|
[1]
|
Papazian, L., Klompas, M. and Luyt, C. (2020) Ventilator-associated Pneumonia in Adults: A Narrative Review. Intensive Care Medicine, 46, 888-906. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Torres, A., Niederman, M.S., Chastre, J., Ewig, S., Fernandez-Vandellos, P., Hanberger, H., et al. (2017) International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. European Respiratory Journal, 50, Article 1700582. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
European Centre for Disease Prevention and Control (2015) European Surveillance of Healthcare-Associated.
|
|
[4]
|
Rotstein, C., Evans, G., Born, A., Grossman, R., Light, R.B., Magder, S., et al. (2007) Clinical Practice Guidelines for Hospital‐Acquired Pneumonia and Ventilator‐Associated Pneumonia in Adults. Canadian Journal of Infectious Diseases and Medical Microbiology, 19, 19-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
American Thoracic Society and Infectious Diseases Society of America (2005) Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. American Journal of Respiratory and Critical Care Medicine, 171, 388-416. [Google Scholar] [CrossRef]
|
|
[6]
|
Masterton, R.G., Galloway, A., French, G., Street, M., Armstrong, J., Brown, E., et al. (2008) Guidelines for the Management of Hospital-Acquired Pneumonia in the UK: Report of the Working Party on Hospital-Acquired Pneumonia of the British Society for Antimicrobial Chemotherapy. Journal of Antimicrobial Chemotherapy, 62, 5-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kalil, A.C., Metersky, M.L., Klompas, M., Muscedere, J., Sweeney, D.A., Palmer, L.B., et al. (2016) Management of Adults with Hospital-Acquired and Ventilator-Associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clinical Infectious Diseases, 63, e61-e111. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ego, A., Preiser, J. and Vincent, J. (2015) Impact of Diagnostic Criteria on the Incidence of Ventilator-Associated Pneumonia. Chest, 147, 347-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Langer, M., Cigada, M., Mandelli, M., Mosconi, P. and Tognoni, G. (1987) Early Onset Pneumonia: A Multicenter Study in Intensive Care Units. Intensive Care Medicine, 13, 342-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hunter, J.D. (2012) Ventilator Associated Pneumonia. BMJ, 344, e3325-e3325. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ben Lakhal, H., M’Rad, A., Naas, T. and Brahmi, N. (2021) Antimicrobial Susceptibility among Pathogens Isolated in Early-Versus Late-Onset Ventilator-Associated Pneumonia. Infectious Disease Reports, 13, 401-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Teixeira, P.J.Z., Seligman, R., Hertz, F.T., Cruz, D.B. and Fachel, J.M.G. (2007) Inadequate Treatment of Ventilator-Associated Pneumonia: Risk Factors and Impact on Outcomes. Journal of Hospital Infection, 65, 361-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gursel, G., Aydogdu, M., Ozyilmaz, E. and Ozis, T.N. (2008) Risk Factors for Treatment Failure in Patients with Ventilator-Associated Pneumonia Receiving Appropriate Antibiotic Therapy. Journal of Critical Care, 23, 34-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fabregas, N., Torres, A., El-Ebiary, M., Ramirez, J., Hernandez, C., Gonzalez, J., et al. (1996) Histopathologic and Microbiologic Aspects of Ventilator-Associated Pneumonia. Anesthesiology, 84, 760-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fernando, S.M., Tran, A., Cheng, W., Klompas, M., Kyeremanteng, K., Mehta, S., et al. (2020) Diagnosis of Ventilator-Associated Pneumonia in Critically Ill Adult Patients—A Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1170-1179. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
The Committee for The Japanese Respiratory Society Guidelines in Management of Respiratory Infections (2004) Ventilator‐Associated Pneumonia. Respirology, 9, S30-S34. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Grossman, R.F. and Fein, A. (2000) Evidence-Based Assessment of Diagnostic Tests for Ventilator-Associated Pneumonia. Chest, 117, 177S-181S. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pugin, J., Auckenthaler, R., Mili, N., Janssens, J., Lew, P.D. and Suter, P.M. (1991) Diagnosis of Ventilator-Associated Pneumonia by Bacteriologic Analysis of Bronchoscopic and Nonbronchoscopic “Blind” Bronchoalveolar Lavage Fluid. American Review of Respiratory Disease, 143, 1121-1129. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Howroyd, F., Chacko, C., MacDuff, A., Gautam, N., Pouchet, B., Tunnicliffe, B., et al. (2024) Ventilator-Associated Pneumonia: Pathobiological Heterogeneity and Diagnostic Challenges. Nature Communications, 15, Article No. 6447. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
van Eck, N.J. and Waltman, L. (2009) Software Survey: Vosviewer, a Computer Program for Bibliometric Mapping. Scientometrics, 84, 523-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Aria, M. and Cuccurullo, C. (2017) Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. Journal of Informetrics, 11, 959-975. [Google Scholar] [CrossRef]
|
|
[22]
|
Arruda, H., Silva, E.R., Lessa, M., Proença Jr., D. and Bartholo, R. (2022) VOSviewer and Bibliometrix. Journal of the Medical Library Association, 110, 392-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chen, C. (2005) Citespace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57, 359-377. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, X., Zhang, Y., Zhao, Y., Zhou, C. and Zou, D. (2023) Autoimmune Pancreatitis: A Bibliometric Analysis from 2002 to 2022. Frontiers in Immunology, 14, Article 1135096. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xu, M., Yang, F., Shen, B., Wang, J., Niu, W., Chen, H., et al. (2023) A Bibliometric Analysis of Acute Myocardial Infarction in Women from 2000 to 2022. Frontiers in Cardiovascular Medicine, 10, Article 1090220. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Huang, X., Fan, X., Ying, J. and Chen, S. (2019) Emerging Trends and Research Foci in Gastrointestinal Microbiome. Journal of Translational Medicine, 17, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhong, D., Li, Y., Huang, Y., Hong, X., Li, J. and Jin, R. (2022) Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis via Citespace. Frontiers in Molecular Biosciences, 8, Article 797902. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zolfaghari, P.S. and Wyncoll, D.L. (2011) The Tracheal Tube: Gateway to Ventilator-Associated Pneumonia. Critical Care, 15, Article No. 310. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kalanuria, A.A., Zai, W. and Mirski, M. (2014) Ventilator-Associated Pneumonia in the ICU. Critical Care, 18, Article No. 208. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
McCreary, E.K., Heil, E.L. and Tamma, P.D. (2021) New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrobial Agents and Chemotherapy, 65, e02171-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bassetti, M., Vena, A., Castaldo, N., Righi, E. and Peghin, M. (2018) New Antibiotics for Ventilator-Associated Pneumonia. Current Opinion in Infectious Diseases, 31, 177-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Abdul‐Mutakabbir, J.C., Alosaimy, S., Morrisette, T., Kebriaei, R. and Rybak, M.J. (2020) Cefiderocol: A Novel Siderophore Cephalosporin against Multidrug‐Resistant Gram‐Negative Pathogens. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40, 1228-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Sato, T. and Yamawaki, K. (2019) Cefiderocol: Discovery, Chemistry, and in vivo Profiles of a Novel Siderophore Cephalosporin. Clinical Infectious Diseases, 69, S538-S543. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Portsmouth, S., van Veenhuyzen, D., Echols, R., Machida, M., Ferreira, J.C.A., Ariyasu, M., et al. (2018) Cefiderocol versus Imipenem-Cilastatin for the Treatment of Complicated Urinary Tract Infections Caused by Gram-Negative Uropathogens: A Phase 2, Randomised, Double-Blind, Non-Inferiority Trial. The Lancet Infectious Diseases, 18, 1319-1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wunderink, R.G., Matsunaga, Y., Ariyasu, M., Clevenbergh, P., Echols, R., Kaye, K.S., et al. (2021) Cefiderocol versus High-Dose, Extended-Infusion Meropenem for the Treatment of Gram-Negative Nosocomial Pneumonia (APEKS-NP): A Randomised, Double-Blind, Phase 3, Non-Inferiority Trial. The Lancet Infectious Diseases, 21, 213-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bassetti, M., Echols, R., Matsunaga, Y., Ariyasu, M., Doi, Y., Ferrer, R., et al. (2021) Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. The Lancet Infectious Diseases, 21, 226-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Katsube, T., Echols, R., Arjona Ferreira, J.C., Krenz, H.K., Berg, J.K. and Galloway, C. (2016) Cefiderocol, a Siderophore Cephalosporin for Gram‐negative Bacterial Infections: Pharmacokinetics and Safety in Subjects with Renal Impairment. The Journal of Clinical Pharmacology, 57, 584-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zowawi, H.M., Sartor, A.L., Sidjabat, H.E., Balkhy, H.H., Walsh, T.R., Al Johani, S.M., et al. (2015) Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates in the Gulf Cooperation Council States: Dominance of OXA-23-Type Producers. Journal of Clinical Microbiology, 53, 896-903. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Govindaraj Vaithinathan, A. and Vanitha, A. (2018) WHO Global Priority Pathogens List on Antibiotic Resistance: An Urgent Need for Action to Integrate One Health Data. Perspectives in Public Health, 138, 87-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Russo, A., Bruni, A., Gullì, S., Borrazzo, C., Quirino, A., Lionello, R., et al. (2023) Efficacy of Cefiderocol-vs Colistin-Containing Regimen for Treatment of Bacteraemic Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii in Patients with COVID-19. International Journal of Antimicrobial Agents, 62, Article 106825. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lemos, E.V., de la Hoz, F.P., Einarson, T.R., McGhan, W.F., Quevedo, E., Castañeda, C., et al. (2014) Carbapenem Resistance and Mortality in Patients with Acinetobacter baumannii Infection: Systematic Review and Meta-Analysis. Clinical Microbiology and Infection, 20, 416-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Poirel, L. and Nordmann, P. (2006) Carbapenem Resistance in Acinetobacter baumannii: Mechanisms and Epidemiology. Clinical Microbiology and Infection, 12, 826-836. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Higgins, P.G., Poirel, L., Lehmann, M., Nordmann, P. and Seifert, H. (2009) OXA-143, a Novel Carbapenem-Hydrolyzing Class D β-Lactamase in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 53, 5035-5038. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ibrahim, M.E. (2019) Prevalence of Acinetobacter baumannii in Saudi Arabia: Risk Factors, Antimicrobial Resistance Patterns and Mechanisms of Carbapenem Resistance. Annals of Clinical Microbiology and Antimicrobials, 18, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kengkla, K., Kongpakwattana, K., Saokaew, S., Apisarnthanarak, A. and Chaiyakunapruk, N. (2017) Comparative Efficacy and Safety of Treatment Options for MDR and XDR Acinetobacter baumannii Infections: A Systematic Review and Network Meta-Analysis. Journal of Antimicrobial Chemotherapy, 73, 22-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Betrosian, A.P., Frantzeskaki, F., Xanthaki, A. and Douzinas, E.E. (2008) Efficacy and Safety of High-Dose Ampicillin/Sulbactam vs. Colistin as Monotherapy for the Treatment of Multidrug Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia. Journal of Infection, 56, 432-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Tamma, P.D., Aitken, S.L., Bonomo, R.A., Mathers, A.J., van Duin, D. and Clancy, C.J. (2021) Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clinical Infectious Diseases, 74, 2089-2114. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Dickstein, Y., Lellouche, J., Ben Dalak Amar, M., Schwartz, D., Nutman, A., Daitch, V., et al. (2018) Treatment Outcomes of Colistin-and Carbapenem-Resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clinical Infectious Diseases, 69, 769-776. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A., et al. (2020) Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, 323, 1574. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020) Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. The Lancet, 395, 1054-1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ryder, J.H. and Kalil, A.C. (2022) The Puzzles of Ventilator-Associated Pneumonia and COVID-19: Absolute Knowns and Relative Unknowns. Critical Care Medicine, 50, 894-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Kalil, A.C. and Cawcutt, K.A. (2021) Is Ventilator-Associated Pneumonia More Frequent in Patients with Coronavirus Disease 2019? Critical Care Medicine, 50, 522-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Stevens, M.P., Doll, M., Pryor, R., Godbout, E., Cooper, K. and Bearman, G. (2020) Impact of COVID-19 on Traditional Healthcare-Associated Infection Prevention Efforts. Infection Control & Hospital Epidemiology, 41, 946-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Cao, X. (2020) COVID-19: Immunopathology and Its Implications for Therapy. Nature Reviews Immunology, 20, 269-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Luyt, C., Sahnoun, T., Gautier, M., Vidal, P., Burrel, S., Pineton de Chambrun, M., et al. (2020) Ventilator-Associated Pneumonia in Patients with SARS-CoV-2-Associated Acute Respiratory Distress Syndrome Requiring ECMO: A Retrospective Cohort Study. Annals of Intensive Care, 10, Article No. 158. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Povoa, P., Martin-Loeches, I. and Nseir, S. (2021) Secondary Pneumonias in Critically Ill Patients with COVID-19: Risk Factors and Outcomes. Current Opinion in Critical Care, 27, 468-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Dupont, H., Depuydt, P. and Abroug, F. (2016) Prone Position Acute Respiratory Distress Syndrome Patients: Less Prone to Ventilator Associated Pneumonia? Intensive Care Medicine, 42, 937-939. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Conway Morris, A., Anderson, N., Brittan, M., Wilkinson, T.S., McAuley, D.F., Antonelli, J., et al. (2013) Combined Dysfunctions of Immune Cells Predict Nosocomial Infection in Critically Ill Patients. British Journal of Anaesthesia, 111, 778-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Conway Morris, A., Datta, D., Shankar-Hari, M., Stephen, J., Weir, C.J., Rennie, J., et al. (2018) Cell-Surface Signatures of Immune Dysfunction Risk-Stratify Critically Ill Patients: INFECT Study. Intensive Care Medicine, 44, 627-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wood, A.J.T., Vassallo, A.M., Ruchaud-Sparagano, M., Scott, J., Zinnato, C., Gonzalez-Tejedo, C., et al. (2020) C5a Impairs Phagosomal Maturation in the Neutrophil through Phosphoproteomic Remodeling. JCI Insight, 5, e137029. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Morris, A.C., Brittan, M., Wilkinson, T.S., McAuley, D.F., Antonelli, J., McCulloch, C., et al. (2011) C5a-Mediated Neutrophil Dysfunction Is Rhoa-Dependent and Predicts Infection in Critically Ill Patients. Blood, 117, 5178-5188. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Carvelli, J., Demaria, O., Vély, F., Batista, L., Chouaki Benmansour, N., Fares, J., et al. (2020) Association of COVID-19 Inflammation with Activation of the C5a-c5aR1 Axis. Nature, 588, 146-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I. and Kayhan, S. (2020) Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clinical Rheumatology, 39, 2085-2094. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Forel, J., Voillet, F., Pulina, D., Gacouin, A., Perrin, G., Barrau, K., et al. (2012) Ventilator-Associated Pneumonia and ICU Mortality in Severe ARDS Patients Ventilated According to a Lung-Protective Strategy. Critical Care, 16, R65. [Google Scholar] [CrossRef] [PubMed]
|