关于呼吸机相关性肺炎的文献计量学和研究热点
Bibliometrics and Research Hotspots on Ventilator-Associated Pneumonia
DOI: 10.12677/acm.2025.1551626, PDF, HTML, XML,   
作者: 李 蓉:成都中医药大学临床医学院,四川 成都;郭留学*:成都中医药大学附属医院重症医学科,四川 成都
关键词: 呼吸机相关性肺炎Bibliometrics CiteSpace VOSviewersVentilator-Associated Pneumonia Bibliometrics CiteSpace VOSviewers
摘要: 呼吸机相关性肺炎(ventilator-associated pneumonia, VAP)是医院常见的获得性感染,是ICU内重症患者死亡的诱因之一。本研究旨在探讨过去已发表的文章,采用文献计量学方法和可视化分析来探索该领域的发展趋势和热点。方法:我们从SCI-Expanded of WoSCC中检索了过去十多年期间收录的关于呼吸机相关性肺炎所有文章,利用CiteSpace、bibliometrix和VOSviewer软件包分析文献计量数据。结果:共检索到1474篇文章,来自82个国家,其中“美国”以355篇文章位居第一,其次是中国(253篇)。“University of Barcelona”是最主要的学术机构,该研究主要发表在“Critical Care”等专业期刊上,“Torres A”以31篇已发表的出版物被评为最具生产力的作者。“mechanical ventilation”、“mortality”、“risk factors”、“acinetobacter baumannii”是最常见的关键词,“cefliderocol”、“COVID-19”“carbapenem-resistant acinetobacter baumannil”是近年来的研究热点。结论:通过本研究为全面理解呼吸机相关性肺炎提供了客观依据,不断开发、研究新的抗生素仍是当下重中之重,更好地完善治疗策略来改善临床结局。
Abstract: Ventilator-associated pneumonia (VAP) is a common acquired infection in hospitals and one of the causes of death in critically ill patients in the ICU. This study aims to explore the development trends and hotspots in this field by reviewing previously published articles using bibliometric methods and visual analysis. Methods: We retrieved all the articles on ventilator-associated pneumonia included in SCI-Expanded of WoSCC over the past decade, and analyzed the bibliometric data using the CiteSpace, bibliometrix, and VOSviewer software packages. Results: A total of 1474 articles were retrieved, coming from 82 countries. The United States ranked first with 355 articles, followed by China with 253. “University of Barcelona” is the most important academic institution. The research was mainly published in professional journals such as “Critical Care”. “Torres A” is the most productive author with 31 published papers. The most common keywords are “mechanical ventilation”, “mortality”, “risk factors”, and “Acinetobacter baumannii”. “Cefiderocol”, “COVID-19”, and “carbapenem-resistant Acinetobacter baumannii” have been research hotspots in recent years. Conclusion: This study provides an objective basis for a comprehensive understanding of ventilator-associated pneumonia, and the continuous development and research of new antibiotics remains a top priority. It is crucial to better refine treatment strategies to improve clinical outcomes.
文章引用:李蓉, 郭留学. 关于呼吸机相关性肺炎的文献计量学和研究热点[J]. 临床医学进展, 2025, 15(5): 2334-2351. https://doi.org/10.12677/acm.2025.1551626

1. 引言

呼吸机相关性肺炎(VAP)是指气管插管或气管切开患者在接受机械通气48小时内肺实质感染[1]。撤机、拔管48小时内出现的肺炎,也属于VAP。根据患者人群不同及诊断标准的差异,国外ICU中VAP的发生率为4%~42%不等[2]-[8]。根据VAP发生时间的早晚分为早发现VAP (机械通气4天内)和晚发性VAP (机械通气5天后) [9]。感染是VAP患者死亡的原因之一,占三分之一到一半,革兰氏阴性杆菌患者病死率明显高于革兰氏阳性致病菌,其中早发性VAP的致病菌主要是嗜血杆菌、链球菌和甲氧西林敏感的金黄色葡萄球菌,晚发性VAP通常是由铜绿假单胞菌、不动杆菌属、肺炎克雷伯菌等多重耐药菌引起的[2] [10] [11]。抗生素的大量使用导致多重耐药病原体的不断发生[12]。VAP与住院时间延长、机械通气时间以及医疗费用、死亡率增加有关[8]。抗生素的不正确使用增加了死亡风险,因此,初始抗生素的选择至关重要[13]。如果治疗不当,VAP可导致严重的急性呼吸窘迫综合征或感染性休克[14]。而目前临床上诊断VAP尚未有很准确的定义,所以尽早地识别VAP至关重要。诊断VAP主要基于两个方面:一是依据病史、体格检查、白细胞增多、影像学改变;二是病原学检查,包括气管内抽吸物和支气管镜样本培养(保护标本刷、支气管肺泡灌洗液)阳性。其中最流行的临床肺部感染评分(CPIS),该评分包括6个变量(体温、血白细胞、气管分泌物、氧合指数、胸部X线和革兰氏染色气管吸出物的半定量培养),评分高于6分的患者有发生VAP的风险[15]-[18]。但由于各家医院诊断标准和参考方法的不同,VAP的治疗仍是一大难题。尽管病原微生物学被认为是一种可行的标志物,但在VAP的诊断和预后来说有待商榷[19]。文献计量学是研究文献的数量特征及其变化规律的学科,主要通过定量分析的方法来评估和描述文献的生产、传播和使用情况。它涉及对文献的统计分析,包括出版物的数量、引用情况、关键词等。文献计量学的研究可以帮助学者了解某一领域的发展趋势、研究热点。本研究旨在分析VAP的研究现状,为将来进一步探索VAP提供客观依据。

2. 材料与方法

2.1. 数据来源与检索方法

Web of Science核心合集(WoSCC)的Science Citation Index Expanded是引文数据的主要来源,所有数据均由两位作者独立完成,检索数据策略包括TI = “ventilator-associated pneumonia” AND Document types = (ARTICLE OR REVIEW) AND Language = “(English)”,病例报告、会议摘要、社论材料和其他文件类型被排除在外。检索的结果以“纯文本文件”导出,记录内容选择“全记录和被引参考文献”,文献的纳入和排除过程如图1所示。

Figure 1. Flowchart of the screening process

1. 筛选过程流程图

2.2. 数据分析

所有下载的文献导入到Vosviewer、Citespace、bibliometrix进行进一步的分析。Vosviewer是一种基于网络数据创建和探索地图的软件工具,可用于探索合著、共现、引文、书目耦合和共同引文链接:网络、叠加或密度可视化[20]。Bibliometrix于2017年由Massimo Aria博士和Corrado Cuccurullo博士推出[21],是一个全面的映射分析工具,需要有R语言的知识,其支持文献计量分析过程的三个阶段:(a) 数据导入和转换为R格式;(b) 数据集的文献计量分析和(c) 矩阵的构建[22]。在本研究中,被用于(a) 对国家/地区之间的合作及出版物的分布;(b) 国家/地区之间的合作集群;(c) 关键词趋势主题的分析。CiteSpace是Chen开发的基于Java的免费软件,是用于可视化和分析科学文献的最流行的文献计量工具之一,通常用于确定给定领域的知识结构、分布和演变[23]。在本研究中,CiteSpace被用于(a) 对机构进行合作分析;(b) 分析作者的共被引关系;(c) 对科学期刊进行双地图叠加;(d) 对参考文献进行共引分析;(e) 确定引文爆发次数最强的前20篇参考文献。在网络图中,节点表示各种项目,例如机构、作者和参考文献。节点大小和色环分别表示这些项目的数量和不同的年份。节点之间的线条反映了项目的合作或共引关系[24]

3. 结果

3.1. 概述

总体而言,我们从WOSCC中检索到1474篇关于VAP的研究,其中包括1236篇“articles”和238篇“reviews”,图2显示了VAP的年度出版物数量和每年的引用频次,由图可知,近十多年来发表的出版物逐年增加,2017年共产出123篇,生产高峰出现在2022年,共发表143篇,近两年有所下降(2024年数据未统计完全),但目前关于VAP的研究仍是热点,总体而言,该领域呈增长趋势。

Figure 2. The annual publication of the ventilator-associated pneumonia and the citation frequency each year

2. VAP的年度出版物及每年的引用频次

3.2. 主要国家和地区

根据数据显示,2011至2024年间,来自82个国家的学者对VAP的研究作出了贡献。如表1所示,美国(n = 355, 24.03%)是关于VAP出版数量最多的国家,其次是中国(n = 253, 17.12%)、法国(n = 188, 12.72%)。来自美国、中国和法国三个国家的出版物数量超过总数的一半(n = 53%)。亚洲与北美及西欧之间合作密切(图3(a))。随后,我们对国家进行可视化,确定了一个协作集群(图3(b))。由图可得知,不同国家之间进行了积极的合作。例如中国与美国、法国与西班牙之间合作紧密。

Table 1. Top ten countries and institutions in ventilator-associated pneumonia research

1. 研究呼吸机相关性肺炎前十名国家和机构

Country

Count

Institution

Count

USA

355

University of Barcelona

40

China

253

Autonomous University of Barcelona

25

France

188

Universite Paris Cite

24

Spain

133

University of Queensland

23

Italy

80

University of Tennessee

23

Brazil

71

Brigham and Women’s Hospital

22

Türkiye

62

Inserm

22

England

58

Washington University

22

Greece

55

Hospital Clinic De Barcelona

21

Australia

54

Sorbonne University

21

(a)

(b)

Figure 3. (a) Distribution of publications and cooperation between countries/region; (b) Cooperation clusters between countries/regions

3. (a) 出版物的分布和国家/地区之间的合作;(b) 国家/地区之间的合作集群

3.3. 活跃的机构和作者

排名前十的机构来自四个国家(表1),分别是美国(3/10)、法国(3/10)、西班牙(3/10)、澳大利亚(1/10)。西班牙的University of Barcelona (n = 40)是生产力最高的机构,其次是Autonomous University of Barcelona (n = 25)、Universite Paris Cite (n = 24)。随后,我们按照最少发表论文数等于7的标准选择了95家机构进行可视化,并根据各机构发表论文的数量和关系构建了协作网络(图4)。图中的每个圆圈代表一个国家/地区,圆圈的大小表示该国家/地区的出版物产出。圆圈之间的线条表示国家之间的合作,线条越宽表示合作越紧密。如图4所示,University of Barcelona与Washington University之间合作紧密,University of Queensland与Autonomous University of Barcelona之间关系密切。

Figure 4. Visualization of research institutions

4. 研究机构可视化

3.4. 期刊与共同引用期刊

随后我们对已发表的期刊进行可视化分析(表2),得到以下几个结论:《Critical Care》是生产力最高的期刊(n = 53, 3.59%),其次是《Journal of Critical Care》(n = 43, 2.91%)、《American Journal of Infection Control》(n = 43, 2.91%)和《Critical Care Medicine》(n = 31, 2.10%)。在排名前十的期刊中,影响因子最高的是《Intensive Care Medicine》(IF = 27.1),随后是《Chest》(IF = 9.5)。最后,我们用Vosviewer将最小出版量等于7筛选了52种期刊,以绘制期刊网络图(图5(a))。

共同引用分析旨在评估文章之间的关系。在共被引用的前十期刊中,被引次数超过2000次的期刊有5种,其中《Critical Care Medicine》是被引用次数最多的期刊(共被引次数为3657),《American Journal of Infection Control》(共被引次数为2951)和《Intensive Care Medicine》(共被引次数为2744)位于第二、第三。我们将最小共被引次数设置为100筛选出70种期刊,绘制网络图(图5(b))。由图可知,Critical Care Medicine与Intensive Care Medicine、American Journal of Infection Control之间有正向的引用关系。

双映射叠加显示了期刊之间的多个域间连接(图5(c))。图5(c)中,左边的期刊是引用期刊,右边的期刊是被引用期刊;线条表示它们之间的引用关系。绿色的线条是主要引用途径。健康/护理/医学和分子/生物学/遗传学期刊中的出版物,大多被医学/医学/临床期刊中的出版物引用。

3.5. 作者及共同被引作者

共有7920名作者参与了VAP的研究,其中Torres A以31篇文章位居首位(表3),其次是Rello J (n = 24)、Martin-Loeches I (n = 22)。Klompas M是总被引次数最多的作者(4159)。随后我们根据发表论文数大于等于5篇的作者构建了一个协作网络(图6(a)),每个圆圈代表一位作者,圆圈之间的线条代表作者之间的联系,不同颜色的连接网络表示不同作者之间的合作集群。发表相关文章最多的作者节点最大。

Table 2. Contributions of the top 10 journals on VAP

2. 关于呼吸机相关性肺炎文献发表前十的期刊

Rank

Journal

Count (%)

Citation

IF

1

Critical Care

53 (3.59%)

2555

8.8

2

Journal of Critical Care

43 (2.91%)

863

3.2

3

American Journal of Infection Control

43 (2.91%)

819

3.8

4

Critical Care Medicine

31 (2.10%)

2049

7.7

5

Antibiotics-basel

26 (1.76%)

174

4.3

6

Plos One

26 (1.76%)

557

2.9

7

BMC Infectious Diseases

25 (1.69%)

569

3.4

8

Infection Control and Hospital Epidemiologgy

24 (1.62%)

1693

3.0

9

Chest

24 (1.62%)

1272

9.5

10

Intensive Care Medicine

22 (1.50%)

1484

27.1

(a)

(b)

(c)

Figure 5. Ventilator-associated pneumonia research journal (a) and co-cited journals (b); Ventilator-associated pneumonia journal double figure overlay (c)

5. 关于VAP的研究期刊(a)与共被引期刊(b);关于VAP的期刊双图叠加(c)

Table 3. Authors of the top ten published papers in ventilator-associated pneumonia research

3. 关于VAP研究发表论文前十的作者

Rank

Author

Publications

Citations

1

Torres A

31

1779

2

Rello J

24

854

3

Martin-Loeches I

22

1091

4

Timsit JF

20

1099

5

Klompas M

19

4159

6

Nseir S

18

361

7

Croce MA

17

193

8

Fabian TC

16

189

9

Swanson JM

15

150

10

Kollef MH

15

1154

此外,我们观察到多个作者之间的密切合作。例如,Torres A、Rello J、Martin-Loeches I之间有着密切的合作。

共被引作者是指两个或多个作者同时被另一篇或多篇论文引用,这两名或更多作者构成了共同被引关系(图6(b))。如图所示,不同的共同被引作者之间也存在积极的合作,例如Kollef MH与Klompas M,Torres A之间都有密切的合作。

3.7. 关键词和趋势主题

关键词是更深层次的总结。通过对关键词的分析,可以了解特定领域的研究热点,探索热点和研究方向[27]。我们通过Vosviewer对关键词进行聚类分析(图9(a)),总共得到4个集群,代表了4个研究方向。节点之间的线越粗,关键字之间的联系就越强。其中蓝色簇中包括ventilator-associated pneumonia、hospital-acquired pneumonia、therapy等,红色簇中包括intensive-care unit、mechanical ventilation等,绿色簇中包括diagnosis、morality等,黄色簇中包括impact、risk factors、prevention等。关键词趋势主题表明了研究方向和研究领域,目前VAP的研究主要集中在cefiderocol、carbapenem-resistant acinetobacter baumannii、COVID-19、acute respiratory distress syndrome等。

采用文献计量学的方法,对检索到的1474篇文献进行分析,第一篇文章于2011年发表在《Critical Care》上,Zolfaghari [28]解释标准大容量低压套囊气管插管的固有设计缺陷是导致VAP的主要致病机制,

Figure 7. Visualization of the cited literature of ventilator-associated pneumonia research

7. VAP研究共被引文献的可视化

Figure 8. Top 20 references with explosive citations

8. 引文爆发性强的前20位参考文献

(a)

(b)

Figure 9. Ventilator-associated pneumonia research keyword visualization (a) and keyword trend topics (b)

9. 关于VAP研究的关键词可视化(a)和关键词趋势主题(b)

探讨了新型气管插管及其对VAP预防策略的潜在贡献。总体而言,该领域呈上升趋势,越来越多的学者探究VAP,出现了Torres A、Rello J等高生产力的作者。美国是该领域的领先者,出版量最多。中国虽然在出版数量上排名第二,但在前10名中没有机构。关键词主要集中在“mechanical ventilation、critical care、mortality、pseudomonas aeruginosa”上,而cefiderocol、carbapenem-resistant acinetobacter baumannii、COVID-19、acute respiratory distress syndrome是新兴的研究热点。

4. 研究热点

4.1. Cefiderocol

目前,多重耐药菌引起的感染日益增加,应用合适的抗生素与不良结局直接相关。临床上常见的致病菌包括耐甲氧西林金黄色葡萄球菌、不动杆菌、肺炎克雷伯菌、铜绿假单胞菌等[29]。Cefiderocol (原S-649266)于2020年9月获得批准用于治疗呼吸机相关性肺炎[30]。Cefiderocol是一种新型的头孢菌类抗生素,由头孢菌素部分和儿茶酚型铁载体组成,通过与三价铁结合,并通过细菌铁转运蛋白通过外膜主动转运到细菌细胞中,并通过孔蛋白通道被动扩散到周质间隙[31],这种方法被称为“特洛伊木马(Trojan horse) [32]”。Cefiderocol对革兰氏阴性菌具有强活效性,其抗菌活性主要是对PBP3的抑制,从而影响细胞壁的合成,导致细胞死亡[33]。临床研究表明,针对有多重耐药感染风险的成人复杂性尿路感染,Cefiderocol优于亚胺培南–西司他丁[34]。而另外一项随机、双盲、平行组、3期、非劣效性试验(APEKS-NP)证明,Cefiderocol单药治疗在由多种革兰氏阴性菌(包括鲍曼不动杆菌、铜绿假单胞菌和肠杆菌属)引起的医院获得性肺炎危重症患者的第14天全因死亡率结局方面不劣于高剂量、延长输注美罗培南单药治疗。Cefiderocol耐受性良好,其安全性与其他头孢菌素类或碳青霉烯类药物一致[35]。一项随机、开放标签、多中心、病原体聚焦、III期试验中证实碳青霉烯类病原菌感染的患者,使用Cefiderocol的临床治疗愈高于最佳治疗组(研究者制定的治疗方案,最多不超过三种药物) [36]。Cefiderocol主要经肾脏代谢,中重度肾功能损伤的患者在治疗时需要调整剂量[37]。所以,Cefiderocol可能是治疗MDR革兰氏阴性菌感染风险的患者医院获得性肺炎的合适选择[35]

4.2. 耐碳青霉烯类鲍曼不动杆菌

在重症监护室里,由耐碳青霉烯类鲍曼不动杆菌(CRAB)引起的呼吸机相关肺炎(VAP)是一种严重且具有挑战性的并发症,与不良结果息息相关。目前,CRAB在世界范围内的流行率不断增长,2017年,耐碳青霉烯类鲍曼不动杆菌已被世界卫生组织列为危急病原体,治疗选择有限,导致发病率和死亡率不断增加[38]-[40]。在当下,CRAB引起的感染仍面临许多难题,包括高死亡率、抗生素的选择不当、住院时间延长等。CRAB的流行与ICU内广谱抗生素的过度使用、侵入性操作及医院感染控制措施落实不足密切相关。先前的研究称,与碳青霉烯类敏感的鲍曼不动杆菌患者相比,CRAB的死亡率是其两倍[41]。CRAB的耐药机制主要归因于碳青霉烯酶的产生,尤其是碳青霉烯水解D类β-内酰胺酶(CHDL),包括OXA-23、-40、-51、-58 [42]和和-143类β-内酰胺酶[43],还包括通过外膜蛋白的改变、外排泵、青霉素结合蛋白的变化[44]。目前临床上针对CRAB引起的呼吸机相关性肺炎,抗生素的选择是一大难题,通常粘菌素被认为是首选药物,尽管其有肾毒性和神经毒性[45]。在一项前瞻性研究中,提及大剂量氨苄西林–舒巴坦是治疗鲍曼不动杆菌多重耐药危重患者的安全有效方法[46]。专家认为米诺环素也是治疗CRAB感染的合理治疗选择[47]。尽管对于中重度感染的患者,建议联合用药(氨基糖苷类、多粘菌素、替加环素)治疗。而根据试验结果,不建议将粘菌素和美罗培南联合治疗CRAB引起的严重感染[48]。与粘菌素单药治疗相比,联合用药是否能改善临床结局仍有待证明。由于抗生素的选择有限,不断寻找更好的治疗方案至关重要。而其他的措施包括集束化管理、医院感染控制也非常重要,加强环境消毒,从而阻断CRAB的传播链条。

4.3. COVID-19和急性呼吸窘迫综合征

2019年底,新型冠状病毒(SARS-CoV-2)在全球范围内流行,患者出现呼吸窘迫从而入住重症监护室,其中高达80%的患者要进行有创通气[49]。机械通气、体位、患者基础疾病、神经肌肉阻滞剂、免疫抑制状态等因素均可导致VAP的发生。有报告证明,COVID的患者发生呼吸机相关性肺炎的概率较高[50] [51]。这可能与长时间的有创机械通气、俯卧位治疗、接受更多的免疫抑制药物治疗、使用ECMO有关[52]。除此之外,COVID-19导致的严重淋巴细胞减少症也增加了继发感染的风险[53]。免疫系统在COVID-19中发挥着双重作用,一方面有利于促炎细胞因子的消退,另一方面促进ARDS的发展[54]。COVID-19引起的急性呼吸窘迫综合征(ARDS)患者是发生VAP的高危人群,相比于无ARDS的患者,其发生率可能高达60%,继而出现全身炎症反应综合征、器官损伤,同时伴随免疫抑制[55]-[57]。先前已有明确证据表明,免疫细胞功能障碍相关的三种细胞表面标志物(T细胞、单核细胞和中性粒细胞)可以预测感染的危险分层[58] [59]。有研究发现其中中性粒细胞功能受损的关键是补体C5a的诱导[60] [61]。而COVID-19患者的免疫功能明显抑制,从而炎症因子激活和器官损伤以及抗菌功能失调,引起补体C5a的激活进一步有助于炎症因子的释放[62]。COVID-19引起的细胞因子风暴导致血管通透性增加,继而引发ARDS [63]。目前,关于发生VAP的ARDS患者相关死亡率的研究较少,大多数研究集中在使用肺保护性机械通气策略之前进行的。先前研究报道,在严重ARDS患者中,根据标准化肺保护策略进行通气,VAP的发生与ICU死亡风险较高相关[64]。COVID-19、ARDS和VAP的关联本质上是“病原侵袭–过度炎症–医源性损伤”的连续病理过程。COVID-19通过诱发ARDS为VAP创造条件,而VAP进一步加剧肺损伤,延长机械通气时间,显著增加患者死亡风险。临床中,早期识别COVID-19重症倾向,阻断ARDS进展,一旦启动机械通气,即启动VAP的预防策略。

5. 优势与不足

本文利用文献计量学的方式分析呼吸机相关性肺炎的研究现状,通过软件程序探讨了研究热点和前沿,有助于我们更好地了解呼吸机相关性肺炎。但是,本研究仍存在一些局限性。我们只检索了Web of Science中收录的英文文献。因此,数据可能不够全面。以其他语言和数据库发表的文章需要进一步研究。此外,在我们的文献计量分析中应用的软件在整合来自不同资源的数据方面存在困难。一些没有引用的出版物不一定没有科学价值。尽管如此,使用可视化方法来了解一个领域的当前状态、热点和趋势仍然是有价值的。

在过去十多年里,美国是VAP研究的领先国家。使用CiteSpace和VOSviewer软件的视觉分析显示了VAP的研究现状。在国际核心期刊上发表的文章越来越多,不同国家的专家和机构之间的合作和沟通不断加强。当下,呼吸机相关性肺炎的诊断尚未形成共识,所以这仍是一个挑战。cefiderocol、carbapenem-resistant acinetobacter baumannii、COVID-19、acute respiratory distress syndrome仍将是未来研究的重点,特别是多重耐药菌引起的呼吸机相关性肺炎,抗生素的应用至关重要。不断开发新型抗菌药物和完善治疗策略是当前重中之重。

NOTES

*通讯作者。

参考文献

[1] Papazian, L., Klompas, M. and Luyt, C. (2020) Ventilator-associated Pneumonia in Adults: A Narrative Review. Intensive Care Medicine, 46, 888-906.
https://doi.org/10.1007/s00134-020-05980-0
[2] Torres, A., Niederman, M.S., Chastre, J., Ewig, S., Fernandez-Vandellos, P., Hanberger, H., et al. (2017) International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. European Respiratory Journal, 50, Article 1700582.
https://doi.org/10.1183/13993003.00582-2017
[3] European Centre for Disease Prevention and Control (2015) European Surveillance of Healthcare-Associated.
[4] Rotstein, C., Evans, G., Born, A., Grossman, R., Light, R.B., Magder, S., et al. (2007) Clinical Practice Guidelines for Hospital‐Acquired Pneumonia and Ventilator‐Associated Pneumonia in Adults. Canadian Journal of Infectious Diseases and Medical Microbiology, 19, 19-53.
https://doi.org/10.1155/2008/593289
[5] American Thoracic Society and Infectious Diseases Society of America (2005) Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. American Journal of Respiratory and Critical Care Medicine, 171, 388-416.
https://doi.org/10.1164/rccm.200405-644ST
[6] Masterton, R.G., Galloway, A., French, G., Street, M., Armstrong, J., Brown, E., et al. (2008) Guidelines for the Management of Hospital-Acquired Pneumonia in the UK: Report of the Working Party on Hospital-Acquired Pneumonia of the British Society for Antimicrobial Chemotherapy. Journal of Antimicrobial Chemotherapy, 62, 5-34.
https://doi.org/10.1093/jac/dkn162
[7] Kalil, A.C., Metersky, M.L., Klompas, M., Muscedere, J., Sweeney, D.A., Palmer, L.B., et al. (2016) Management of Adults with Hospital-Acquired and Ventilator-Associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clinical Infectious Diseases, 63, e61-e111.
https://doi.org/10.1093/cid/ciw353
[8] Ego, A., Preiser, J. and Vincent, J. (2015) Impact of Diagnostic Criteria on the Incidence of Ventilator-Associated Pneumonia. Chest, 147, 347-355.
https://doi.org/10.1378/chest.14-0610
[9] Langer, M., Cigada, M., Mandelli, M., Mosconi, P. and Tognoni, G. (1987) Early Onset Pneumonia: A Multicenter Study in Intensive Care Units. Intensive Care Medicine, 13, 342-346.
https://doi.org/10.1007/bf00255791
[10] Hunter, J.D. (2012) Ventilator Associated Pneumonia. BMJ, 344, e3325-e3325.
https://doi.org/10.1136/bmj.e3325
[11] Ben Lakhal, H., M’Rad, A., Naas, T. and Brahmi, N. (2021) Antimicrobial Susceptibility among Pathogens Isolated in Early-Versus Late-Onset Ventilator-Associated Pneumonia. Infectious Disease Reports, 13, 401-410.
https://doi.org/10.3390/idr13020038
[12] Teixeira, P.J.Z., Seligman, R., Hertz, F.T., Cruz, D.B. and Fachel, J.M.G. (2007) Inadequate Treatment of Ventilator-Associated Pneumonia: Risk Factors and Impact on Outcomes. Journal of Hospital Infection, 65, 361-367.
https://doi.org/10.1016/j.jhin.2006.12.019
[13] Gursel, G., Aydogdu, M., Ozyilmaz, E. and Ozis, T.N. (2008) Risk Factors for Treatment Failure in Patients with Ventilator-Associated Pneumonia Receiving Appropriate Antibiotic Therapy. Journal of Critical Care, 23, 34-40.
https://doi.org/10.1016/j.jcrc.2007.12.015
[14] Fabregas, N., Torres, A., El-Ebiary, M., Ramirez, J., Hernandez, C., Gonzalez, J., et al. (1996) Histopathologic and Microbiologic Aspects of Ventilator-Associated Pneumonia. Anesthesiology, 84, 760-771.
https://doi.org/10.1097/00000542-199604000-00002
[15] Fernando, S.M., Tran, A., Cheng, W., Klompas, M., Kyeremanteng, K., Mehta, S., et al. (2020) Diagnosis of Ventilator-Associated Pneumonia in Critically Ill Adult Patients—A Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1170-1179.
https://doi.org/10.1007/s00134-020-06036-z
[16] The Committee for The Japanese Respiratory Society Guidelines in Management of Respiratory Infections (2004) Ventilator‐Associated Pneumonia. Respirology, 9, S30-S34.
https://doi.org/10.1111/j.1440-1843.2003.00547.x
[17] Grossman, R.F. and Fein, A. (2000) Evidence-Based Assessment of Diagnostic Tests for Ventilator-Associated Pneumonia. Chest, 117, 177S-181S.
https://doi.org/10.1378/chest.117.4_suppl_2.177s
[18] Pugin, J., Auckenthaler, R., Mili, N., Janssens, J., Lew, P.D. and Suter, P.M. (1991) Diagnosis of Ventilator-Associated Pneumonia by Bacteriologic Analysis of Bronchoscopic and Nonbronchoscopic “Blind” Bronchoalveolar Lavage Fluid. American Review of Respiratory Disease, 143, 1121-1129.
https://doi.org/10.1164/ajrccm/143.5_pt_1.1121
[19] Howroyd, F., Chacko, C., MacDuff, A., Gautam, N., Pouchet, B., Tunnicliffe, B., et al. (2024) Ventilator-Associated Pneumonia: Pathobiological Heterogeneity and Diagnostic Challenges. Nature Communications, 15, Article No. 6447.
https://doi.org/10.1038/s41467-024-50805-z
[20] van Eck, N.J. and Waltman, L. (2009) Software Survey: Vosviewer, a Computer Program for Bibliometric Mapping. Scientometrics, 84, 523-538.
https://doi.org/10.1007/s11192-009-0146-3
[21] Aria, M. and Cuccurullo, C. (2017) Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. Journal of Informetrics, 11, 959-975.
https://doi.org/10.1016/j.joi.2017.08.007
[22] Arruda, H., Silva, E.R., Lessa, M., Proença Jr., D. and Bartholo, R. (2022) VOSviewer and Bibliometrix. Journal of the Medical Library Association, 110, 392-395.
https://doi.org/10.5195/jmla.2022.1434
[23] Chen, C. (2005) Citespace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57, 359-377.
https://doi.org/10.1002/asi.20317
[24] Zhang, X., Zhang, Y., Zhao, Y., Zhou, C. and Zou, D. (2023) Autoimmune Pancreatitis: A Bibliometric Analysis from 2002 to 2022. Frontiers in Immunology, 14, Article 1135096.
https://doi.org/10.3389/fimmu.2023.1135096
[25] Xu, M., Yang, F., Shen, B., Wang, J., Niu, W., Chen, H., et al. (2023) A Bibliometric Analysis of Acute Myocardial Infarction in Women from 2000 to 2022. Frontiers in Cardiovascular Medicine, 10, Article 1090220.
https://doi.org/10.3389/fcvm.2023.1090220
[26] Huang, X., Fan, X., Ying, J. and Chen, S. (2019) Emerging Trends and Research Foci in Gastrointestinal Microbiome. Journal of Translational Medicine, 17, Article No. 67.
https://doi.org/10.1186/s12967-019-1810-x
[27] Zhong, D., Li, Y., Huang, Y., Hong, X., Li, J. and Jin, R. (2022) Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis via Citespace. Frontiers in Molecular Biosciences, 8, Article 797902.
https://doi.org/10.3389/fmolb.2021.797902
[28] Zolfaghari, P.S. and Wyncoll, D.L. (2011) The Tracheal Tube: Gateway to Ventilator-Associated Pneumonia. Critical Care, 15, Article No. 310.
https://doi.org/10.1186/cc10352
[29] Kalanuria, A.A., Zai, W. and Mirski, M. (2014) Ventilator-Associated Pneumonia in the ICU. Critical Care, 18, Article No. 208.
https://doi.org/10.1186/cc13775
[30] McCreary, E.K., Heil, E.L. and Tamma, P.D. (2021) New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrobial Agents and Chemotherapy, 65, e02171-20.
https://doi.org/10.1128/aac.02171-20
[31] Bassetti, M., Vena, A., Castaldo, N., Righi, E. and Peghin, M. (2018) New Antibiotics for Ventilator-Associated Pneumonia. Current Opinion in Infectious Diseases, 31, 177-186.
https://doi.org/10.1097/qco.0000000000000438
[32] Abdul‐Mutakabbir, J.C., Alosaimy, S., Morrisette, T., Kebriaei, R. and Rybak, M.J. (2020) Cefiderocol: A Novel Siderophore Cephalosporin against Multidrug‐Resistant Gram‐Negative Pathogens. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40, 1228-1247.
https://doi.org/10.1002/phar.2476
[33] Sato, T. and Yamawaki, K. (2019) Cefiderocol: Discovery, Chemistry, and in vivo Profiles of a Novel Siderophore Cephalosporin. Clinical Infectious Diseases, 69, S538-S543.
https://doi.org/10.1093/cid/ciz826
[34] Portsmouth, S., van Veenhuyzen, D., Echols, R., Machida, M., Ferreira, J.C.A., Ariyasu, M., et al. (2018) Cefiderocol versus Imipenem-Cilastatin for the Treatment of Complicated Urinary Tract Infections Caused by Gram-Negative Uropathogens: A Phase 2, Randomised, Double-Blind, Non-Inferiority Trial. The Lancet Infectious Diseases, 18, 1319-1328.
https://doi.org/10.1016/s1473-3099(18)30554-1
[35] Wunderink, R.G., Matsunaga, Y., Ariyasu, M., Clevenbergh, P., Echols, R., Kaye, K.S., et al. (2021) Cefiderocol versus High-Dose, Extended-Infusion Meropenem for the Treatment of Gram-Negative Nosocomial Pneumonia (APEKS-NP): A Randomised, Double-Blind, Phase 3, Non-Inferiority Trial. The Lancet Infectious Diseases, 21, 213-225.
https://doi.org/10.1016/s1473-3099(20)30731-3
[36] Bassetti, M., Echols, R., Matsunaga, Y., Ariyasu, M., Doi, Y., Ferrer, R., et al. (2021) Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. The Lancet Infectious Diseases, 21, 226-240.
https://doi.org/10.1016/s1473-3099(20)30796-9
[37] Katsube, T., Echols, R., Arjona Ferreira, J.C., Krenz, H.K., Berg, J.K. and Galloway, C. (2016) Cefiderocol, a Siderophore Cephalosporin for Gram‐negative Bacterial Infections: Pharmacokinetics and Safety in Subjects with Renal Impairment. The Journal of Clinical Pharmacology, 57, 584-591.
https://doi.org/10.1002/jcph.841
[38] Zowawi, H.M., Sartor, A.L., Sidjabat, H.E., Balkhy, H.H., Walsh, T.R., Al Johani, S.M., et al. (2015) Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates in the Gulf Cooperation Council States: Dominance of OXA-23-Type Producers. Journal of Clinical Microbiology, 53, 896-903.
https://doi.org/10.1128/jcm.02784-14
[39] Govindaraj Vaithinathan, A. and Vanitha, A. (2018) WHO Global Priority Pathogens List on Antibiotic Resistance: An Urgent Need for Action to Integrate One Health Data. Perspectives in Public Health, 138, 87-88.
https://doi.org/10.1177/1757913917743881
[40] Russo, A., Bruni, A., Gullì, S., Borrazzo, C., Quirino, A., Lionello, R., et al. (2023) Efficacy of Cefiderocol-vs Colistin-Containing Regimen for Treatment of Bacteraemic Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii in Patients with COVID-19. International Journal of Antimicrobial Agents, 62, Article 106825.
https://doi.org/10.1016/j.ijantimicag.2023.106825
[41] Lemos, E.V., de la Hoz, F.P., Einarson, T.R., McGhan, W.F., Quevedo, E., Castañeda, C., et al. (2014) Carbapenem Resistance and Mortality in Patients with Acinetobacter baumannii Infection: Systematic Review and Meta-Analysis. Clinical Microbiology and Infection, 20, 416-423.
https://doi.org/10.1111/1469-0691.12363
[42] Poirel, L. and Nordmann, P. (2006) Carbapenem Resistance in Acinetobacter baumannii: Mechanisms and Epidemiology. Clinical Microbiology and Infection, 12, 826-836.
https://doi.org/10.1111/j.1469-0691.2006.01456.x
[43] Higgins, P.G., Poirel, L., Lehmann, M., Nordmann, P. and Seifert, H. (2009) OXA-143, a Novel Carbapenem-Hydrolyzing Class D β-Lactamase in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 53, 5035-5038.
https://doi.org/10.1128/aac.00856-09
[44] Ibrahim, M.E. (2019) Prevalence of Acinetobacter baumannii in Saudi Arabia: Risk Factors, Antimicrobial Resistance Patterns and Mechanisms of Carbapenem Resistance. Annals of Clinical Microbiology and Antimicrobials, 18, Article No. 1.
https://doi.org/10.1186/s12941-018-0301-x
[45] Kengkla, K., Kongpakwattana, K., Saokaew, S., Apisarnthanarak, A. and Chaiyakunapruk, N. (2017) Comparative Efficacy and Safety of Treatment Options for MDR and XDR Acinetobacter baumannii Infections: A Systematic Review and Network Meta-Analysis. Journal of Antimicrobial Chemotherapy, 73, 22-32.
https://doi.org/10.1093/jac/dkx368
[46] Betrosian, A.P., Frantzeskaki, F., Xanthaki, A. and Douzinas, E.E. (2008) Efficacy and Safety of High-Dose Ampicillin/Sulbactam vs. Colistin as Monotherapy for the Treatment of Multidrug Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia. Journal of Infection, 56, 432-436.
https://doi.org/10.1016/j.jinf.2008.04.002
[47] Tamma, P.D., Aitken, S.L., Bonomo, R.A., Mathers, A.J., van Duin, D. and Clancy, C.J. (2021) Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clinical Infectious Diseases, 74, 2089-2114.
https://doi.org/10.1093/cid/ciab1013
[48] Dickstein, Y., Lellouche, J., Ben Dalak Amar, M., Schwartz, D., Nutman, A., Daitch, V., et al. (2018) Treatment Outcomes of Colistin-and Carbapenem-Resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clinical Infectious Diseases, 69, 769-776.
https://doi.org/10.1093/cid/ciy988
[49] Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A., et al. (2020) Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, 323, 1574.
https://doi.org/10.1001/jama.2020.5394
[50] Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020) Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. The Lancet, 395, 1054-1062.
https://doi.org/10.1016/s0140-6736(20)30566-3
[51] Ryder, J.H. and Kalil, A.C. (2022) The Puzzles of Ventilator-Associated Pneumonia and COVID-19: Absolute Knowns and Relative Unknowns. Critical Care Medicine, 50, 894-896.
https://doi.org/10.1097/ccm.0000000000005475
[52] Kalil, A.C. and Cawcutt, K.A. (2021) Is Ventilator-Associated Pneumonia More Frequent in Patients with Coronavirus Disease 2019? Critical Care Medicine, 50, 522-524.
https://doi.org/10.1097/ccm.0000000000005389
[53] Stevens, M.P., Doll, M., Pryor, R., Godbout, E., Cooper, K. and Bearman, G. (2020) Impact of COVID-19 on Traditional Healthcare-Associated Infection Prevention Efforts. Infection Control & Hospital Epidemiology, 41, 946-947.
https://doi.org/10.1017/ice.2020.141
[54] Cao, X. (2020) COVID-19: Immunopathology and Its Implications for Therapy. Nature Reviews Immunology, 20, 269-270.
https://doi.org/10.1038/s41577-020-0308-3
[55] Luyt, C., Sahnoun, T., Gautier, M., Vidal, P., Burrel, S., Pineton de Chambrun, M., et al. (2020) Ventilator-Associated Pneumonia in Patients with SARS-CoV-2-Associated Acute Respiratory Distress Syndrome Requiring ECMO: A Retrospective Cohort Study. Annals of Intensive Care, 10, Article No. 158.
https://doi.org/10.1186/s13613-020-00775-4
[56] Povoa, P., Martin-Loeches, I. and Nseir, S. (2021) Secondary Pneumonias in Critically Ill Patients with COVID-19: Risk Factors and Outcomes. Current Opinion in Critical Care, 27, 468-473.
https://doi.org/10.1097/mcc.0000000000000860
[57] Dupont, H., Depuydt, P. and Abroug, F. (2016) Prone Position Acute Respiratory Distress Syndrome Patients: Less Prone to Ventilator Associated Pneumonia? Intensive Care Medicine, 42, 937-939.
https://doi.org/10.1007/s00134-015-4190-6
[58] Conway Morris, A., Anderson, N., Brittan, M., Wilkinson, T.S., McAuley, D.F., Antonelli, J., et al. (2013) Combined Dysfunctions of Immune Cells Predict Nosocomial Infection in Critically Ill Patients. British Journal of Anaesthesia, 111, 778-787.
https://doi.org/10.1093/bja/aet205
[59] Conway Morris, A., Datta, D., Shankar-Hari, M., Stephen, J., Weir, C.J., Rennie, J., et al. (2018) Cell-Surface Signatures of Immune Dysfunction Risk-Stratify Critically Ill Patients: INFECT Study. Intensive Care Medicine, 44, 627-635.
https://doi.org/10.1007/s00134-018-5247-0
[60] Wood, A.J.T., Vassallo, A.M., Ruchaud-Sparagano, M., Scott, J., Zinnato, C., Gonzalez-Tejedo, C., et al. (2020) C5a Impairs Phagosomal Maturation in the Neutrophil through Phosphoproteomic Remodeling. JCI Insight, 5, e137029.
https://doi.org/10.1172/jci.insight.137029
[61] Morris, A.C., Brittan, M., Wilkinson, T.S., McAuley, D.F., Antonelli, J., McCulloch, C., et al. (2011) C5a-Mediated Neutrophil Dysfunction Is Rhoa-Dependent and Predicts Infection in Critically Ill Patients. Blood, 117, 5178-5188.
https://doi.org/10.1182/blood-2010-08-304667
[62] Carvelli, J., Demaria, O., Vély, F., Batista, L., Chouaki Benmansour, N., Fares, J., et al. (2020) Association of COVID-19 Inflammation with Activation of the C5a-c5aR1 Axis. Nature, 588, 146-150.
https://doi.org/10.1038/s41586-020-2600-6
[63] Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I. and Kayhan, S. (2020) Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clinical Rheumatology, 39, 2085-2094.
https://doi.org/10.1007/s10067-020-05190-5
[64] Forel, J., Voillet, F., Pulina, D., Gacouin, A., Perrin, G., Barrau, K., et al. (2012) Ventilator-Associated Pneumonia and ICU Mortality in Severe ARDS Patients Ventilated According to a Lung-Protective Strategy. Critical Care, 16, R65.
https://doi.org/10.1186/cc11312