|
[1]
|
Davis, K.M., Miura, K., Sugimoto, N. and Hirao, K. (1996) Writing Waveguides in Glass with a Femtosecond Laser. Optics Letters, 21, 1729-1731. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Denk, W., Strickler, J.H. and Webb, W.W. (1990) Two-Photon Laser Scanning Fluorescence Microscopy. Science, 248, 73-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, X., Ren, H., Chen, X., Liu, J., Li, Q., Li, C., et al. (2015) Athermally Photoreduced Graphene Oxides for Three-Dimensional Holographic Images. Nature Communications, 6, Article No. 6984. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, Y., Deng, Z., Hu, D., Yuan, J., Ou, Q., Qin, F., et al. (2020) Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-Optics. Nano Letters, 20, 7811-7818. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hu, J., Zhu, S., Lv, Y., Guo, R., Gu, M. and Zhang, Y. (2024) Ultrathin, Wavelength‐Multiplexed and Integrated Holograms and Optical Neural Networks Based on 2D Perovskite Nanofilms. Laser & Photonics Reviews, 19, Article ID: 2401458. [Google Scholar] [CrossRef]
|
|
[6]
|
Zhang, Y., Zhu, S., Hu, J. and Gu, M. (2024) Femtosecond Laser Direct Nanolithography of Perovskite Hydration for Temporally Programmable Holograms. Nature Communications, 15, Article No. 6661. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., et al. (1998) A Three-Dimensional Photonic Crystal Operating at Infrared Wavelengths. Nature, 394, 251-253. [Google Scholar] [CrossRef]
|
|
[8]
|
Noda, S., Tomoda, K., Yamamoto, N. and Chutinan, A. (2000) Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths. Science, 289, 604-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Maruo, S., Nakamura, O. and Kawata, S. (1997) Three-Dimensional Microfabrication with Two-Photon-Absorbed Photopolymerization. Optics Letters, 22, 132-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wu, S., Serbin, J. and Gu, M. (2006) Two-Photon Polymerisation for Three-Dimensional Micro-Fabrication. Journal of Photochemistry and Photobiology A: Chemistry, 181, 1-11. [Google Scholar] [CrossRef]
|
|
[11]
|
Sugioka, K., Xu, J., Wu, D., Hanada, Y., Wang, Z., Cheng, Y., et al. (2014) Femtosecond Laser 3D Micromachining: A Powerful Tool for the Fabrication of Microfluidic, Optofluidic, and Electrofluidic Devices Based on Glass. Lab on a Chip, 14, 3447-3458. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xu, B., Zhang, Y., Xia, H., Dong, W., Ding, H. and Sun, H. (2013) Fabrication and Multifunction Integration of Microfluidic Chips by Femtosecond Laser Direct Writing. Lab on a Chip, 13, 1677-1690. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
He, F., Xu, H., Cheng, Y., Ni, J., Xiong, H., Xu, Z., et al. (2010) Fabrication of Microfluidic Channels with a Circular Cross Section Using Spatiotemporally Focused Femtosecond Laser Pulses. Optics Letters, 35, 1106-1108. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Melissinaki, V., Gill, A.A., Ortega, I., Vamvakaki, M., Ranella, A., Haycock, J.W., et al. (2011) Direct Laser Writing of 3D Scaffolds for Neural Tissue Engineering Applications. Biofabrication, 3, Article ID: 045005. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Faraji Rad, Z., Prewett, P.D. and Davies, G.J. (2021) High-Resolution Two-Photon Polymerization: The Most Versatile Technique for the Fabrication of Microneedle Arrays. Microsystems & Nanoengineering, 7, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sugioka, K. and Cheng, Y. (2014) Femtosecond Laser Three-Dimensional Micro-and Nanofabrication. Applied Physics Reviews, 1, Article ID: 041303. [Google Scholar] [CrossRef]
|
|
[17]
|
Salter, P.S. and Booth, M.J. (2019) Adaptive Optics in Laser Processing. Light: Science & Applications, 8, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sartison, M., Weber, K., Thiele, S., Bremer, L., Fischbach, S., Herzog, T., et al. (2021) 3D Printed Micro-Optics for Quantum Technology: Optimised Coupling of Single Quantum Dot Emission into a Single-Mode Fibre. Light: Advanced Manufacturing, 2, 103-119. [Google Scholar] [CrossRef]
|
|
[19]
|
Cumming, B.P., Jesacher, A., Booth, M.J., Wilson, T. and Gu, M. (2011) Adaptive Aberration Compensation for Three-Dimensional Micro-Fabrication of Photonic Crystals in Lithium Niobate. Optics Express, 19, 9419-9425. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jesacher, A. and Booth, M.J. (2010) Parallel Direct Laser Writing in Three Dimensions with Spatially Dependent Aberration Correction. Optics Express, 18, 21090-21099. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhou, G.Y., et al. (2009) Axial Birefringence Induced Focus Splitting in Lithium Niobate. Optics Express, 17, 17970-17975.
|
|
[22]
|
Cumming, B.P., Debbarma, S., Luther-Davies, B. and Gu, M. (2012) Effect of Refractive Index Mismatch Aberration in Arsenic Trisulfide. Applied Physics B, 109, 227-232. [Google Scholar] [CrossRef]
|
|
[23]
|
Wong, S., Deubel, M., Pérez‐Willard, F., John, S., Ozin, G.A., Wegener, M., et al. (2006) Direct Laser Writing of Three‐ Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses. Advanced Materials, 18, 265-269. [Google Scholar] [CrossRef]
|
|
[24]
|
Nicoletti, E., Zhou, G., Jia, B., Ventura, M.J., Bulla, D., Luther-Davies, B., et al. (2008) Observation of Multiple Higher-Order Stopgaps from Three-Dimensional Chalcogenide Glass Photonic Crystals. Optics Letters, 33, 2311-2313. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Rhinow, D. (2016) Towards an Optimum Design for Thin Film Phase Plates. Ultramicroscopy, 160, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Huang, S., Wang, W., Chang, C., Hwu, Y., Tseng, F., Kai, J., et al. (2007) The Fabrication and Application of Zernike Electrostatic Phase Plate. Journal of Electron Microscopy, 55, 273-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hering, J., Waller, E.H. and Von Freymann, G. (2016) Automated Aberration Correction of Arbitrary Laser Modes in High Numerical Aperture Systems. Optics Express, 24, 28500-28508. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Engström, D., Persson, M., Bengtsson, J. and Goksör, M. (2013) Calibration of Spatial Light Modulators Suffering from Spatially Varying Phase Response. Optics Express, 21, 16086-16103. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Strauß, J., Häfner, T., Dobler, M., Heberle, J. and Schmidt, M. (2016) Evaluation and Calibration of Lcos SLM for Direct Laser Structuring with Tailored Intensity Distributions. Physics Procedia, 83, 1160-1169. [Google Scholar] [CrossRef]
|
|
[30]
|
Yao, K., Wang, J., Liu, X., Lin, X. and Chen, L. (2017) Analysis of a Holographic Laser Adaptive Optics System Using a Deformable Mirror. Applied Optics, 56, 6639-6648. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Guo, M., Wu, Y., Hobson, C.M., Su, Y., Qian, S., Krueger, E., et al. (2025) Deep Learning-Based Aberration Compensation Improves Contrast and Resolution in Fluorescence Microscopy. Nature Communications, 16, Article No. 313. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Vo, C., Zhou, B. and Yu, X. (2021) Optimization of Laser Processing Parameters through Automated Data Acquisition and Artificial Neural Networks. Journal of Laser Applications, 33, Article ID: 042025. [Google Scholar] [CrossRef]
|
|
[33]
|
Park, H.S., Nguyen, D.S., Le-Hong, T. and Van Tran, X. (2021) Machine Learning-Based Optimization of Process Parameters in Selective Laser Melting for Biomedical Applications. Journal of Intelligent Manufacturing, 33, 1843-1858. [Google Scholar] [CrossRef]
|
|
[34]
|
Leutenegger, M., Rao, R., Leitgeb, R.A. and Lasser, T. (2006) Fast Focus Field Calculations. Optics Express, 14, 11277-11291. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Török, P., Varga, P. and Németh, G. (1995) Analytical Solution of the Diffraction Integrals and Interpretation of Wave-Front Distortion When Light Is Focused through a Planar Interface between Materials of Mismatched Refractive Indices. Journal of the Optical Society of America A, 12, 2660-2671. [Google Scholar] [CrossRef]
|
|
[36]
|
Wolf E. (1959) Electromagnetic Diffraction in Optical Systems-I. An Integral Representation of the Image Field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253, 349-357. [Google Scholar] [CrossRef]
|
|
[37]
|
Richards, B. and Wolf, E. (1959) Electromagnetic Diffraction in Optical Systems, II. Structure of the Image Field in an Aplanatic System. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253, 358-379. [Google Scholar] [CrossRef]
|
|
[38]
|
Zhou, G. and Gu, M. (2006) Direct Optical Fabrication of Three-Dimensional Photonic Crystals in a High Refractive Index LiNbO3 Crystal. Optics Letters, 31, 2783-2785. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Noll, R.J. (1976) Zernike Polynomials and Atmospheric Turbulence. Journal of the Optical Society of America, 66, 207-211. [Google Scholar] [CrossRef]
|