[1]
|
Papazian, L., Klompas, M. and Luyt, C. (2020) Ventilator-associated Pneumonia in Adults: A Narrative Review. Intensive Care Medicine, 46, 888-906. https://doi.org/10.1007/s00134-020-05980-0
|
[2]
|
Torres, A., Niederman, M.S., Chastre, J., Ewig, S., Fernandez-Vandellos, P., Hanberger, H., et al. (2017) International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. European Respiratory Journal, 50, Article 1700582. https://doi.org/10.1183/13993003.00582-2017
|
[3]
|
European Centre for Disease Prevention and Control (2015) European Surveillance of Healthcare-Associated.
|
[4]
|
Rotstein, C., Evans, G., Born, A., Grossman, R., Light, R.B., Magder, S., et al. (2007) Clinical Practice Guidelines for Hospital‐Acquired Pneumonia and Ventilator‐Associated Pneumonia in Adults. Canadian Journal of Infectious Diseases and Medical Microbiology, 19, 19-53. https://doi.org/10.1155/2008/593289
|
[5]
|
American Thoracic Society and Infectious Diseases Society of America (2005) Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. American Journal of Respiratory and Critical Care Medicine, 171, 388-416. https://doi.org/10.1164/rccm.200405-644ST
|
[6]
|
Masterton, R.G., Galloway, A., French, G., Street, M., Armstrong, J., Brown, E., et al. (2008) Guidelines for the Management of Hospital-Acquired Pneumonia in the UK: Report of the Working Party on Hospital-Acquired Pneumonia of the British Society for Antimicrobial Chemotherapy. Journal of Antimicrobial Chemotherapy, 62, 5-34. https://doi.org/10.1093/jac/dkn162
|
[7]
|
Kalil, A.C., Metersky, M.L., Klompas, M., Muscedere, J., Sweeney, D.A., Palmer, L.B., et al. (2016) Management of Adults with Hospital-Acquired and Ventilator-Associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clinical Infectious Diseases, 63, e61-e111. https://doi.org/10.1093/cid/ciw353
|
[8]
|
Ego, A., Preiser, J. and Vincent, J. (2015) Impact of Diagnostic Criteria on the Incidence of Ventilator-Associated Pneumonia. Chest, 147, 347-355. https://doi.org/10.1378/chest.14-0610
|
[9]
|
Langer, M., Cigada, M., Mandelli, M., Mosconi, P. and Tognoni, G. (1987) Early Onset Pneumonia: A Multicenter Study in Intensive Care Units. Intensive Care Medicine, 13, 342-346. https://doi.org/10.1007/bf00255791
|
[10]
|
Hunter, J.D. (2012) Ventilator Associated Pneumonia. BMJ, 344, e3325-e3325. https://doi.org/10.1136/bmj.e3325
|
[11]
|
Ben Lakhal, H., M’Rad, A., Naas, T. and Brahmi, N. (2021) Antimicrobial Susceptibility among Pathogens Isolated in Early-Versus Late-Onset Ventilator-Associated Pneumonia. Infectious Disease Reports, 13, 401-410. https://doi.org/10.3390/idr13020038
|
[12]
|
Teixeira, P.J.Z., Seligman, R., Hertz, F.T., Cruz, D.B. and Fachel, J.M.G. (2007) Inadequate Treatment of Ventilator-Associated Pneumonia: Risk Factors and Impact on Outcomes. Journal of Hospital Infection, 65, 361-367. https://doi.org/10.1016/j.jhin.2006.12.019
|
[13]
|
Gursel, G., Aydogdu, M., Ozyilmaz, E. and Ozis, T.N. (2008) Risk Factors for Treatment Failure in Patients with Ventilator-Associated Pneumonia Receiving Appropriate Antibiotic Therapy. Journal of Critical Care, 23, 34-40. https://doi.org/10.1016/j.jcrc.2007.12.015
|
[14]
|
Fabregas, N., Torres, A., El-Ebiary, M., Ramirez, J., Hernandez, C., Gonzalez, J., et al. (1996) Histopathologic and Microbiologic Aspects of Ventilator-Associated Pneumonia. Anesthesiology, 84, 760-771. https://doi.org/10.1097/00000542-199604000-00002
|
[15]
|
Fernando, S.M., Tran, A., Cheng, W., Klompas, M., Kyeremanteng, K., Mehta, S., et al. (2020) Diagnosis of Ventilator-Associated Pneumonia in Critically Ill Adult Patients—A Systematic Review and Meta-Analysis. Intensive Care Medicine, 46, 1170-1179. https://doi.org/10.1007/s00134-020-06036-z
|
[16]
|
The Committee for The Japanese Respiratory Society Guidelines in Management of Respiratory Infections (2004) Ventilator‐Associated Pneumonia. Respirology, 9, S30-S34. https://doi.org/10.1111/j.1440-1843.2003.00547.x
|
[17]
|
Grossman, R.F. and Fein, A. (2000) Evidence-Based Assessment of Diagnostic Tests for Ventilator-Associated Pneumonia. Chest, 117, 177S-181S. https://doi.org/10.1378/chest.117.4_suppl_2.177s
|
[18]
|
Pugin, J., Auckenthaler, R., Mili, N., Janssens, J., Lew, P.D. and Suter, P.M. (1991) Diagnosis of Ventilator-Associated Pneumonia by Bacteriologic Analysis of Bronchoscopic and Nonbronchoscopic “Blind” Bronchoalveolar Lavage Fluid. American Review of Respiratory Disease, 143, 1121-1129. https://doi.org/10.1164/ajrccm/143.5_pt_1.1121
|
[19]
|
Howroyd, F., Chacko, C., MacDuff, A., Gautam, N., Pouchet, B., Tunnicliffe, B., et al. (2024) Ventilator-Associated Pneumonia: Pathobiological Heterogeneity and Diagnostic Challenges. Nature Communications, 15, Article No. 6447. https://doi.org/10.1038/s41467-024-50805-z
|
[20]
|
van Eck, N.J. and Waltman, L. (2009) Software Survey: Vosviewer, a Computer Program for Bibliometric Mapping. Scientometrics, 84, 523-538. https://doi.org/10.1007/s11192-009-0146-3
|
[21]
|
Aria, M. and Cuccurullo, C. (2017) Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. Journal of Informetrics, 11, 959-975. https://doi.org/10.1016/j.joi.2017.08.007
|
[22]
|
Arruda, H., Silva, E.R., Lessa, M., Proença Jr., D. and Bartholo, R. (2022) VOSviewer and Bibliometrix. Journal of the Medical Library Association, 110, 392-395. https://doi.org/10.5195/jmla.2022.1434
|
[23]
|
Chen, C. (2005) Citespace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57, 359-377. https://doi.org/10.1002/asi.20317
|
[24]
|
Zhang, X., Zhang, Y., Zhao, Y., Zhou, C. and Zou, D. (2023) Autoimmune Pancreatitis: A Bibliometric Analysis from 2002 to 2022. Frontiers in Immunology, 14, Article 1135096. https://doi.org/10.3389/fimmu.2023.1135096
|
[25]
|
Xu, M., Yang, F., Shen, B., Wang, J., Niu, W., Chen, H., et al. (2023) A Bibliometric Analysis of Acute Myocardial Infarction in Women from 2000 to 2022. Frontiers in Cardiovascular Medicine, 10, Article 1090220. https://doi.org/10.3389/fcvm.2023.1090220
|
[26]
|
Huang, X., Fan, X., Ying, J. and Chen, S. (2019) Emerging Trends and Research Foci in Gastrointestinal Microbiome. Journal of Translational Medicine, 17, Article No. 67. https://doi.org/10.1186/s12967-019-1810-x
|
[27]
|
Zhong, D., Li, Y., Huang, Y., Hong, X., Li, J. and Jin, R. (2022) Molecular Mechanisms of Exercise on Cancer: A Bibliometrics Study and Visualization Analysis via Citespace. Frontiers in Molecular Biosciences, 8, Article 797902. https://doi.org/10.3389/fmolb.2021.797902
|
[28]
|
Zolfaghari, P.S. and Wyncoll, D.L. (2011) The Tracheal Tube: Gateway to Ventilator-Associated Pneumonia. Critical Care, 15, Article No. 310. https://doi.org/10.1186/cc10352
|
[29]
|
Kalanuria, A.A., Zai, W. and Mirski, M. (2014) Ventilator-Associated Pneumonia in the ICU. Critical Care, 18, Article No. 208. https://doi.org/10.1186/cc13775
|
[30]
|
McCreary, E.K., Heil, E.L. and Tamma, P.D. (2021) New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrobial Agents and Chemotherapy, 65, e02171-20. https://doi.org/10.1128/aac.02171-20
|
[31]
|
Bassetti, M., Vena, A., Castaldo, N., Righi, E. and Peghin, M. (2018) New Antibiotics for Ventilator-Associated Pneumonia. Current Opinion in Infectious Diseases, 31, 177-186. https://doi.org/10.1097/qco.0000000000000438
|
[32]
|
Abdul‐Mutakabbir, J.C., Alosaimy, S., Morrisette, T., Kebriaei, R. and Rybak, M.J. (2020) Cefiderocol: A Novel Siderophore Cephalosporin against Multidrug‐Resistant Gram‐Negative Pathogens. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40, 1228-1247. https://doi.org/10.1002/phar.2476
|
[33]
|
Sato, T. and Yamawaki, K. (2019) Cefiderocol: Discovery, Chemistry, and in vivo Profiles of a Novel Siderophore Cephalosporin. Clinical Infectious Diseases, 69, S538-S543. https://doi.org/10.1093/cid/ciz826
|
[34]
|
Portsmouth, S., van Veenhuyzen, D., Echols, R., Machida, M., Ferreira, J.C.A., Ariyasu, M., et al. (2018) Cefiderocol versus Imipenem-Cilastatin for the Treatment of Complicated Urinary Tract Infections Caused by Gram-Negative Uropathogens: A Phase 2, Randomised, Double-Blind, Non-Inferiority Trial. The Lancet Infectious Diseases, 18, 1319-1328. https://doi.org/10.1016/s1473-3099(18)30554-1
|
[35]
|
Wunderink, R.G., Matsunaga, Y., Ariyasu, M., Clevenbergh, P., Echols, R., Kaye, K.S., et al. (2021) Cefiderocol versus High-Dose, Extended-Infusion Meropenem for the Treatment of Gram-Negative Nosocomial Pneumonia (APEKS-NP): A Randomised, Double-Blind, Phase 3, Non-Inferiority Trial. The Lancet Infectious Diseases, 21, 213-225. https://doi.org/10.1016/s1473-3099(20)30731-3
|
[36]
|
Bassetti, M., Echols, R., Matsunaga, Y., Ariyasu, M., Doi, Y., Ferrer, R., et al. (2021) Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. The Lancet Infectious Diseases, 21, 226-240. https://doi.org/10.1016/s1473-3099(20)30796-9
|
[37]
|
Katsube, T., Echols, R., Arjona Ferreira, J.C., Krenz, H.K., Berg, J.K. and Galloway, C. (2016) Cefiderocol, a Siderophore Cephalosporin for Gram‐negative Bacterial Infections: Pharmacokinetics and Safety in Subjects with Renal Impairment. The Journal of Clinical Pharmacology, 57, 584-591. https://doi.org/10.1002/jcph.841
|
[38]
|
Zowawi, H.M., Sartor, A.L., Sidjabat, H.E., Balkhy, H.H., Walsh, T.R., Al Johani, S.M., et al. (2015) Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii Isolates in the Gulf Cooperation Council States: Dominance of OXA-23-Type Producers. Journal of Clinical Microbiology, 53, 896-903. https://doi.org/10.1128/jcm.02784-14
|
[39]
|
Govindaraj Vaithinathan, A. and Vanitha, A. (2018) WHO Global Priority Pathogens List on Antibiotic Resistance: An Urgent Need for Action to Integrate One Health Data. Perspectives in Public Health, 138, 87-88. https://doi.org/10.1177/1757913917743881
|
[40]
|
Russo, A., Bruni, A., Gullì, S., Borrazzo, C., Quirino, A., Lionello, R., et al. (2023) Efficacy of Cefiderocol-vs Colistin-Containing Regimen for Treatment of Bacteraemic Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii in Patients with COVID-19. International Journal of Antimicrobial Agents, 62, Article 106825. https://doi.org/10.1016/j.ijantimicag.2023.106825
|
[41]
|
Lemos, E.V., de la Hoz, F.P., Einarson, T.R., McGhan, W.F., Quevedo, E., Castañeda, C., et al. (2014) Carbapenem Resistance and Mortality in Patients with Acinetobacter baumannii Infection: Systematic Review and Meta-Analysis. Clinical Microbiology and Infection, 20, 416-423. https://doi.org/10.1111/1469-0691.12363
|
[42]
|
Poirel, L. and Nordmann, P. (2006) Carbapenem Resistance in Acinetobacter baumannii: Mechanisms and Epidemiology. Clinical Microbiology and Infection, 12, 826-836. https://doi.org/10.1111/j.1469-0691.2006.01456.x
|
[43]
|
Higgins, P.G., Poirel, L., Lehmann, M., Nordmann, P. and Seifert, H. (2009) OXA-143, a Novel Carbapenem-Hydrolyzing Class D β-Lactamase in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 53, 5035-5038. https://doi.org/10.1128/aac.00856-09
|
[44]
|
Ibrahim, M.E. (2019) Prevalence of Acinetobacter baumannii in Saudi Arabia: Risk Factors, Antimicrobial Resistance Patterns and Mechanisms of Carbapenem Resistance. Annals of Clinical Microbiology and Antimicrobials, 18, Article No. 1. https://doi.org/10.1186/s12941-018-0301-x
|
[45]
|
Kengkla, K., Kongpakwattana, K., Saokaew, S., Apisarnthanarak, A. and Chaiyakunapruk, N. (2017) Comparative Efficacy and Safety of Treatment Options for MDR and XDR Acinetobacter baumannii Infections: A Systematic Review and Network Meta-Analysis. Journal of Antimicrobial Chemotherapy, 73, 22-32. https://doi.org/10.1093/jac/dkx368
|
[46]
|
Betrosian, A.P., Frantzeskaki, F., Xanthaki, A. and Douzinas, E.E. (2008) Efficacy and Safety of High-Dose Ampicillin/Sulbactam vs. Colistin as Monotherapy for the Treatment of Multidrug Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia. Journal of Infection, 56, 432-436. https://doi.org/10.1016/j.jinf.2008.04.002
|
[47]
|
Tamma, P.D., Aitken, S.L., Bonomo, R.A., Mathers, A.J., van Duin, D. and Clancy, C.J. (2021) Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clinical Infectious Diseases, 74, 2089-2114. https://doi.org/10.1093/cid/ciab1013
|
[48]
|
Dickstein, Y., Lellouche, J., Ben Dalak Amar, M., Schwartz, D., Nutman, A., Daitch, V., et al. (2018) Treatment Outcomes of Colistin-and Carbapenem-Resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clinical Infectious Diseases, 69, 769-776. https://doi.org/10.1093/cid/ciy988
|
[49]
|
Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A., et al. (2020) Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, 323, 1574. https://doi.org/10.1001/jama.2020.5394
|
[50]
|
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020) Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. The Lancet, 395, 1054-1062. https://doi.org/10.1016/s0140-6736(20)30566-3
|
[51]
|
Ryder, J.H. and Kalil, A.C. (2022) The Puzzles of Ventilator-Associated Pneumonia and COVID-19: Absolute Knowns and Relative Unknowns. Critical Care Medicine, 50, 894-896. https://doi.org/10.1097/ccm.0000000000005475
|
[52]
|
Kalil, A.C. and Cawcutt, K.A. (2021) Is Ventilator-Associated Pneumonia More Frequent in Patients with Coronavirus Disease 2019? Critical Care Medicine, 50, 522-524. https://doi.org/10.1097/ccm.0000000000005389
|
[53]
|
Stevens, M.P., Doll, M., Pryor, R., Godbout, E., Cooper, K. and Bearman, G. (2020) Impact of COVID-19 on Traditional Healthcare-Associated Infection Prevention Efforts. Infection Control & Hospital Epidemiology, 41, 946-947. https://doi.org/10.1017/ice.2020.141
|
[54]
|
Cao, X. (2020) COVID-19: Immunopathology and Its Implications for Therapy. Nature Reviews Immunology, 20, 269-270. https://doi.org/10.1038/s41577-020-0308-3
|
[55]
|
Luyt, C., Sahnoun, T., Gautier, M., Vidal, P., Burrel, S., Pineton de Chambrun, M., et al. (2020) Ventilator-Associated Pneumonia in Patients with SARS-CoV-2-Associated Acute Respiratory Distress Syndrome Requiring ECMO: A Retrospective Cohort Study. Annals of Intensive Care, 10, Article No. 158. https://doi.org/10.1186/s13613-020-00775-4
|
[56]
|
Povoa, P., Martin-Loeches, I. and Nseir, S. (2021) Secondary Pneumonias in Critically Ill Patients with COVID-19: Risk Factors and Outcomes. Current Opinion in Critical Care, 27, 468-473. https://doi.org/10.1097/mcc.0000000000000860
|
[57]
|
Dupont, H., Depuydt, P. and Abroug, F. (2016) Prone Position Acute Respiratory Distress Syndrome Patients: Less Prone to Ventilator Associated Pneumonia? Intensive Care Medicine, 42, 937-939. https://doi.org/10.1007/s00134-015-4190-6
|
[58]
|
Conway Morris, A., Anderson, N., Brittan, M., Wilkinson, T.S., McAuley, D.F., Antonelli, J., et al. (2013) Combined Dysfunctions of Immune Cells Predict Nosocomial Infection in Critically Ill Patients. British Journal of Anaesthesia, 111, 778-787. https://doi.org/10.1093/bja/aet205
|
[59]
|
Conway Morris, A., Datta, D., Shankar-Hari, M., Stephen, J., Weir, C.J., Rennie, J., et al. (2018) Cell-Surface Signatures of Immune Dysfunction Risk-Stratify Critically Ill Patients: INFECT Study. Intensive Care Medicine, 44, 627-635. https://doi.org/10.1007/s00134-018-5247-0
|
[60]
|
Wood, A.J.T., Vassallo, A.M., Ruchaud-Sparagano, M., Scott, J., Zinnato, C., Gonzalez-Tejedo, C., et al. (2020) C5a Impairs Phagosomal Maturation in the Neutrophil through Phosphoproteomic Remodeling. JCI Insight, 5, e137029. https://doi.org/10.1172/jci.insight.137029
|
[61]
|
Morris, A.C., Brittan, M., Wilkinson, T.S., McAuley, D.F., Antonelli, J., McCulloch, C., et al. (2011) C5a-Mediated Neutrophil Dysfunction Is Rhoa-Dependent and Predicts Infection in Critically Ill Patients. Blood, 117, 5178-5188. https://doi.org/10.1182/blood-2010-08-304667
|
[62]
|
Carvelli, J., Demaria, O., Vély, F., Batista, L., Chouaki Benmansour, N., Fares, J., et al. (2020) Association of COVID-19 Inflammation with Activation of the C5a-c5aR1 Axis. Nature, 588, 146-150. https://doi.org/10.1038/s41586-020-2600-6
|
[63]
|
Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I. and Kayhan, S. (2020) Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment. Clinical Rheumatology, 39, 2085-2094. https://doi.org/10.1007/s10067-020-05190-5
|
[64]
|
Forel, J., Voillet, F., Pulina, D., Gacouin, A., Perrin, G., Barrau, K., et al. (2012) Ventilator-Associated Pneumonia and ICU Mortality in Severe ARDS Patients Ventilated According to a Lung-Protective Strategy. Critical Care, 16, R65. https://doi.org/10.1186/cc11312
|