases Intercellular Adhesion Molecule-1 Expression in Lung Epithelial Cells through the IL-6/AKT/STAT3/NF-κB-Dependent Pathway. Particle and Fibre Toxicology, 15, Article No. 4. https://doi.org/10.1186/s12989-018-0240-x
|
[32]
|
Castañeda, A.R., Vogel, C.F.A., Bein, K.J., Hughes, H.K., Smiley-Jewell, S. and Pinkerton, K.E. (2018) Ambient Particulate Matter Enhances the Pulmonary Allergic Immune Response to House Dust Mite in a BALB/c Mouse Model by Augmenting Th2-and Th17-Immune Responses. Physiological Reports, 6, e13827. https://doi.org/10.14814/phy2.13827
|
[33]
|
McCreanor, J., Cullinan, P., Nieuwenhuijsen, M.J., Stewart-Evans, J., Malliarou, E., Jarup, L., et al. (2007) Respiratory Effects of Exposure to Diesel Traffic in Persons with Asthma. New England Journal of Medicine, 357, 2348-2358. https://doi.org/10.1056/nejmoa071535
|
[34]
|
Ramanathan, M., London, N.R., Tharakan, A., Surya, N., Sussan, T.E., Rao, X., et al. (2017) Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice. American Journal of Respiratory Cell and Molecular Biology, 57, 59-65. https://doi.org/10.1165/rcmb.2016-0351oc
|
[35]
|
Nemmar, A., Hoet, P.H.M., Vermylen, J., Nemery, B. and Hoylaerts, M.F. (2004) Pharmacological Stabilization of Mast Cells Abrogates Late Thrombotic Events Induced by Diesel Exhaust Particles in Hamsters. Circulation, 110, 1670-1677. https://doi.org/10.1161/01.cir.0000142053.13921.21
|
[36]
|
Su, R., Jin, X., Zhang, W., Li, Z., Liu, X. and Ren, J. (2017) Particulate Matter Exposure Induces the Autophagy of Macrophages via Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Chemosphere, 167, 444-453. https://doi.org/10.1016/j.chemosphere.2016.10.024
|
[37]
|
Chen, Y., Huang, M., Chen, C., Kuo, C., Yang, C., Chiang-Ni, C., et al. (2020) PM2.5 Impairs Macrophage Functions to Exacerbate Pneumococcus-Induced Pulmonary Pathogenesis. Particle and Fibre Toxicology, 17, Article No. 37. https://doi.org/10.1186/s12989-020-00362-2
|
[38]
|
Zhao, Q., Chen, H., Yang, T., Rui, W., Liu, F., Zhang, F., et al. (2016) Direct Effects of Airborne PM2.5 Exposure on Macrophage Polarizations. Biochimica et Biophysica Acta (BBA)—General Subjects, 1860, 2835-2843. https://doi.org/10.1016/j.bbagen.2016.03.033
|
[39]
|
Guo, Z., Dong, W., Xu, J., Hong, Z., Zhao, R., Deng, C., et al. (2017) T-Helper Type 1-T-Helper Type 2 Shift and Nasal Remodeling after Fine Particulate Matter Exposure in a Rat Model of Allergic Rhinitis. American Journal of Rhinology & Allergy, 31, 148-155. https://doi.org/10.2500/ajra.2017.31.4437
|
[40]
|
Zhao, C., Liao, J., Chu, W., Wang, S., Yang, T., Tao, Y., et al. (2012) Involvement of TLR2 and TLR4 and Th1/th2 Shift in Inflammatory Responses Induced by Fine Ambient Particulate Matter in Mice. Inhalation Toxicology, 24, 918-927. https://doi.org/10.3109/08958378.2012.731093
|
[41]
|
Brandt, E.B., Kovacic, M.B., Lee, G.B., Gibson, A.M., Acciani, T.H., Le Cras, T.D., et al. (2013) Diesel Exhaust Particle Induction of IL-17A Contributes to Severe Asthma. Journal of Allergy and Clinical Immunology, 132, 1194-1204.e2. https://doi.org/10.1016/j.jaci.2013.06.048
|
[42]
|
Wei, T. and Tang, M. (2018) Biological Effects of Airborne Fine Particulate Matter (PM2.5) Exposure on Pulmonary Immune System. Environmental Toxicology and Pharmacology, 60, 195-201. https://doi.org/10.1016/j.etap.2018.04.004
|
[43]
|
Wang, P., You, D., Saravia, J., Shen, H. and Cormier, S.A. (2013) Maternal Exposure to Combustion Generated PM Inhibits Pulmonary Th1 Maturation and Concomitantly Enhances Postnatal Asthma Development in Offspring. Particle and Fibre Toxicology, 10, Article No. 29. https://doi.org/10.1186/1743-8977-10-29
|
[44]
|
Wang, P., Thevenot, P., Saravia, J., Ahlert, T. and Cormier, S.A. (2011) Radical-Containing Particles Activate Dendritic Cells and Enhance Th17 Inflammation in a Mouse Model of Asthma. American Journal of Respiratory Cell and Molecular Biology, 45, 977-983. https://doi.org/10.1165/rcmb.2011-0001oc
|
[45]
|
Li, W., Liu, T., Xiong, Y., Lv, J., Cui, X. and He, R. (2018) Diesel Exhaust Particle Promotes Tumor Lung Metastasis via the Induction of BLT1-Mediated Neutrophilic Lung Inflammation. Cytokine, 111, 530-540. https://doi.org/10.1016/j.cyto.2018.05.024
|
[46]
|
Liu, J., Li, S., Fei, X., Nan, X., Shen, Y., Xiu, H., et al. (2021) Increased Alveolar Epithelial TRAF6 via Autophagy-Dependent TRIM37 Degradation Mediates Particulate Matter-Induced Lung Metastasis. Autophagy, 18, 971-989. https://doi.org/10.1080/15548627.2021.1965421
|
[47]
|
Magnani, N.D., Marchini, T., Calabró, V., Alvarez, S. and Evelson, P. (2020) Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes. Frontiers in Endocrinology, 11, Article 568305. https://doi.org/10.3389/fendo.2020.568305
|
[48]
|
Manzo, N.D., LaGier, A.J., Slade, R., Ledbetter, A.D., Richards, J.H. and Dye, J.A. (2012) Nitric Oxide and Superoxide Mediate Diesel Particle Effects in Cytokine-Treated Mice and Murine Lung Epithelial Cells—Implications for Susceptibility to Traffic-Related Air Pollution. Particle and Fibre Toxicology, 9, Article No. 43. https://doi.org/10.1186/1743-8977-9-43
|
[49]
|
Hong, Z., Guo, Z., Zhang, R., Xu, J., Dong, W., Zhuang, G., et al. (2016) Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells. The Tohoku Journal of Experimental Medicine, 239, 117-125. https://doi.org/10.1620/tjem.239.117
|
[50]
|
Dellinger, B., Pryor, W.A., Cueto, R., Squadrito, G.L., Hegde, V. and Deutsch, W.A. (2001) Role of Free Radicals in the Toxicity of Airborne Fine Particulate Matter. Chemical Research in Toxicology, 14, 1371-1377. https://doi.org/10.1021/tx010050x
|
[51]
|
Truong, H., Lomnicki, S. and Dellinger, B. (2010) Potential for Misidentification of Environmentally Persistent Free Radicals as Molecular Pollutants in Particulate Matter. Environmental Science & Technology, 44, 1933-1939. https://doi.org/10.1021/es902648t
|
[52]
|
Stohs, S. (1995) Oxidative Mechanisms in the Toxicity of Metal Ions. Free Radical Biology and Medicine, 18, 321-336. https://doi.org/10.1016/0891-5849(94)00159-h
|
[53]
|
Møller, P., Jacobsen, N.R., Folkmann, J.K., Danielsen, P.H., Mikkelsen, L., Hemmingsen, J.G., et al. (2009) Role of Oxidative Damage in Toxicity of Particulates. Free Radical Research, 44, 1-46. https://doi.org/10.3109/10715760903300691
|
[54]
|
Li, R., Kou, X., Geng, H., Xie, J., Yang, Z., Zhang, Y., et al. (2015) Effect of Ambient Pm2.5 on Lung Mitochondrial Damage and Fusion/fission Gene Expression in Rats. Chemical Research in Toxicology, 28, 408-418. https://doi.org/10.1021/tx5003723
|
[55]
|
Xia, T., Korge, P., Weiss, J.N., Li, N., Venkatesen, M.I., Sioutas, C., et al. (2004) Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity. Environmental Health Perspectives, 112, 1347-1358. https://doi.org/10.1289/ehp.7167
|
[56]
|
Magnani, N.D., Marchini, T., Vanasco, V., Tasat, D.R., Alvarez, S. and Evelson, P. (2013) Reactive Oxygen Species Produced by NADPH Oxidase and Mitochondrial Dysfunction in Lung after an Acute Exposure to Residual Oil Fly Ashes. Toxicology and Applied Pharmacology, 270, 31-38. https://doi.org/10.1016/j.taap.2013.04.002
|
[57]
|
Tripathi, P., Deng, F., Scruggs, A.M., Chen, Y. and Huang, S.K. (2018) Variation in Doses and Duration of Particulate Matter Exposure in Bronchial Epithelial Cells Results in Upregulation of Different Genes Associated with Airway Disorders. Toxicology in Vitro, 51, 95-105. https://doi.org/10.1016/j.tiv.2018.05.004
|
[58]
|
Soberanes, S., Urich, D., Baker, C.M., Burgess, Z., Chiarella, S.E., Bell, E.L., et al. (2009) Mitochondrial Complex Iii-Generated Oxidants Activate ASK1 and JNK to Induce Alveolar Epithelial Cell Death Following Exposure to Particulate Matter Air Pollution. Journal of Biological Chemistry, 284, 2176-2186. https://doi.org/10.1074/jbc.m808844200
|
[59]
|
Xu, C., Shi, Q., Zhang, L. and Zhao, H. (2018) High Molecular Weight Hyaluronan Attenuates Fine Particulate Matter-Induced Acute Lung Injury through Inhibition of ROS-ASK1-p38/JNK-Mediated Epithelial Apoptosis. Environmental Toxicology and Pharmacology, 59, 190-198. https://doi.org/10.1016/j.etap.2018.03.020
|
[60]
|
Wang, J., Huang, J., Wang, L., Chen, C., Yang, D., Jin, M., et al. (2017) Urban Particulate Matter Triggers Lung Inflammation via the ROS-MAPK-NF-κB Signaling Pathway. Journal of Thoracic Disease, 9, 4398-4412. https://doi.org/10.21037/jtd.2017.09.135
|
[61]
|
Wu, W., Peden, D.B., McConnell, R., Fruin, S. and Diaz-Sanchez, D. (2012) Glutathione-S-Transferase M1 Regulation of Diesel Exhaust Particle-Induced Pro-Inflammatory Mediator Expression in Normal Human Bronchial Epithelial Cells. Particle and Fibre Toxicology, 9, Article No. 31. https://doi.org/10.1186/1743-8977-9-31
|
[62]
|
Cao, Z., Liao, Q., Su, M., Huang, K., Jin, J. and Cao, D. (2019) AKT and ERK Dual Inhibitors: The Way Forward? Cancer Letters, 459, 30-40. https://doi.org/10.1016/j.canlet.2019.05.025
|
[63]
|
Niu, B., Li, W., Li, J., Hong, Q., Khodahemmati, S., Gao, J., et al. (2020) Effects of DNA Damage and Oxidative Stress in Human Bronchial Epithelial Cells Exposed to PM2.5 from Beijing, China, in Winter. International Journal of Environmental Research and Public Health, 17, Article 4874. https://doi.org/10.3390/ijerph17134874
|
[64]
|
de Oliveira, A.A.F., de Oliveira, T.F., Dias, M.F., Medeiros, M.H.G., Di Mascio, P., Veras, M., et al. (2018) Genotoxic and Epigenotoxic Effects in Mice Exposed to Concentrated Ambient Fine Particulate Matter (PM2.5) from São Paulo City, Brazil. Particle and Fibre Toxicology, 15, Article No. 40. https://doi.org/10.1186/s12989-018-0276-y
|
[65]
|
Valavanidis, A., Vlachogianni, T., Fiotakis, K. and Loridas, S. (2013) Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. International Journal of Environmental Research and Public Health, 10, 3886-3907. https://doi.org/10.3390/ijerph10093886
|
[66]
|
Nemmar, A., Al‐Salam, S., Zia, S., Marzouqi, F., Al‐Dhaheri, A., Subramaniyan, D., et al. (2011) Contrasting Actions of Diesel Exhaust Particles on the Pulmonary and Cardiovascular Systems and the Effects of Thymoquinone. British Journal of Pharmacology, 164, 1871-1882. https://doi.org/10.1111/j.1476-5381.2011.01442.x
|
[67]
|
Ohtoshi, T., Takizawa, H., Okazaki, H., Kawasaki, S., Takeuchi, N., Ohta, K., et al. (1998) Diesel Exhaust Particles Stimulate Human Airway Epithelial Cells to Produce Cytokines Relevant to Airway Inflammation in Vitro. Journal of Allergy and Clinical Immunology, 101, 778-785. https://doi.org/10.1016/s0091-6749(98)70307-0
|
[68]
|
Bayram, H., Devalia, J.L., Sapsford, R.J., Ohtoshi, T., Miyabara, Y., Sagai, M., et al. (1998) The Effect of Diesel Exhaust Particles on Cell Function and Release of Inflammatory Mediators from Human Bronchial Epithelial Cells in Vitro. American Journal of Respiratory Cell and Molecular Biology, 18, 441-448. https://doi.org/10.1165/ajrcmb.18.3.2882
|
[69]
|
Salvi, S., Blomberg, A., Rudell, B., Kelly, F., Sandström, T., Holgate, S.T., et al. (1999) Acute Inflammatory Responses in the Airways and Peripheral Blood after Short-Term Exposure to Diesel Exhaust in Healthy Human Volunteers. American Journal of Respiratory and Critical Care Medicine, 159, 702-709. https://doi.org/10.1164/ajrccm.159.3.9709083
|
[70]
|
Nightingale, J.A., Maggs, R., Cullinan, P., Donnelly, L.E., Rogers, D.F., Kinnersley, R., et al. (2000) Airway Inflammation after Controlled Exposure to Diesel Exhaust Particulates. American Journal of Respiratory and Critical Care Medicine, 162, 161-166. https://doi.org/10.1164/ajrccm.162.1.9908092
|
[71]
|
Zhao, Y., Usatyuk, P.V., Gorshkova, I.A., He, D., Wang, T., Moreno-Vinasco, L., et al. (2009) Regulation of COX-2 Expression and IL-6 Release by Particulate Matter in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 40, 19-30. https://doi.org/10.1165/rcmb.2008-0105oc
|
[72]
|
Yan, Z., Wang, J., Li, J., Jiang, N., Zhang, R., Yang, W., et al. (2015) Oxidative Stress and Endocytosis Are Involved in Upregulation of Interleukin-8 Expression in Airway Cells Exposed to PM2.5. Environmental Toxicology, 31, 1869-1878. https://doi.org/10.1002/tox.22188
|
[73]
|
Becker, S., Dailey, L., Soukup, J.M., Silbajoris, R. and Devlin, R.B. (2005) TLR-2 Is Involved in Airway Epithelial Cell Response to Air Pollution Particles. Toxicology and Applied Pharmacology, 203, 45-52. https://doi.org/10.1016/j.taap.2004.07.007
|
[74]
|
Parnia, S., Hamilton, L.M., Puddicombe, S.M., Holgate, S.T., Frew, A.J. and Davies, D.E. (2014) Autocrine Ligands of the Epithelial Growth Factor Receptor Mediate Inflammatory Responses to Diesel Exhaust Particles. Respiratory Research, 15, Article No. 22. https://doi.org/10.1186/1465-9921-15-22
|
[75]
|
Ramos, C., Cisneros, J., Gonzalez-Avila, G., Becerril, C., Ruiz, V. and Montaño, M. (2009) Increase of Matrix Metalloproteinases in Woodsmoke-Induced Lung Emphysema in Guinea Pigs. Inhalation Toxicology, 21, 119-132. https://doi.org/10.1080/08958370802419145
|
[76]
|
Barnes, P.J. (2009) The Cytokine Network in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 41, 631-638. https://doi.org/10.1165/rcmb.2009-0220tr
|
[77]
|
Kim, J., Natarajan, S., Vaickus, L.J., Bouchard, J.C., Beal, D., Cruikshank, W.W., et al. (2011) Diesel Exhaust Particulates Exacerbate Asthma-Like Inflammation by Increasing CXC Chemokines. The American Journal of Pathology, 179, 2730-2739. https://doi.org/10.1016/j.ajpath.2011.08.008
|
[78]
|
Zhang, J., Fulgar, C.C., Mar, T., Young, D.E., Zhang, Q., Bein, K.J., et al. (2018) Th17-Induced Neutrophils Enhance the Pulmonary Allergic Response Following BALB/c Exposure to House Dust Mite Allergen and Fine Particulate Matter from California and China. Toxicological Sciences, 164, 627-643. https://doi.org/10.1093/toxsci/kfy127
|
[79]
|
Yao, X., Huang, J., Zhong, H., Shen, N., Faggioni, R., Fung, M., et al. (2014) Targeting Interleukin-6 in Inflammatory Autoimmune Diseases and Cancers. Pharmacology & Therapeutics, 141, 125-139. https://doi.org/10.1016/j.pharmthera.2013.09.004
|
[80]
|
Barlési, F., Giaccone, G., Gallegos-Ruiz, M.I., Loundou, A., Span, S.W., Lefesvre, P., et al. (2007) Global Histone Modifications Predict Prognosis of Resected Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 25, 4358-4364. https://doi.org/10.1200/jco.2007.11.2599
|
[81]
|
Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., et al. (2006) Unique microRNA Molecular Profiles in Lung Cancer Diagnosis and Prognosis. Cancer Cell, 9, 189-198. https://doi.org/10.1016/j.ccr.2006.01.025
|
[82]
|
Li, J., Li, W.X., Bai, C. and Song, Y. (2015) Particulate Matter‐Induced Epigenetic Changes and Lung Cancer. The Clinical Respiratory Journal, 11, 539-546. https://doi.org/10.1111/crj.12389
|
[83]
|
Ji, H. and Khurana Hershey, G.K. (2012) Genetic and Epigenetic Influence on the Response to Environmental Particulate Matter. Journal of Allergy and Clinical Immunology, 129, 33-41. https://doi.org/10.1016/j.jaci.2011.11.008
|
[84]
|
Jiang, R., Jones, M.J., Sava, F., Kobor, M.S. and Carlsten, C. (2014) Short-Term Diesel Exhaust Inhalation in a Controlled Human Crossover Study Is Associated with Changes in DNA Methylation of Circulating Mononuclear Cells in Asthmatics. Particle and Fibre Toxicology, 11, Article No. 71. https://doi.org/10.1186/s12989-014-0071-3
|
[85]
|
Prunicki, M., Stell, L., Dinakarpandian, D., de Planell-Saguer, M., Lucas, R.W., Hammond, S.K., et al. (2018) Exposure to NO2, CO, and PM2.5 Is Linked to Regional DNA Methylation Differences in Asthma. Clinical Epigenetics, 10, Article No. 2. https://doi.org/10.1186/s13148-017-0433-4
|
[86]
|
Soberanes, S., Gonzalez, A., Urich, D., Chiarella, S.E., Radigan, K.A., Osornio-Vargas, A., et al. (2012) Particulate Matter Air Pollution Induces Hypermethylation of the P16 Promoter via a Mitochondrial ROS-JNK-DNMT1 Pathway. Scientific Reports, 2, Article No. 275. https://doi.org/10.1038/srep00275
|
[87]
|
Hou, L., Zhang, X., Tarantini, L., Nordio, F., Bonzini, M., Angelici, L., et al. (2011) Ambient PM Exposure and DNA Methylation in Tumor Suppressor Genes: A Cross-Sectional Study. Particle and Fibre Toxicology, 8, Article No. 25. https://doi.org/10.1186/1743-8977-8-25
|
[88]
|
Alvarado-Cruz, I., Sánchez-Guerra, M., Hernández-Cadena, L., De Vizcaya-Ruiz, A., Mugica, V., Pelallo-Martínez, N.A., et al. (2017) Increased Methylation of Repetitive Elements and DNA Repair Genes Is Associated with Higher DNA Oxidation in Children in an Urbanized, Industrial Environment. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 813, 27-36. https://doi.org/10.1016/j.mrgentox.2016.11.007
|
[89]
|
Quezada-Maldonado, E.M., Sánchez-Pérez, Y., Chirino, Y.I., Vaca-Paniagua, F. and García-Cuellar, C.M. (2018) miRNAs Deregulation in Lung Cells Exposed to Airborne Particulate Matter (PM10) Is Associated with Pathways Deregulated in Lung Tumors. Environmental Pollution, 241, 351-358. https://doi.org/10.1016/j.envpol.2018.05.073
|
[90]
|
Heßelbach, K., Kim, G., Flemming, S., Häupl, T., Bonin, M., Dornhof, R., et al. (2017) Disease Relevant Modifications of the Methylome and Transcriptome by Particulate Matter (PM2.5) from Biomass Combustion. Epigenetics, 12, 779-792. https://doi.org/10.1080/15592294.2017.1356555
|
[91]
|
Cao, D., Bromberg, P.A. and Samet, J.M. (2007) COX-2 Expression Induced by Diesel Particles Involves Chromatin Modification and Degradation of HDAC1. American Journal of Respiratory Cell and Molecular Biology, 37, 232-239. https://doi.org/10.1165/rcmb.2006-0449oc
|