激光加工中折射率失配像差的动态补偿研究
Dynamic Compensation of Refractive-Index-Mismatch-Induced Aberrations in Laser Processing
摘要: 激光直写技术为三维空间的高精度光子芯片制造提供了一种灵活的加工方案。但是在材料内部加工的过程中,由材料折射率过高与环境介质间折射率失配引起的深度依赖球面像差,会导致聚焦光斑轴向拉伸(长度达数微米),严重影响制造的加工精度。利用自适应光学的方法,通过将空间光调制器添加到具有折射率失配像差的共轭光路中,可以实现动态补偿波前相位。本文从理论分析入手,基于波前像差理论,利用泽尼克多项式实现对球面像差的矫正,对比说明了补偿前后两种情况下点扩散函数的强度分布,并进一步探讨了不同数值孔径(NA)条件下的补偿效果。结果表明,在高NA系统中,补偿相位的引入能够显著提高焦点处的能量集中度,并使点扩散函数的全宽半高(FWHM)显著收缩,峰值强度衰减得到改善。
Abstract: Laser direct writing technology provides a flexible fabrication solution for high-precision photonic chip manufacturing in three-dimensional space. However, during material internal processing, depth-dependent spherical aberration induced by refractive index mismatch between high-refractive-index materials and ambient media causes axial elongation of the focused spot (extending to several micrometers), severely compromising fabrication precision. By integrating a spatial light modulator into the conjugate optical path with refractive index mismatch-induced aberration, adaptive optics enables dynamic wavefront phase compensation. Starting from theoretical analysis, this work employs wavefront aberration theory to correct spherical aberration using Zernike polynomials. A comparative study of the point spread function (PSF) intensity distribution before and after compensation demonstrates that the introduction of phase compensation significantly enhances energy concentration at the focal point in high numerical aperture (NA) systems, accompanied by substantial contraction of the full width at half maximum (FWHM) and improved peak intensity attenuation.
文章引用:吕颖, 张轶楠. 激光加工中折射率失配像差的动态补偿研究[J]. 物理化学进展, 2025, 14(2): 353-362. https://doi.org/10.12677/japc.2025.142033

1. 引言

激光直写(DLW)技术作为微纳制造领域的革命性手段,通过飞秒激光与材料的非线性相互作用实现了三维微结构的精准调控,成为高精度功能器件制备的核心技术。1997年Davis等人[1]首次利用飞秒激光在透明介质中实现三维改性,揭示了其基于多光子非线性吸收的本质。随着对飞秒激光与材料相互作用机制的深入理解,人们逐渐明确了双光子吸收在其中的关键作用[2]。进入2010年,DLW技术在多材料兼容性方面取得了显著进展。研究人员[3]-[6]开始探索使用多种不同特性的材料进行加工,拓展了DLW技术的应用范围。通过飞秒激光的超快脉冲特性与材料的阈值响应协同作用,双光子聚合可在亚衍射极限尺度(<100 nm)内完成体素(voxel)的定点激发,利用激光与物质相互作用的双光子非线性吸收效应和阈值效应突破经典光学理论的衍射极限,实现纳米尺度的激光加工分辨力。这一特性使得DLW技术能够摆脱传统光刻的平面化束缚[7] [8],在三维空间中自由构筑光子晶体[9] [10]、微流控芯片[11]-[13]及仿生支架[14] [15]等复杂结构,满足集成电路[16]、量子光学[17] [18]和生物医学领域对纳米精度三维器件的迫切需求。

使用DLW在三维空间内进行加工,飞秒激光的焦点聚焦在材料内部,若是材料的折射率与周围介质(如空气或其他透明介质)的折射率差距过大,就会出现因折射率失配导致的像差[19]-[22]。光束在传播过程中会发生畸变,引起焦点处能量分布不均,影响加工结构的均匀性,甚至在某些情况下导致激光能量不能有效作用于目标区域,降低加工效率,导致加工分辨率降低。高精度微纳加工需要严格控制焦点形态,若不对像差进行补偿加工精度难以保证,甚至可能导致结构失真或工艺失效[23] [24]。为了确保焦点在加工区域内保持最优状态,需要采取有效的补偿策略来消除折射率失配引起的像差。

针对这一问题,研究者提出了多种补偿策略:1) 通过设计固定相位板(如Zernike相位片)或优化浸渍介质折射率(折射率匹配液)抵消特定深度下的像差[25] [26];2) 利用空间光调制器(SLM) [27]-[29]、变形镜(DM) [30]实时加载共轭波前相位,结合反馈系统实现像差闭环控制;3) 基于反向传播算法或深度学习预测像差分布[31]-[33],通过迭代优化激光参数(如脉冲能量、扫描速度)间接补偿像差影响。第一种方式属于静态相位预补偿,在难以适应动态聚焦过程中像差的深度依赖性方面存在不足。另外两种方法的选择更为广泛,可以根据实际情况选择。

本文从点扩散函数的推导过程入手,详细解释了像差函数的由来和影响,并利用泽尼克像差公式计算出相位补偿图,以及对比补偿前后的点扩散函数的分布情况,将计算得到的相位补偿图加载到通过空间光调制器引入飞秒激光加工系统,便可以实现对像差的动态补偿。

2. 模型建立

Figure 1. Light focusing through two-layer media

1. 光通过两层介质聚焦

由于DLW中使用的物镜具有高数值孔径(NA),可以通过在折射率不匹配的界面上进行Debye积分,获得焦区电场的完整矢量解,即点扩散函数(PSF) [22] [34]。点扩散函数是指一个理想的几何物点经过光学系统后像点的能量展开分布。在光学显微成像系统中,由于衍射极限的存在,一个理想点经过成像系统会形成一个弥散光斑,即艾里斑,它是评价光学系统成像质量的基本工具,用来分析各种成像系统。Török等人[35]得到了强度点扩散函数(PSF)的表达式,这被认为是Richards & Wolf [36] [37]计算方法的扩展,他们使用驻相原理将聚焦的球面波为平面波,具体公式为:

I r,z = | 0 α ( cos θ 1 ) 1 2 sin θ 1 exp[ i k 0 ψ( θ 1 , θ 2 ,d ) ]×( τ s + τ p cos θ 2 ) J 0 ( k 0 r p n 1 sin θ 1 )exp( ik z p n 2 cos θ 2 )d θ 1 | 2 (1)

其中 τ s τ p 是菲涅尔系数

τ s = 2sin θ 2 cos θ 1 sin( θ 1 + θ 2 ) (2)

τ p = 2sin θ 2 cos θ 1 sin( θ 1 + θ 2 )cos( θ 1 θ 2 ) (3)

J 0 ( ) 表示的是零阶贝塞尔函数, n 1 sin φ 1 代表数值孔径, k 0 = 2π/λ ,λ代表波长, r p / z p 分别为横向和纵向的坐标,坐标原点为高斯焦点,即不存在折射率失配(只有单一介质)时入射高斯光束通过透镜在其后聚焦焦点。

像差产生的原因是沿着光轴方向的光线和由于折射率不同发生折射的光线之间产生的光程差,记为

ψ= n 2 L 2 n 1 L 1 (4)

图1所示,可以得到 L 2 =d/ cos θ 2 L 1 = L 2 cos( θ 2 θ 1 ) ,代入上式

ψ= d 0 ( n 2 cos θ 2 n 1 cos θ 1 ) (5)

d 0 是界面以下的聚焦深度。ψ起到一个球面像差源的作用,因为其依赖于 θ 1 ,这会导致衍射图案出现失真。而对于给定的d值,两种介质之间的折射率相差越大,球面像差影响则越明显。另外,如果以表面为起点,定义实际的加工过程中想要聚焦的深度为d,那么对应于实际聚焦的深度 d 0 =d n 2 / n 1

Figure 2. (a) and (d) Normalized intensity distribution of focal points; (b) and (e) Axial intensity distribution of point spread function (PSF) at different focusing depths; (c) and (f) Radial intensity distribution of point spread function (PSF) at different focusing depths

2. (a)和(d)焦点归一化强度分布;(b)和(e)不同聚焦深度点扩展函数强度轴向分布;(c)和(f)不同聚焦深度点扩展函数强度径向分布

针对不同参数对IPSF进行模拟,首先选择的参数是:介质的折射率为1.48,飞秒激光的波长为789 nm,物镜的数值孔径NA = 0.75。图2(a)图2(d)展示了不同深度下的聚焦深度下的焦点归一化强度,从图中可以明显看出光斑的形状出现明显变异,这是因为折射率失配将非常大的像差和散焦都施加到会聚波前上,从而严重扭曲焦点的同时,还出现彗星状的拖尾(主焦下方形成了许多轴向旁瓣),随着深度的变化,拖尾的长度越来越长,这会导致光斑的强度下降。在实际实验过程中,激光功率过高,会导致旁瓣的强度高于阈值,低阶旁瓣可能会在实验中产生不良影响。如果能够适当选择激光功率,使IPSF的主峰略高于阈值,而所有旁瓣都低于阈值,那么旁瓣就可以被消除[38]。从图2(b)图2(e)中可以明显看出,当d = 0时,轴向和径向的点扩散函数强度均最大,当d = 20 μm时,轴向和径向的强度都有明显的下降,而且沿着光轴的方向出现极端的展宽(在d = 100 μm时更为明显),半峰全宽(Full Width at Half Maxima,简称FWHM)随着深度的增加也明显增加。在其它参数不变的情况下,只修改折射率的大小,从图2(c)图2(f)中可以看出,在折射率更高的介质中,点扩散函数的强度出现更为明显的降低,FWHM也变得更宽。在这种情况下,成像的清晰度和细节分辨能力都会下降,如果要在材料的内部进行飞秒激光加工,就必须要考虑折射率失配带来的影响。

Figure 3. Intensity comparison of point spread function (PSF) under different numerical apertures

3. 不同数值孔径下的点扩散函数强度对比

不同数值孔径的大小也会造成不同程度的轴向展宽。如图3所示,随着NA增大,PSF峰值强度下降,可能是由于高角度光线透射损耗增加以及能量分布更加集中所致。此外,菲涅尔透射系数依赖于入射角度( θ 1 ),当NA增大, θ 1 变大,导致部分透射系数下降,特别是在全反射角附近,更多光被反射回去,导致透射到n2介质的光能减少,还可以看到,NA越大,它的旁瓣越多,同时也带走了一部分能量。

3. 像差矫正方法

根据像差公式,消除像差的影响主要有两种方式:

一是缩小折射率之间的差异,例如使用折射率较高的油镜(n1 = 1.518),如图4(a~b)所示。使用油镜可有效减少加工过程中光束在空气与材料界面处的折射率失配,使FWHM缩小,尽管峰值强度尚未完全恢复至理论最优水平,但相较于未补偿情况下,光斑畸变得到了显著改善。然而在实际应用中,使用油镜进行折射率匹配补偿时,需考虑对加工环境及材料特性的潜在影响,即在材料表面滴油加工之后,清洗过程中溶液是否会与材料发生反应,导致表面污染、结构损伤或材料特性变化,同时也要确保折射率匹配液(如浸渍油)的光学性能稳定,避免随时间推移或环境因素变化导致聚焦条件的不确定性。

二是通过光学补偿策略校正波前像差,即在光束进入物镜之前,对其波前相位进行预补偿。具体而言,可以改变进入物镜的波前相位,将相位施加到光束上,该相位与折射率失配所施加的像差大小相等且相反,那么整个波前上的总像差总和为零。这种补偿可以通过液晶空间光调制器(SLM, Spatial Light Modulator)在光束路径中加入折射率失配像差的共轭对光束进行预像差来实现。

在使用第二种方法补偿的时候,可以采用去焦解耦和动态像差补偿结合的方法提高 = DLW过程中成像的质量。我们的目的是通过引入与ψ中包含的每个泽尼克像差量相等且相反的预像差来校正这种像差,故引入泽尼克多项式来表示[39]

ψ= d 0 { A 00 + n=2 A n0 Z n 0 ( ρ ) } n 1 sinα (6)

其中

A n0 = B n ( α ) B n ( β ) (7)

B n ( γ )=[ 1( n1 n+3 )tan ( γ 2 )   4 ] tan n1 ( γ/2 ) 2( n1 ) n+1 (8)

n = 0时,对点扩散函数没有影响,只是描述了平移的常数,其他系数则描述了可能存在较高阶泽尼克像差的量。其中散焦项(n = 2)通过在物镜和样品之间引入额外的光学元件(如透镜或者空间光调制器)调整激光焦点的深度来补偿,若使用泽尼克多项式矫正折射率失配的像差,同时考虑散焦项需要额外的相位范围、动态调整能力和更高的空间分辨率来准确再现相位分布,这将增加相位调制的复杂度,影响SLM生成光场的质量。表1中列出了 Z n 0 ( ρ ) 的函数形式以及它们所描述的像差。散焦可以通过去焦解耦校正,因此自适应元件只需校正对应于n ≥ 4的像差。但是为了方便量化,文中关于点扩散函数强度的表征加入了n = 2项,所以可以看到补偿之后的位置回到了相应的深度处。像差校正的作用是通过减去特定量的像差来修改相位像差函数,使得“校正后”的相位像差函数 ψ 表示为

ψ =ψ[ A 00 + n=2 2N+2 A n0 Z n 0 ( ρ ) ] d 0 n 1 sinα (9)

Table 1. Zernike polynomials of class zero

1. 零类泽尼克多项式

n

Z n 0 ( ρ )

Description

0

1

Piston

2

3 ( 2 ρ 2 1 )

Defocus

4

5 ( 6 ρ 4 6 ρ 2 +1 )

First order spherical aberration

6

7 ( 20 ρ 6 30 ρ 4 +12 ρ 2 1 )

Second order spherical aberration

8

9 ( 70 ρ 8 140 ρ 6 +90 ρ 4 20 ρ 2 +1 )

Third order spherical aberration

一旦确定了每个标称焦深,就使用自适应的方法优化该深度处的像差补偿量,并利用泽尼克多项式计算得到的相位补偿进行校正。用上述公式补偿相位之后,从图4(c~d)中可以明显看出,在不同的聚焦深度下,经过像差补偿后光束的峰值功率强度得到了显著恢复,相较于未矫正和使用油镜的情况,光能量更集中,成像质量得到了有效提升。此外,点扩散函数的FWHM也得到了明显改善,未补偿时光斑出现显著的轴向展宽,而经过补偿后,光斑形态更接近理想艾里斑(Airy disk)。由于使用泽尼克像差公式进行补偿之后,聚焦深度的位置和点扩散函数的强度都恢复到最佳状态,在改变NA和折射率补偿之后,图像的形状与图4(c~d)中一致。

Figure 4. Corrected axial and radial intensities of point spread function (PSF)

4. 矫正后的点扩散函数轴向和径向的强度

高折射率下会产生大量的散焦,SLM即使在适度的焦深下也难以复制这些散焦,散焦的强度可以通过使用具有更大像素数的SLM来解决,但是这要以SLM的刷新率作为代价。高NA意味着更大的入射角,随着NA增大,波前像差的空间频率分量提高,SLM需要更高的分辨率和更复杂的相位图来补偿波前畸变。特别是在高NA条件下,高阶像差变得更显著,使得SLM需要更高的动态范围和更精细的相位调控能力。像差函数中去除散焦分量,SLM不用再为散焦补偿额外分配相位资源,去除散焦分量将显示在SLM上的相位显著减小,并且只要球面像差可以得到完全的矫正,从像差函数中去除散焦量对焦点质量没有影响。从图5中可以明显看出,在相同深度下去除散焦项可以减少SLM对像素数的依赖,而NA越大,SLM的复杂程度也会提升。所以在实际的加工中,可以根据制造需求权衡NA、SLM像素数的处理,以达到最佳的性能。

4. 总结

本研究围绕飞秒激光加工过程中折射率失配引起的像差问题展开讨论,并提出了相应的补偿策略。通过构建基于波前像差函数的理论模型,分析了加工深度、折射率、物镜数值孔径与像差之间的关系。随着加工深度的增加、物镜数值孔径的增大以及介质折射率的提升,系统像差都呈现出正相关的增长趋势,影响聚焦光斑的质量和加工精度。采用泽尼克多项式展开像差函数,计算出预补偿相位图,并利用空间光调制器加载补偿相位,可以实现对球面像差的动态校正。仿真结果表明,该方法可以有效恢复焦斑的形态和强度,为三维空间结构的精确制造提供了有效的解决方法。

Figure 5. Pre-compensation phase pattern loaded on spatial light modulator (SLM) at d = 100 μm. (a) NA = 0.75 without defocusing term; (b) NA = 0.75 with defocusing term; (c) NA = 0.85 without defocusing term; (d) NA = 0.85 with defocusing term

5. d = 100 μm时空间光调制器加载的预补偿相位图。(a) NA = 0.75,不加上散焦项;(b) NA = 0.75,加散焦项;(c) NA = 0.85,不加上散焦项;(d) NA = 0.85,加散焦项

NOTES

*通讯作者。

参考文献

[1] Davis, K.M., Miura, K., Sugimoto, N. and Hirao, K. (1996) Writing Waveguides in Glass with a Femtosecond Laser. Optics Letters, 21, 1729-1731.
https://doi.org/10.1364/ol.21.001729
[2] Denk, W., Strickler, J.H. and Webb, W.W. (1990) Two-Photon Laser Scanning Fluorescence Microscopy. Science, 248, 73-76.
https://doi.org/10.1126/science.2321027
[3] Li, X., Ren, H., Chen, X., Liu, J., Li, Q., Li, C., et al. (2015) Athermally Photoreduced Graphene Oxides for Three-Dimensional Holographic Images. Nature Communications, 6, Article No. 6984.
https://doi.org/10.1038/ncomms7984
[4] Wang, Y., Deng, Z., Hu, D., Yuan, J., Ou, Q., Qin, F., et al. (2020) Atomically Thin Noble Metal Dichalcogenides for Phase-Regulated Meta-Optics. Nano Letters, 20, 7811-7818.
https://doi.org/10.1021/acs.nanolett.0c01805
[5] Hu, J., Zhu, S., Lv, Y., Guo, R., Gu, M. and Zhang, Y. (2024) Ultrathin, Wavelength‐Multiplexed and Integrated Holograms and Optical Neural Networks Based on 2D Perovskite Nanofilms. Laser & Photonics Reviews, 19, Article ID: 2401458.
https://doi.org/10.1002/lpor.202401458
[6] Zhang, Y., Zhu, S., Hu, J. and Gu, M. (2024) Femtosecond Laser Direct Nanolithography of Perovskite Hydration for Temporally Programmable Holograms. Nature Communications, 15, Article No. 6661.
https://doi.org/10.1038/s41467-024-51148-5
[7] Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., et al. (1998) A Three-Dimensional Photonic Crystal Operating at Infrared Wavelengths. Nature, 394, 251-253.
https://doi.org/10.1038/28343
[8] Noda, S., Tomoda, K., Yamamoto, N. and Chutinan, A. (2000) Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths. Science, 289, 604-606.
https://doi.org/10.1126/science.289.5479.604
[9] Maruo, S., Nakamura, O. and Kawata, S. (1997) Three-Dimensional Microfabrication with Two-Photon-Absorbed Photopolymerization. Optics Letters, 22, 132-134.
https://doi.org/10.1364/ol.22.000132
[10] Wu, S., Serbin, J. and Gu, M. (2006) Two-Photon Polymerisation for Three-Dimensional Micro-Fabrication. Journal of Photochemistry and Photobiology A: Chemistry, 181, 1-11.
https://doi.org/10.1016/j.jphotochem.2006.03.004
[11] Sugioka, K., Xu, J., Wu, D., Hanada, Y., Wang, Z., Cheng, Y., et al. (2014) Femtosecond Laser 3D Micromachining: A Powerful Tool for the Fabrication of Microfluidic, Optofluidic, and Electrofluidic Devices Based on Glass. Lab on a Chip, 14, 3447-3458.
https://doi.org/10.1039/c4lc00548a
[12] Xu, B., Zhang, Y., Xia, H., Dong, W., Ding, H. and Sun, H. (2013) Fabrication and Multifunction Integration of Microfluidic Chips by Femtosecond Laser Direct Writing. Lab on a Chip, 13, 1677-1690.
https://doi.org/10.1039/c3lc50160d
[13] He, F., Xu, H., Cheng, Y., Ni, J., Xiong, H., Xu, Z., et al. (2010) Fabrication of Microfluidic Channels with a Circular Cross Section Using Spatiotemporally Focused Femtosecond Laser Pulses. Optics Letters, 35, 1106-1108.
https://doi.org/10.1364/ol.35.001106
[14] Melissinaki, V., Gill, A.A., Ortega, I., Vamvakaki, M., Ranella, A., Haycock, J.W., et al. (2011) Direct Laser Writing of 3D Scaffolds for Neural Tissue Engineering Applications. Biofabrication, 3, Article ID: 045005.
https://doi.org/10.1088/1758-5082/3/4/045005
[15] Faraji Rad, Z., Prewett, P.D. and Davies, G.J. (2021) High-Resolution Two-Photon Polymerization: The Most Versatile Technique for the Fabrication of Microneedle Arrays. Microsystems & Nanoengineering, 7, Article No. 71.
https://doi.org/10.1038/s41378-021-00298-3
[16] Sugioka, K. and Cheng, Y. (2014) Femtosecond Laser Three-Dimensional Micro-and Nanofabrication. Applied Physics Reviews, 1, Article ID: 041303.
https://doi.org/10.1063/1.4904320
[17] Salter, P.S. and Booth, M.J. (2019) Adaptive Optics in Laser Processing. Light: Science & Applications, 8, Article No. 110.
https://doi.org/10.1038/s41377-019-0215-1
[18] Sartison, M., Weber, K., Thiele, S., Bremer, L., Fischbach, S., Herzog, T., et al. (2021) 3D Printed Micro-Optics for Quantum Technology: Optimised Coupling of Single Quantum Dot Emission into a Single-Mode Fibre. Light: Advanced Manufacturing, 2, 103-119.
https://doi.org/10.37188/lam.2021.006
[19] Cumming, B.P., Jesacher, A., Booth, M.J., Wilson, T. and Gu, M. (2011) Adaptive Aberration Compensation for Three-Dimensional Micro-Fabrication of Photonic Crystals in Lithium Niobate. Optics Express, 19, 9419-9425.
https://doi.org/10.1364/oe.19.009419
[20] Jesacher, A. and Booth, M.J. (2010) Parallel Direct Laser Writing in Three Dimensions with Spatially Dependent Aberration Correction. Optics Express, 18, 21090-21099.
https://doi.org/10.1364/oe.18.021090
[21] Zhou, G.Y., et al. (2009) Axial Birefringence Induced Focus Splitting in Lithium Niobate. Optics Express, 17, 17970-17975.
[22] Cumming, B.P., Debbarma, S., Luther-Davies, B. and Gu, M. (2012) Effect of Refractive Index Mismatch Aberration in Arsenic Trisulfide. Applied Physics B, 109, 227-232.
https://doi.org/10.1007/s00340-012-5180-9
[23] Wong, S., Deubel, M., Pérez‐Willard, F., John, S., Ozin, G.A., Wegener, M., et al. (2006) Direct Laser Writing of Three‐ Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses. Advanced Materials, 18, 265-269.
https://doi.org/10.1002/adma.200501973
[24] Nicoletti, E., Zhou, G., Jia, B., Ventura, M.J., Bulla, D., Luther-Davies, B., et al. (2008) Observation of Multiple Higher-Order Stopgaps from Three-Dimensional Chalcogenide Glass Photonic Crystals. Optics Letters, 33, 2311-2313.
https://doi.org/10.1364/ol.33.002311
[25] Rhinow, D. (2016) Towards an Optimum Design for Thin Film Phase Plates. Ultramicroscopy, 160, 1-6.
https://doi.org/10.1016/j.ultramic.2015.09.003
[26] Huang, S., Wang, W., Chang, C., Hwu, Y., Tseng, F., Kai, J., et al. (2007) The Fabrication and Application of Zernike Electrostatic Phase Plate. Journal of Electron Microscopy, 55, 273-280.
https://doi.org/10.1093/jmicro/dfl037
[27] Hering, J., Waller, E.H. and Von Freymann, G. (2016) Automated Aberration Correction of Arbitrary Laser Modes in High Numerical Aperture Systems. Optics Express, 24, 28500-28508.
https://doi.org/10.1364/oe.24.028500
[28] Engström, D., Persson, M., Bengtsson, J. and Goksör, M. (2013) Calibration of Spatial Light Modulators Suffering from Spatially Varying Phase Response. Optics Express, 21, 16086-16103.
https://doi.org/10.1364/oe.21.016086
[29] Strauß, J., Häfner, T., Dobler, M., Heberle, J. and Schmidt, M. (2016) Evaluation and Calibration of Lcos SLM for Direct Laser Structuring with Tailored Intensity Distributions. Physics Procedia, 83, 1160-1169.
https://doi.org/10.1016/j.phpro.2016.08.122
[30] Yao, K., Wang, J., Liu, X., Lin, X. and Chen, L. (2017) Analysis of a Holographic Laser Adaptive Optics System Using a Deformable Mirror. Applied Optics, 56, 6639-6648.
https://doi.org/10.1364/ao.56.006639
[31] Guo, M., Wu, Y., Hobson, C.M., Su, Y., Qian, S., Krueger, E., et al. (2025) Deep Learning-Based Aberration Compensation Improves Contrast and Resolution in Fluorescence Microscopy. Nature Communications, 16, Article No. 313.
https://doi.org/10.1038/s41467-024-55267-x
[32] Vo, C., Zhou, B. and Yu, X. (2021) Optimization of Laser Processing Parameters through Automated Data Acquisition and Artificial Neural Networks. Journal of Laser Applications, 33, Article ID: 042025.
https://doi.org/10.2351/7.0000455
[33] Park, H.S., Nguyen, D.S., Le-Hong, T. and Van Tran, X. (2021) Machine Learning-Based Optimization of Process Parameters in Selective Laser Melting for Biomedical Applications. Journal of Intelligent Manufacturing, 33, 1843-1858.
https://doi.org/10.1007/s10845-021-01773-4
[34] Leutenegger, M., Rao, R., Leitgeb, R.A. and Lasser, T. (2006) Fast Focus Field Calculations. Optics Express, 14, 11277-11291.
https://doi.org/10.1364/oe.14.011277
[35] Török, P., Varga, P. and Németh, G. (1995) Analytical Solution of the Diffraction Integrals and Interpretation of Wave-Front Distortion When Light Is Focused through a Planar Interface between Materials of Mismatched Refractive Indices. Journal of the Optical Society of America A, 12, 2660-2671.
https://doi.org/10.1364/josaa.12.002660
[36] Wolf E. (1959) Electromagnetic Diffraction in Optical Systems-I. An Integral Representation of the Image Field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253, 349-357.
https://doi.org/rspa.1959.0199
[37] Richards, B. and Wolf, E. (1959) Electromagnetic Diffraction in Optical Systems, II. Structure of the Image Field in an Aplanatic System. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 253, 358-379.
https://doi.org/10.1098/rspa.1959.0200
[38] Zhou, G. and Gu, M. (2006) Direct Optical Fabrication of Three-Dimensional Photonic Crystals in a High Refractive Index LiNbO3 Crystal. Optics Letters, 31, 2783-2785.
https://doi.org/10.1364/ol.31.002783
[39] Noll, R.J. (1976) Zernike Polynomials and Atmospheric Turbulence. Journal of the Optical Society of America, 66, 207-211.
https://doi.org/10.1364/josa.66.000207