[1]
|
Saal, A.E., Hauri, E.H., Cascio, M.L., Van Orman, J.A., Rutherford, M.C. and Cooper, R.F. (2008) Volatile Content of Lunar Volcanic Glasses and the Presence of Water in the Moon’s Interior. Nature, 454, 192-195. https://doi.org/10.1038/nature07047
|
[2]
|
Xu, Y., Tian, H., Zhang, C., Chaussidon, M., Lin, Y., Hao, J., et al. (2022) High Abundance of Solar Wind-Derived Water in Lunar Soils from the Middle Latitude. Proceedings of the National Academy of Sciences, 119, e2214395119. https://doi.org/10.1073/pnas.2214395119
|
[3]
|
Pieters, C.M., Goswami, J.N., Clark, R.N., Annadurai, M., Boardman, J., Buratti, B., et al. (2009) Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1. Science, 326, 568-572. https://doi.org/10.1126/science.1178658
|
[4]
|
Lin, H., Li, S., Xu, R., Liu, Y., Wu, X., Yang, W., et al. (2022) In Situ Detection of Water on the Moon by the Chang’e-5 Lander. Science Advances, 8, eabl9174. https://doi.org/10.1126/sciadv.abl9174
|
[5]
|
Williams, J.‐., Greenhagen, B.T., Paige, D.A., Schorghofer, N., Sefton‐Nash, E., Hayne, P.O., et al. (2019) Seasonal Polar Temperatures on the Moon. Journal of Geophysical Research: Planets, 124, 2505-2521. https://doi.org/10.1029/2019je006028
|
[6]
|
Carruba, V. and Coradini, A. (1999) Lunar Cold Traps: Effects of Double Shielding. Icarus, 142, 402-413. https://doi.org/10.1006/icar.1999.6192
|
[7]
|
Pollock, T.M. (2016) Alloy Design for Aircraft Engines. Nature Materials, 15, 809-815. https://doi.org/10.1038/nmat4709
|
[8]
|
Smith, M., Craig, D., Herrmann, N., Mahoney, E., Krezel, J., McIntyre, N., et al. (2020). The Artemis Program: An Overview of Nasa’s Activities to Return Humans to the Moon. 2020 IEEE Aerospace Conference, Big Sky, 7-14 March 2020, 1-10. https://doi.org/10.1109/aero47225.2020.9172323
|
[9]
|
李雄耀, 魏广飞, 曾小家, 等. 极区月壤和水冰形成演化机制及物理特性研究[J]. 深空探测学报(中英文), 2022, 9(2): 123-133.
|
[10]
|
Vendiola, V., Zacny, K., Morrison, P., Wang, A., Yaggi, B., Hattori, A., et al. (2018). Testing of the Planetary Volatiles Extractor (PVEx). In: 16th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, American Society of Civil Engineers, 467-480. https://doi.org/10.1061/9780784481899.045
|
[11]
|
王超, 张晓静, 姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文), 2020, 7(3): 241-247.
|
[12]
|
Lucey, P.G., Petro, N., Hurley, D.M., Farrell, W.M., Prem, P., Costello, E.S., et al. (2022) Volatile Interactions with the Lunar Surface. Geochemistry, 82, Article ID: 125858. https://doi.org/10.1016/j.chemer.2021.125858
|
[13]
|
Liu, Z., He, H., Li, J., Hao, J., Tang, J., Zhang, Z., et al. (2023) Measurement and Uncertainty Analysis of Lunar Soil Water Content via Heating Flux Method. Aerospace, 10, Article No. 657. https://doi.org/10.3390/aerospace10070657
|
[14]
|
Biswas, J., Sheridan, S., Pitcher, C., Richter, L., Reganaz, M., Barber, S.J., et al. (2020) Searching for Potential Ice-Rich Mining Sites on the Moon with the Lunar Volatiles Scout. Planetary and Space Science, 181, Article ID: 104826. https://doi.org/10.1016/j.pss.2019.104826
|
[15]
|
Dyar, M.D., Hibbitts, C.A. and Orlando, T.M. (2010) Mechanisms for Incorporation of Hydrogen in and on Terrestrial Planetary Surfaces. Icarus, 208, 425-437. https://doi.org/10.1016/j.icarus.2010.02.014
|
[16]
|
Hibbitts, C.A., Grieves, G.A., Poston, M.J., Dyar, M.D., Alexandrov, A.B., Johnson, M.A., et al. (2011) Thermal Stability of Water and Hydroxyl on the Surface of the Moon from Temperature-Programmed Desorption Measurements of Lunar Analog Materials. Icarus, 213, 64-72. https://doi.org/10.1016/j.icarus.2011.02.015
|
[17]
|
任抒琪, 刘翠秀, 齐悦童, 等. 亚稳β型Ti-Nb-(Zr)合金的力学性能与微观结构研究[J]. 电子显微学报, 2023, 42(3): 291-298.
|
[18]
|
王秀群, 韩卫忠, 单智伟. β钛合金表面渗氧强化机理研究[J]. 电子显微学报, 2022, 41(5): 515-519.
|
[19]
|
Schütze, M. (2016) Single-Crystal Performance Boost. Nature Materials, 15, 823-824. https://doi.org/10.1038/nmat4712
|
[20]
|
Liu, S., Ding, H., Zhang, H., Chen, R., Guo, J. and Fu, H. (2018) High-Density Deformation Nanotwin Induced Significant Improvement in the Plasticity of Polycrystalline γ-Tial-Based Intermetallic Alloys. Nanoscale, 10, 11365-11374. https://doi.org/10.1039/c8nr01659c
|
[21]
|
Veiga, C., Davim, J.P. and Loureiro, A.J.R. (2012) Properties and Applications of Titanium Alloys: A Brief Review. Reviews on Advanced Materials Science, 32, 133-148.
|
[22]
|
刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020, 40(3): 77-94.
|
[23]
|
Fergus, J.W. (2002) Review of the Effect of Alloy Composition on the Growth Rates of Scales Formed during Oxidation of Gamma Titanium Aluminide Alloys. Materials Science and Engineering: A, 338, 108-125. https://doi.org/10.1016/s0921-5093(02)00064-3
|
[24]
|
Chen, Z., Cai, Z., Jiang, X., Chen, S., Huang, Z. and Sun, H. (2020) Microstructure Evolution of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y Alloy during Long-Term Thermal Exposure. Materials, 13, Article No. 1638. https://doi.org/10.3390/ma13071638
|
[25]
|
Cai, Z., Guo, Q., Jiang, M., Jiang, X., Chen, S. and Sun, H. (2021) Influence of Water Vapour on the Oxidation Behaviour of Tial Based Multielement Alloys. Intermetallics, 135, Article ID: 107229. https://doi.org/10.1016/j.intermet.2021.107229
|
[26]
|
Öztürk, B., Mengis, L., Dickes, D., Glatzel, U. and Galetz, M.C. (2021) Influence of Water Vapor and Temperature on the Oxide Scale Growth and Alpha-Case Formation in Ti-6Al-4V Alloy. Oxidation of Metals, 97, 241-260. https://doi.org/10.1007/s11085-021-10088-x
|
[27]
|
Taniguchi, S., Hongawara, N. and Shibata, T. (2001) Influence of Water Vapour on the Isothermal Oxidation Behaviour of Tial at High Temperatures. Materials Science and Engineering: A, 307, 107-112. https://doi.org/10.1016/s0921-5093(00)01967-5
|
[28]
|
Zeller, A., Dettenwanger, F. and Schütze, M. (2002) Influence of Water Vapour on the Oxidation Behaviour of Titanium Aluminides. Intermetallics, 10, 59-72. https://doi.org/10.1016/s0966-9795(01)00104-2
|
[29]
|
Wang, S., Liao, Z., Liu, Y. and Liu, W. (2015) Influence of Thermal Oxidation Duration on the Microstructure and Fretting Wear Behavior of Ti6Al4V Alloy. Materials Chemistry and Physics, 159, 139-151. https://doi.org/10.1016/j.matchemphys.2015.03.063
|
[30]
|
Wang, S., Liao, Z., Liu, Y. and Liu, W. (2014) Influence of Thermal Oxidation Temperature on the Microstructural and Tribological Behavior of Ti6Al4V Alloy. Surface and Coatings Technology, 240, 470-477. https://doi.org/10.1016/j.surfcoat.2014.01.004
|
[31]
|
Sun, Z., He, G., Meng, Q., Li, Y. and Tian, X. (2020) Corrosion Mechanism Investigation of TiN/Ti Coating and TC4 Alloy for Aircraft Compressor Application. Chinese Journal of Aeronautics, 33, 1824-1835. https://doi.org/10.1016/j.cja.2019.08.015
|
[32]
|
Ask, M., Lausmaa, J. and Kasemo, B. (1989) Preparation and Surface Spectroscopic Characterization of Oxide Films on Ti6Al4V. Applied Surface Science, 35, 283-301. https://doi.org/10.1016/0169-4332(89)90013-5
|
[33]
|
Pham, M.T., Zyganow, I., Matz, W., Reuther, H., Oswald, S., Richter, E., et al. (1997) Corrosion Behavior and Microstructure of Titanium Implanted with α and β Stabilizing Elements. Thin Solid Films, 310, 251-259. https://doi.org/10.1016/s0040-6090(97)00330-1
|
[34]
|
Ashrafizadeh, A. and Ashrafizadeh, F. (2009) Structural Features and Corrosion Analysis of Thermally Oxidized Titanium. Journal of Alloys and Compounds, 480, 849-852. https://doi.org/10.1016/j.jallcom.2009.02.079
|
[35]
|
Xu, W., Lui, E.W., Pateras, A., Qian, M. and Brandt, M. (2017) In Situ Tailoring Microstructure in Additively Manufactured Ti-6Al-4V for Superior Mechanical Performance. Acta Materialia, 125, 390-400. https://doi.org/10.1016/j.actamat.2016.12.027
|
[36]
|
Matsumoto, H., Yoneda, H., Sato, K., Kurosu, S., Maire, E., Fabregue, D., et al. (2011) Room-Temperature Ductility of Ti-6Al-4V Alloy with α’ Martensite Microstructure. Materials Science and Engineering: A, 528, 1512-1520. https://doi.org/10.1016/j.msea.2010.10.070
|
[37]
|
Cui, K., Xu, F., Tian, B., Liu, M., Yao, Y., Li, H., et al. (2024) Optimal Lubricating Protection and Interfacial Behavior for Titanium Alloy Surface from Phosphorus-Based Ionic Liquids. Tribology International, 199, Article ID: 109933. https://doi.org/10.1016/j.triboint.2024.109933
|
[38]
|
Xu, Y., Zhu, C., Fu, K., Liu, K., Sun, K. and Yao, L. (2024) Controllable Tribological Behavior of PNIPAM-Graphene Oxide Nanocomposites at Titanium Alloy Interface. Wear, 556, Article ID: 205521. https://doi.org/10.1016/j.wear.2024.205521
|
[39]
|
Kovács, K., Perczel, I.V., Josepovits, V.K., Kiss, G., Réti, F. and Deák, P. (2002) In Situ Surface Analytical Investigation of the Thermal Oxidation of Ti-Al Intermetallics up to 1000 ˚C. Applied Surface Science, 200, 185-195. https://doi.org/10.1016/s0169-4332(02)00875-9
|
[40]
|
Mousavi, S.J., Hosseini, S.M., Abolhassani, M.R., et al. (2008) Calculation of the Structural, Electrical, and Optical Properties of κ-Al2O3 by Density Functional Theory. Chinese Journal of Physics, 46, 170-180.
|
[41]
|
Wu, G.D., Cui, G.R., Qu, S.J., Feng, A.H., Cao, G.J., Ge, B.H., et al. (2019) High-Temperature Oxidation Mechanisms of Nano-/Submicro-Scale Lamellar Structures in an Intermetallic Alloy. Scripta Materialia, 171, 102-107. https://doi.org/10.1016/j.scriptamat.2019.06.028
|
[42]
|
Greczynski, G. and Hultman, L. (2020) X-Ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Progress in Materials Science, 107, Article ID: 100591. https://doi.org/10.1016/j.pmatsci.2019.100591
|
[43]
|
Xiao, G., Zhang, Y., Zhu, B., Gao, H., Huang, Y. and Zhou, K. (2023) Wear Behavior of Alumina Abrasive Belt and Its Effect on Surface Integrity of Titanium Alloy during Conventional and Creep-Feed Grinding. Wear, 514, Article ID: 204581. https://doi.org/10.1016/j.wear.2022.204581
|
[44]
|
Güzelçimen, F., Tanören, B., Çetinkaya, Ç., Kaya, M.D., Efkere, H.İ., Özen, Y., et al. (2020) The Effect of Thickness on Surface Structure of Rf Sputtered TiO2 Thin Films by XPS, SEM/EDS, AFM and Sam. Vacuum, 182, Article ID: 109766. https://doi.org/10.1016/j.vacuum.2020.109766
|
[45]
|
Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R. and Smart, R.S.C. (2011) Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257, 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051
|
[46]
|
Braic, M., Balaceanu, M., Vladescu, A., Kiss, A., Braic, V., Epurescu, G., et al. (2007) Preparation and Characterization of Titanium Oxy-Nitride Thin Films. Applied Surface Science, 253, 8210-8214. https://doi.org/10.1016/j.apsusc.2007.02.179
|
[47]
|
Huerta-Murillo, D., García-Girón, A., Romano, J.M., Cardoso, J.T., Cordovilla, F., Walker, M., et al. (2019) Wettability Modification of Laser-Fabricated Hierarchical Surface Structures in Ti-6Al-4V Titanium Alloy. Applied Surface Science, 463, 838-846. https://doi.org/10.1016/j.apsusc.2018.09.012
|
[48]
|
Bertóti, I., Mohai, M., Sullivan, J.L. and Saied, S.O. (1995) Surface Characterisation of Plasma-Nitrided Titanium: An XPS Study. Applied Surface Science, 84, 357-371. https://doi.org/10.1016/0169-4332(94)00545-1
|
[49]
|
Vasylyev, M.A., Chenakin, S.P. and Yatsenko, L.F. (2016) Ultrasonic Impact Treatment Induced Oxidation of Ti6Al4V Alloy. Acta Materialia, 103, 761-774. https://doi.org/10.1016/j.actamat.2015.10.041
|
[50]
|
Guillot, J., Jouaiti, A., Imhoff, L., Domenichini, B., Heintz, O., Zerkout, S., et al. (2002) Nitrogen Plasma Pressure Influence on the Composition of TiNxOy Sputtered Films. Surface and Interface Analysis, 33, 577-582. https://doi.org/10.1002/sia.1423
|
[51]
|
Mehrer, H. (2007) Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer Science & Business Media.
|
[52]
|
Shaaban, A., Hayashi, S. and Takeyama, M. (2019) Effects of Water Vapor and Nitrogen on Oxidation of TNM Alloy at 650 ˚C. Corrosion Science, 158, Article ID: 108080. https://doi.org/10.1016/j.corsci.2019.07.006
|
[53]
|
Zhou, C., Tang, H., Li, X., Zeng, X., Mo, B., Yu, W., et al. (2022) Chang’e-5 Samples Reveal High Water Content in Lunar Minerals. Nature Communications, 13, Article No. 5336. https://doi.org/10.1038/s41467-022-33095-1
|
[54]
|
Wilk, K.A., Mustard, J.F., Milliken, R.E. and Pieters, C.M. (2024) Variations in Surface Adsorbed H2O on Lunar Soils and Relevant Minerals. Icarus, 411, Article ID: 115945. https://doi.org/10.1016/j.icarus.2024.115945
|
[55]
|
Lu, G., Bernasek, S.L. and Schwartz, J. (2000) Oxidation of a Polycrystalline Titanium Surface by Oxygen and Water. Surface Science, 458, 80-90. https://doi.org/10.1016/s0039-6028(00)00420-9
|