|
[1]
|
Liu, Y., Li, C., Feng, Z., Han, B., Yu, D. and Wang, K. (2022) Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing. Biomolecules, 12, Article 1727. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
刘阳, 王毅, 王云娟, 尹玉利, 熊菀伶, 冯晓祎. 可注射的壳聚糖水凝胶的制备及应用进展[J]. 高分子通报, 2020(5): 17-23.
|
|
[3]
|
Li, X. and Xiong, Y. (2022) Application of “Click” Chemistry in Biomedical Hydrogels. ACS Omega, 7, 36918-36928. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Alven, S. and Aderibigbe, B.A. (2020) Chitosan and Cellulose-Based Hydrogels for Wound Management. International Journal of Molecular Sciences, 21, Article 9656. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fang, Z., Lin, T., Fan, S., Qiu, X., Zhong, Z., Yang, G., et al. (2023) Antibacterial, Injectable, and Adhesive Hydrogel Promotes Skin Healing. Frontiers in Bioengineering and Biotechnology, 11, Article 1180073. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
王文平. 生物电场对皮肤成纤维细胞转化的调节作用及机制研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2021.
|
|
[7]
|
Chakrabarti, S., Mazumder, B., Rajkonwar, J., Pathak, M.P., Patowary, P. and Chattopadhyay, P. (2021) BFGF and Collagen Matrix Hydrogel Attenuates Burn Wound Inflammation through Activation of ERK and TRK Pathway. Scientific Reports, 11, Article No. 3357. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Arabpour, Z., Abedi, F., Salehi, M., Baharnoori, S.M., Soleimani, M. and Djalilian, A.R. (2024) Hydrogel-Based Skin Regeneration. International Journal of Molecular Sciences, 25, Article 1982. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
朱业靖. 糖尿病足壳聚糖凝胶剂的研制[J]. 糖尿病新世界, 2015(24): 19-20.
|
|
[10]
|
Zhu, J., Cheng, H., Zhang, Z., Chen, K., Zhang, Q., Zhang, C., et al. (2024) Antibacterial Hydrogels for Wound Dressing Applications: Current Status, Progress, Challenges, and Trends. Gels, 10, Article 495. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Niu, S., Liu, C., Sun, A., Zhang, Q., Yan, J., Fu, J., et al. (2025) Preparation and Characterization of Thermosensitive Phase-Transition Hydrogel Based on Decanoic Acid-Modified Chitosan and Methyl Cellulose for Wound Healing. International Journal of Biological Macromolecules, 308, Article 142725. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, X., Wan, L., Zhu, T., Li, R., Zhang, M. and Lu, H. (2023) Biomimetic Liquid Crystal-Modified Mesoporous Silica-Based Composite Hydrogel for Soft Tissue Repair. Journal of Functional Biomaterials, 14, Article 316. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Guo, W., Ding, X., Zhang, H., Liu, Z., Han, Y., Wei, Q., et al. (2024) Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels, 10, Article 175. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, S., Wei, L., Huang, J., Luo, J., Weng, Y. and Chen, J. (2025) Chitosan/Alginate-Based Hydrogel Loaded with Ve-Cadherin/FGF as Scaffolds for Wound Repair in Different Degrees of Skin Burns. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 113, e35533. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Huang, Y., Chen, Y., Cheng, G., Li, W., Zhang, H., Yu, C., et al. (2024) A Ta/Cu2+ Nanoparticle Enhanced Carboxymethyl Chitosan-Based Hydrogel Dressing with Antioxidant Properties and Promoting Wound Healing. International Journal of Nanomedicine, 19, 231-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Giretová, M., Medvecký, Ľ., Demčišáková, Z., Luptáková, L., Petrovová, E. and Štulajterová, R. (2025) Effect of Agarose/Gelatin Gel Addition on the Pro-Angiogenic Potential of Polyhydroxybutyrate/Chitosan Scaffolds. Frontiers in Cell and Developmental Biology, 12, Article 1504268. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wenjun, W., Ziman, W., Peiru, S., Pinyun, W., Peng, Q. and Lin, Y. (2022) Antibacterial Effect of Chitosan-Modified FE3O4 Nanozymes on Acinetobacter baumannii. Journal of Microbiology and Biotechnology, 32, 263-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Qian, Z., Wang, M., Li, J., Chu, Z., Tang, W. and Chen, C. (2024) Preparation and Adsorption Photocatalytic Properties of PVA/TiO2 Colloidal Photonic Crystal Films. Gels, 10, Article 520. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Gu, R., Zhou, H., Zhang, Z., Lv, Y., Pan, Y., Li, Q., et al. (2023) Research Progress Related to Thermosensitive Hydrogel Dressings in Wound Healing: A Review. Nanoscale Advances, 5, 6017-6037. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., et al. (2018) A Functional Chitosan-Based Hydrogel as a Wound Dressing and Drug Delivery System in the Treatment of Wound Healing. RSC Advances, 8, 7533-7549. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Valipour, F., Rahimabadi, E.Z. and Rostamzad, H. (2023) Preparation and Characterization of Wound Healing Hydrogel Based on Fish Skin Collagen and Chitosan Cross-Linked by Dialdehyde Starch. International Journal of Biological Macromolecules, 253, Article 126704. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, Y., Liu, K., Huang, K., Wei, W., Huang, Y. and Dai, H. (2024) Photothermal Antibacterial MoS2 Composited Chitosan Hydrogel for Infectious Wound Healing. Biomaterials Advances, 156, Article 213701. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, Y., Li, T., Zhao, C., Li, J., Huang, R., Zhang, Q., et al. (2021) An Integrated Smart Sensor Dressing for Real-Time Wound Microenvironment Monitoring and Promoting Angiogenesis and Wound Healing. Frontiers in Cell and Developmental Biology, 9, Article 701525. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
董鹏飞, 杨佑成. 羧甲基壳聚糖在医学领域中的应用进展[J]. 滨州医学院学报, 2009, 32(6): 445-447.
|
|
[25]
|
Li, R., Xu, Z., Jiang, Q., Zheng, Y., Chen, Z. and Chen, X. (2020) Characterization and Biological Evaluation of a Novel Silver Nanoparticle-Loaded Collagen-Chitosan Dressing. Regenerative Biomaterials, 7, 371-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Güiza-Argüello, V.R., Solarte-David, V.A., Pinzón-Mora, A.V., Ávila-Quiroga, J.E. and Becerra-Bayona, S.M. (2022) Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers, 14, Article 2764. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ma, H., Peng, Y., Zhang, S., Zhang, Y. and Min, P. (2022) Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels, 8, Article 609. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yin, G., Wang, J., Wang, X., Zhan, Y., Tang, X., Wu, Q., et al. (2022) Multifunctional All-in-One Adhesive Hydrogel for the Treatment of Perianal Infectious Wounds. Frontiers in Bioengineering and Biotechnology, 10, Article 989180. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kim, Y., Zharkinbekov, Z., Raziyeva, K., Tabyldiyeva, L., Berikova, K., Zhumagul, D., et al. (2023) Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics, 15, Article 807. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhu, J., Zhang, Z., Wen, Y., Song, X., Tan, W.K., Ong, C.N., et al. (2024) Recent Advances in Superabsorbent Hydrogels Derived from Agro Waste Materials for Sustainable Agriculture: A Review. Journal of Agricultural and Food Chemistry, 72, 22399-22419. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, L., Zheng, R. and Sun, R. (2025) Understanding Multicomponent Low Molecular Weight Gels from Gelators to Networks. Journal of Advanced Research, 69, 91-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, J., Liu, Y., Su, S., Wei, J., Rahman, S., Ning, F., et al. (2019) Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels. Polymers, 11, Article 1873. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Risangud, N., Lertwimol, T., Sitthisang, S., Wongvitvichot, W., Uppanan, P. and Tanodekaew, S. (2025) The Preparation of 3d-Printed Self-Healing Hydrogels Composed of Carboxymethyl Chitosan and Oxidized Dextran via Stereolithography for Biomedical Applications. International Journal of Biological Macromolecules, 292, Article 139251. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, R., Zhao, Y., Zheng, Z., Liu, Y., Song, S., Song, L., et al. (2023) Bioinks Adapted for in Situ Bioprinting Scenarios of Defect Sites: A Review. RSC Advances, 13, 7153-7167. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kozicki, M., Pawlaczyk, A., Adamska, A., Szynkowska-Jóźwik, M.I. and Sąsiadek-Andrzejczak, E. (2022) Golden and Silver-Golden Chitosan Hydrogels and Fabrics Modified with Golden Chitosan Hydrogels. International Journal of Molecular Sciences, 23, Article 5406. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bose, I., Nousheen,, Roy, S., Yaduvanshi, P., Sharma, S., Chandel, V., et al. (2023) Unveiling the Potential of Marine Biopolymers: Sources, Classification, and Diverse Food Applications. Materials, 16, Article 4840. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Stefanowska, K., Woźniak, M., Dobrucka, R. and Ratajczak, I. (2023) Chitosan with Natural Additives as a Potential Food Packaging. Materials, 16, Article 1579. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, Y., Yang, Y., Huang, Z., Luo, Z., Qian, C., Li, Y., et al. (2021) Preparation of Low Molecular Chitosan by Microwave-Induced Plasma Desorption/ionization Technology. International Journal of Biological Macromolecules, 187, 441-450. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
安占超, 周末, 金政, 赵凯. 壳聚糖基水凝胶在伤口敷料中的应用[J]. 黑龙江大学自然科学学报, 2021, 38(2): 195-202+253.
|
|
[40]
|
Bai, Q., Han, K., Dong, K., Zheng, C., Zhang, Y., Long, Q., et al. (2020) potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. International Journal of Nanomedicine, 15, 9717-9743. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Santos, V.P., Marques, N.S.S., Maia, P.C.S.V., Lima, M.A.B.D., Franco, L.D.O. and Campos-Takaki, G.M.D. (2020) Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. International Journal of Molecular Sciences, 21, Article 4290. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pérez-Pacheco, Y., Tylkowski, B. and García-Valls, R. (2025) Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application. Molecules, 30, Article 252. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Hojatjalali, M., Bahraminia, S. and Anbia, M. (2025) Superhydrophobic Magnetic Melamine Sponge Modified by Flowerlike ZnO and Stearic Acid Using Dip Coating Method for Oil and Water Separation. Scientific Reports, 15, Article No. 7378. [Google Scholar] [CrossRef] [PubMed]
|