细胞质空泡化在细胞死亡与存活中的作用
The Role of Cytoplasmic Vacuolization in Cell Death and Survival
DOI: 10.12677/hjbm.2025.153062, PDF, HTML, XML,   
作者: 周 菲, 李 丹:浙江工业大学长三角绿色制药协同创新中心,浙江 杭州
关键词: 细胞质空泡化细胞死亡Cytoplasmic Vacuolization Cell Death
摘要: 已有广泛的研究报道,多种化学物质、生物活性分子以及病原体侵袭都会引起细胞质空泡化现象。空泡化通常伴随细胞死亡,但其在细胞死亡过程中的具体作用尚不明确。这主要是因为长期以来对空泡化的研究多集中于形态学层面。然而,近年来关于空泡形成及其结构的分子机制的新数据不断涌现。因此,本综述旨在总结细胞空泡化的起源、机制及其潜在后果,深入探讨细胞质空泡化在细胞死亡和存活中的作用。
Abstract: Extensive research has reported that various chemical substances, bioactive molecules, and pathogen invasions can all cause cytoplasmic vacuolization. Vacuolization is often associated with cell death, but its specific role in the cell death process remains unclear. This is mainly due to the fact that studies on vacuolization have long been concentrated on the morphological level. However, in recent years, new data on the molecular mechanisms of vacuole formation and structure have been continuously emerging. Therefore, this review aims to summarize the origin, mechanism, and potential consequences of cellular vacuolization, and to deeply explore the role of cytoplasmic vacuolization in cell death and survival.
文章引用:周菲, 李丹. 细胞质空泡化在细胞死亡与存活中的作用[J]. 生物医学, 2025, 15(3): 539-544. https://doi.org/10.12677/hjbm.2025.153062

1. 引言

在植物、真菌以及原生生物领域,空泡作为细胞内关键的亚结构单元,通常占据细胞总体积的显著比例,其执行多种物理与代谢功能对维持细胞基本生命活动至关重要[1] [2]。相比之下,动物细胞中常规性空泡结构相对罕见,但在特定生理或病理条件下,动物细胞也可表现出显著的形态学变化——即细胞质空泡化现象(cytoplasmic vacuolization)。该现象在体内微环境或体外培养体系中均可观察到,既可能自发产生,也可能在暴露于细菌毒素、病毒感染或接触天然产物/人工合成小分子化合物(如某些化疗药物)后诱发[2] [3]。空泡的形成常常反映了细胞对外界环境变化的一种关乎生存的适应性反应[2],这种空泡化过程通常伴随细胞体积变化,其形态特征与功能之间的关系需结合具体生物学背景进行综合分析。

2. 细胞质空泡化的诱导机制

2.1. 可逆性空泡化

哺乳动物细胞中的细胞质空泡化可分为可逆性或不可逆性两种类型。可逆性空泡的产生往往是由于某些诱导剂,并常常影响细胞周期和增殖[4]。可逆性细胞质空泡化诱导剂最常见的为含有弱碱性胺基的亲脂性化合物。由于细胞外液和细胞内液pH值在7.35~7.45以及6.8~7.4之间,所以这些亲脂性碱基以非离子化形式存在,不带电荷,能够通过被动扩散或主动运输穿过质膜进入细胞,进入细胞后也可以自由地穿入细胞器膜[5] [6]。然而,当弱碱性亲脂化合物进入偏酸性的内体-溶酶体细胞器或高尔基囊泡时,会转变为带正电荷的离子化形式,从而无法通过细胞器膜返回细胞质。这些带电离子化合物不断地积累最终导致细胞器内渗透压升高,水分子进入以平衡渗透压,最终引发空泡的形成。因此,可逆性空泡化的机制主要与细胞器内离子平衡紊乱相关的渗透效应有关,而非直接作用于调控细胞功能的蛋白质[3] [7]

2.2. 不可逆性空泡化

与可逆性空泡化不同,不可逆空泡化标志着细胞死亡相关的病理状态,如果细胞毒性刺激持续存在,最终会导致细胞死亡。除了酸性细胞器外,不可逆空泡化也会影响非酸性内质网以及高尔基体等。这说明了空泡的形成机制因细胞区域的不同而存在显著差异。到目前为止,已经证明多种具有不同化学结构的天然和合成化合物(包括药物和工业污染物)具有诱导不可逆细胞质空泡化的能力[8] [9]。此外,在感染多种细菌和病毒病原体的细胞中也观察到不可逆空泡化现象,这些病原体可引发严重的人类和动物疾病。在这种情况下,细菌蛋白毒素和病毒包膜或衣壳蛋白也可以作为空泡化诱导剂[10]。值得注意的是,具有空泡化活性的蛋白质通常是病原体细胞毒性作用的主要因素[11] [12]。例如幽门螺旋杆菌的VacA毒素进入细胞后,当定位于晚期内体和溶酶体膜时,增加细胞器内H+浓度,使氨基酸弱碱积累,渗透压升高,水分进入导致空泡化[13] [14]

不可逆空泡化导致的细胞死亡无法归类为目前已知的任何类型[15] [16]。相比之下,部分不可逆空泡化诱导剂会导致已知类型的非凋亡性细胞死亡,包括巨泡式死亡(methuosis)、副凋亡(paraptosis)及其类似形式、细胞胀亡(oncosis)以及坏死性凋亡(necroptosis) [17]-[19]。重要的是,这些细胞死亡类型通常出现在肿瘤细胞中,包括对凋亡具有抗性的细胞,这使得对它们的研究对于开发新的肿瘤治疗策略具有重要意义[20] [21]

3. 不可逆细胞质空泡相关死亡

3.1. 巨泡式死亡

巨泡式死亡是一种非半胱天冬酶依赖性细胞死亡,伴随着由于巨胞饮失调引起的巨胞饮体[18]。巨胞饮作用异常导致大胞饮体无法与其他内吞途径的细胞器融合,也不能循环回到质膜,而是在细胞质中积累、相互融合并形成空泡。这些空泡的膜不显示自噬体(LC3)、早期内体(Rab5和EEA1)或循环回到质膜的内体(Rab11)的标记物阳性。但对晚期内体和溶酶体的标记呈阳性。然而,与这些细胞器又不同的是,空泡中不含水解酶,也非酸性[18] [22]。简而言之,巨泡式死亡中的空泡可视为非功能性晚期内体。在胃癌和胶质母细胞瘤细胞中,持续激活Ras信号通路可诱导巨泡式死亡[20]。其空泡形成的核心机制是Rac1激活与Arf6反向调节:活化的H-RASG12激活小GTP酶Rac1,使Rac1处于GTP结合态,增强巨胞饮作用,形成大量巨胞饮体[23]。同时,活化的Rac1结合Arf6的GTP酶激GIT1,促进Arf6的GTP水解,减少活性Arf6,破坏网格蛋白非依赖性内体回收通路,导致巨胞饮体无法循环至细胞膜或与溶酶体融合,在细胞质内异常积累并融合成巨大空泡[23]

巨泡式死亡为耐药癌细胞提供了新的治疗思路,尤其针对凋亡抵抗的肿瘤(如胶质母细胞瘤),通过调控Rac1-Arf6-GIT1轴,可以利用靶向药物(Rac1激动剂或Arf6抑制剂)促使癌症细胞巨泡式死亡。

3.2. 副凋亡

副凋亡是一种伴随着内质网(ER)成空泡化和线粒体肿胀的非凋亡性细胞死亡类型。副凋亡最初是在小鼠原代成纤维细胞和几种人类癌细胞中过表达胰岛素样生长因子1受体(IGF1R)后观察到的[21]。副凋亡过程需要转录和翻译系统正常运作[24],其介质包括半胱天冬酶-9、多功能蛋白抑制素,以及MAPK/ERK和JNK/SAPK通路的激酶[25]。副凋亡中空泡形成的核心机制主要涉及两个方面。一方面是内质网相关蛋白降解(ERAD)功能障碍,如Hsp90抑制剂与蛋白酶体抑制剂联合使用,会使错误折叠蛋白ER内积累,激活未折叠蛋白反应,长期应激导致ERAD系统过载,削弱ERAD功能,同时ER内蛋白浓度升高引发渗透压失衡,水分内流致使ER膨胀形成空泡;病毒蛋白在ER内聚集也会阻塞ER-Golgi中间区,抑制蛋白分泌,引发类似结果[26]-[28]。另一方面是大电导钙激活钾通道(BKCa)异常,如活性氧(ROS)激活ER和线粒体膜上的BKCa通道,使K+外流,触发Na+/H2O内流以维持离子平衡,Na+和水分进入ER和线粒体,导致细胞器肿胀和空泡化,同时线粒体功能紊乱引发ATP耗竭[29] [30]。靶向ERAD或BKCa通道可干预副凋亡相关疾病,姜黄素通过诱导副凋亡类似细胞死亡杀伤肿瘤细胞[31]

3.3. 坏死性凋亡和胀亡

坏死性凋亡和胀亡是类似于坏死的细胞死亡类型,其特征为线粒体肿胀以及内质网和高尔基体成分的空泡化。已经确定,坏死性凋亡是在半胱天冬酶和凋亡抑制蛋白(IAP)缺乏时死亡受体激活后发生的一种程序性坏死。受体相互作用蛋白(RIP)激酶1和3以及伪激酶MLKL是坏死性凋亡的主要调节因子[32] [33]。坏死性凋亡过程中细胞内的信号通路激活导致的细胞内环境改变,可能影响细胞器的正常功能,进而引发空泡化,但具体的分子机制尚未明确。在过去,胀亡被认为是在缺血、机械性组织损伤和中毒中发生的一种被动的意外的细胞死亡[34]。然而,最近的数据表明,肿胀坏死可以通过以下机制被启动:细胞表面PORIMIN受体的激活、解偶联蛋白2表达的适度增加,以及染色质修饰蛋白的过表达。胀亡过程依赖于穿孔素-1和半胱天冬酶-1,而转录因子NF-κB保护细胞免于胀亡[35]。这些数据使我们能够将胀亡视为受调节的细胞死亡。胀亡中空泡的产生始于线粒体通透性转换孔(mPTP)早期开放,这使线粒体跨膜电位崩溃,ATP合成停止,质膜和细胞器膜上依赖ATP的离子泵无法正常工作,影响细胞膜离子运输,改变细胞质和细胞器的离子平衡被破坏诱导水分进入细胞和细胞器,使其肿胀,最终形成空泡[19]。空泡化在坏死性凋亡中的作用尚不清晰。由于坏死性凋亡涉及复杂的信号转导过程,空泡化可能是细胞死亡过程中的一个伴随现象,也可能在细胞死亡进程中起到一定的推动作用,比如影响细胞内物质的运输和代谢,或者参与细胞内容物的释放等,但这些都还需要更多的研究来证实。鉴于这2种细胞死亡类型主要出现在恶性细胞中,因此对肿胀坏死和坏死性凋亡过程的机制进行积极研究非常重要[36]

4. 总结

空泡作为细胞内一种特殊的结构,其起源和功能与细胞的生理、病理状态密切相关。空泡的起源涉及多种细胞内结构。许多情况下,空泡可由内质网(ER)产生。当内质网出现功能障碍时,如蛋白质折叠异常、内质网相关蛋白降解(ERAD)系统受损或离子平衡失调,都可能导致内质网扩张并形成空泡。在副凋亡过程中,抑制Hsp90和蛋白酶体的联合作用,会使错误折叠蛋白在ER内积累,引发ER应激,最终导致ERAD功能障碍,水分进入ER形成空泡。某些病毒感染,如乙肝病毒(HBV),其大表面抗原在ER内聚集,阻碍蛋白分泌,引起ERGIC功能障碍,进而导致ER空泡化[37]。其次,内体-溶酶体系统也是空泡的重要起源之一。在巨泡式死亡中,由于巨胞饮作用失调,巨胞饮体无法与其他细胞器正常融合或循环至细胞膜,而是在细胞质中积累并相互融合,形成具有晚期内体和溶酶体标记的空泡,但这些空泡不含水解酶且内容物非酸性,可被视为非功能性晚期内体。一些细菌毒素,如幽门螺杆菌的VacA病毒可诱导内体–溶酶体来源的空泡形成。这些毒素通过与细胞表面受体结合,进入细胞后作用于内体–溶酶体系统,改变其离子平衡和膜的通透性,导致空泡化。

空泡的生物学作用具有复杂性,而其功能在不同细胞环境下表现出多样性,对细胞的生存和死亡有着复杂的影响。在多数情况下,空泡化并非细胞死亡的直接原因,而是细胞死亡过程中的一个伴随现象。例如,在受到某些细菌毒素或病毒感染时,细胞死亡可在没有空泡化的情况下发生,且空泡化的程度与细胞死亡的程度并不总是直接相关。然而,在某些特定情况下,空泡化可能参与促进细胞死亡。在肿瘤细胞中,诱导的巨泡式死亡伴随的空泡化可导致细胞结构和功能的严重破坏,最终致使细胞死亡,这为肿瘤治疗提供了潜在的靶点。同时空泡化在一定程度上可作为细胞的一种适应性反应,有助于细胞在应激条件下维持内环境稳定。例如副凋亡中当细胞面临内质网应激时,空泡化可增加内质网的容量,降低错误折叠蛋白的浓度,减轻内质网的负担,为细胞修复和恢复正常功能争取时间。并且在细胞受到病原体感染或其他有害物质侵袭时,空泡化可以将有害物质,如细菌毒素、病毒颗粒等,隔离在特定的区域,减少毒素对细胞其他部位的损害,在一定程度上保护了细胞。但同时在副凋亡中,长期ERAD障碍导致关键蛋白合成中断,细胞无法维持稳态,ER空泡化通过钙信号异常影响线粒体功能,加剧凋亡或坏死。

5. 展望

尽管目前已知细胞质空泡化常伴随细胞死亡,但二者的关系仍不明确。未来需进一步探究在不同细胞类型和生理病理条件下,空泡化是细胞死亡的原因、结果还是伴随现象。确定在哪些情况下空泡积累会导致细胞死亡,以及细胞死亡过程中,空泡化的具体作用机制,这将有助于深入理解细胞死亡的调控机制。

鉴于空泡化与多种疾病(如肿瘤、感染性疾病)的关联,深入研究空泡化机制可能为疾病治疗提供新的靶点。针对肿瘤细胞中与空泡化相关的信号通路(如Ras-Rac1-Arf6通路)在巨泡式死亡中的作用,开发能够精准调控空泡化过程的药物,从而实现对肿瘤细胞的靶向杀伤。对于病原体感染导致的空泡化,可研发抑制病原体毒素诱导空泡化的药物,以减轻细胞损伤和疾病进展。

参考文献

[1] Klionsky, D.J., Herman, P.K. and Emr, S.D. (1990) The Fungal Vacuole: Composition, Function, and Biogenesis. Microbiological Reviews, 54, 266-292.
https://doi.org/10.1128/mr.54.3.266-292.1990
[2] Henics, T. and Wheatley, D.N. (1999) Cytoplasmic Vacuolation, Adaptation and Cell Death: A View on New Perspectives and Features. Biology of the Cell, 91, 485-498.
https://doi.org/10.1016/s0248-4900(00)88205-2
[3] Aki, T., Nara, A. and Uemura, K. (2012) Cytoplasmic Vacuolization during Exposure to Drugs and Other Substances. Cell Biology and Toxicology, 28, 125-131.
https://doi.org/10.1007/s10565-012-9212-3
[4] Cohen, K.L., Van Horn, D.L., Edelhauser, H.F., et al. (1979) Effect of Phenylephrine on Normal and Regenerated Endothelial Cells in Cat Cornea. Investigative Ophthalmology & Visual Science, 18, 242-249.
[5] Ohkuma, S. and Poole, B. (1981) Cytoplasmic Vacuolation of Mouse Peritoneal Macrophages and the Uptake into Lysosomes of Weakly Basic Substances. The Journal of cell biology, 90, 656-664.
https://doi.org/10.1083/jcb.90.3.656
[6] Morissette, G., Moreau, E., Gaudreault, R.C. and Marceau, F. (2004) Massive Cell Vacuolization Induced by Organic Amines Such as Procainamide. The Journal of Pharmacology and Experimental Therapeutics, 310, 395-406.
https://doi.org/10.1124/jpet.104.066084
[7] Hu, W., Xu, R., Zhang, G., Jin, J., Szulc, Z.M., Bielawski, J., et al. (2005) Golgi Fragmentation Is Associated with Ceramide-Induced Cellular Effects. Molecular Biology of the Cell, 16, 1555-1567.
https://doi.org/10.1091/mbc.e04-07-0594
[8] Rogers-Cotrone, T., Burgess, M.P., Hancock, S.H., Hinckley, J., Lowe, K., Ehrich, M.F., et al. (2010) Vacuolation of Sensory Ganglion Neuron Cytoplasm in Rats with Long-Term Exposure to Organophosphates. Toxicologic Pathology, 38, 554-559.
https://doi.org/10.1177/0192623310369343
[9] Suárez, Y., González, L., Cuadrado, A., et al. (2003) Kahalalide F, a New Marine-Derived Compound, Induces Oncosis in Human Prostate and Breast Cancer Cells. Molecular Cancer Therapeutics, 2, 863-872.
[10] Morinaga, N., Yahiro, K., Matsuura, G., Watanabe, M., Nomura, F., Moss, J., et al. (2007) Two Distinct Cytotoxic Activities of Subtilase Cytotoxin Produced by Shiga-Toxigenic Escherichia coli. Infection and Immunity, 75, 488-496.
https://doi.org/10.1128/iai.01336-06
[11] Paton, A.W., Beddoe, T., Thorpe, C.M., Whisstock, J.C., Wilce, M.C.J., Rossjohn, J., et al. (2006) AB5 Subtilase Cytotoxin Inactivates the Endoplasmic Reticulum Chaperone Bip. Nature, 443, 548-552.
https://doi.org/10.1038/nature05124
[12] Nagahama, M., Itohayashi, Y., Hara, H., Higashihara, M., Fukatani, Y., Takagishi, T., et al. (2011) Cellular Vacuolation Induced by Clostridium perfringens Epsilon-Toxin. The FEBS Journal, 278, 3395-3407.
https://doi.org/10.1111/j.1742-4658.2011.08263.x
[13] Genisset, C., Puhar, A., Calore, F., de Bernard, M., Dell’Antone, P. and Montecucco, C. (2007) The Concerted Action of the Helicobacter pylori Cytotoxin VacA and of the V-ATPase Proton Pump Induces Swelling of Isolated Endosomes. Cellular Microbiology, 9, 1481-1490.
https://doi.org/10.1111/j.1462-5822.2006.00886.x
[14] Carraro-Lacroix, L.R., Lessa, L.M.A., Fernandez, R. and Malnic, G. (2009) Physiological Implications of the Regulation of Vacuolar H+-ATPase by Chloride Ions. Brazilian Journal of Medical and Biological Research, 42, 155-163.
https://doi.org/10.1590/s0100-879x2009000200002
[15] Bouzas-Rodríguez, J., Zárraga-Granados, G., del Rayo Sánchez-Carbente, M., Rodríguez-Valentín, R., Gracida, X., Anell-Rendón, D., et al. (2015) Correction: The Nuclear Receptor NR4A1 Induces a Form of Cell Death Dependent on Autophagy in Mammalian Cells. PLOS ONE, 10, e0118718.
https://doi.org/10.1371/journal.pone.0118718
[16] Li, X., Sui, C., Chen, Q., Chen, X., Zhang, H. and Zhou, X. (2013) Promotion of Autophagy at the Maturation Step by IL-6 Is Associated with the Sustained Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Activity. Molecular and Cellular Biochemistry, 380, 219-227.
https://doi.org/10.1007/s11010-013-1676-9
[17] Shubin, A.V., Demidyuk, I.V., Lunina, N.A., Komissarov, A.A., Roschina, M.P., Leonova, O.G., et al. (2015) Protease 3C of Hepatitis a Virus Induces Vacuolization of Lysosomal/Endosomal Organelles and Caspase-Independent Cell Death. BMC Cell Biology, 16, Article No. 4.
https://doi.org/10.1186/s12860-015-0050-z
[18] Overmeyer, J.H., Kaul, A., Johnson, E.E. and Maltese, W.A. (2008) Active Ras Triggers Death in Glioblastoma Cells through Hyperstimulation of Macropinocytosis. Molecular Cancer Research, 6, 965-977.
https://doi.org/10.1158/1541-7786.mcr-07-2036
[19] Weerasinghe, P. and Buja, L.M. (2012) Oncosis: An Important Non-Apoptotic Mode of Cell Death. Experimental and Molecular Pathology, 93, 302-308.
https://doi.org/10.1016/j.yexmp.2012.09.018
[20] Chi, S., Kitanaka, C., Noguchi, K., Mochizuki, T., Nagashima, Y., Shirouzu, M., et al. (1999) Oncogenic Ras Triggers Cell Suicide through the Activation of a Caspase-Independent Cell Death Program in Human Cancer Cells. Oncogene, 18, 2281-2290.
https://doi.org/10.1038/sj.onc.1202538
[21] Sperandio, S., de Belle, I. and Bredesen, D.E. (2000) An Alternative, Nonapoptotic Form of Programmed Cell Death. Proceedings of the National Academy of Sciences of the United States of America, 97, 14376-14381.
https://doi.org/10.1073/pnas.97.26.14376
[22] Overmeyer, J.H., Young, A.M., Bhanot, H. and Maltese, W.A. (2011) A Chalcone-Related Small Molecule That Induces Methuosis, a Novel Form of Non-Apoptotic Cell Death, in Glioblastoma Cells. Molecular Cancer, 10, Article No. 69.
https://doi.org/10.1186/1476-4598-10-69
[23] Bhanot, H., Young, A.M., Overmeyer, J.H. and Maltese, W.A. (2010) Induction of Nonapoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6. Molecular Cancer Research, 8, 1358-1374.
https://doi.org/10.1158/1541-7786.mcr-10-0090
[24] Sperandio, S., Poksay, K., de Belle, I., Lafuente, M.J., Liu, B., Nasir, J., et al. (2004) Paraptosis: Mediation by MAP Kinases and Inhibition by AIP-1/Alix. Cell Death & Differentiation, 11, 1066-1075.
https://doi.org/10.1038/sj.cdd.4401465
[25] Sperandio, S., Poksay, K.S., Schilling, B., Crippen, D., Gibson, B.W. and Bredesen, D.E. (2010) Identification of New Modulators and Protein Alterations in Non‐Apoptotic Programmed Cell Death. Journal of Cellular Biochemistry, 111, 1401-1412.
https://doi.org/10.1002/jcb.22870
[26] Mimnaugh, E.G., Xu, W., Vos, M., Yuan, X. and Neckers, L. (2006) Endoplasmic Reticulum Vacuolization and Valosin-Containing Protein Relocalization Result from Simultaneous Hsp90 Inhibition by Geldanamycin and Proteasome Inhibition by Velcade. Molecular Cancer Research, 4, 667-681.
https://doi.org/10.1158/1541-7786.mcr-06-0019
[27] Mimnaugh, E.G., Xu, W., Vos, M., Yuan, X., Isaacs, J.S., Bisht, K.S., et al. (2004) Simultaneous Inhibition of Hsp 90 and the Proteasome Promotes Protein Ubiquitination, Causes Endoplasmic Reticulum-Derived Cytosolic Vacuolization, and Enhances Antitumor Activity. Molecular Cancer Therapeutics, 3, 551-566.
https://doi.org/10.1158/1535-7163.551.3.5
[28] Ding, W., Ni, H. and Yin, X. (2007) Absence of Bax Switched MG132-Induced Apoptosis to Non-Apoptotic Cell Death That Could Be Suppressed by Transcriptional or Translational Inhibition. Apoptosis, 12, 2233-2244.
https://doi.org/10.1007/s10495-007-0142-0
[29] Hoa, N., Myers, M.P., Douglass, T.G., Zhang, J.G., Delgado, C., Driggers, L., et al. (2009) Molecular Mechanisms of Paraptosis Induction: Implications for a Non-Genetically Modified Tumor Vaccine. PLOS ONE, 4, e4631.
https://doi.org/10.1371/journal.pone.0004631
[30] Hoa, N.T., Zhang, J.G., Delgado, C.L., Myers, M.P., Callahan, L.L., Vandeusen, G., et al. (2007) Human Monocytes Kill M-CSF-Expressing Glioma Cells by BK Channel Activation. Laboratory Investigation, 87, 115-129.
https://doi.org/10.1038/labinvest.3700506
[31] Morin, D., Barthélémy, S., Zini, R., Labidalle, S. and Tillement, J. (2001) Curcumin Induces the Mitochondrial Permeability Transition Pore Mediated by Membrane Protein Thiol Oxidation. FEBS Letters, 495, 131-136.
https://doi.org/10.1016/s0014-5793(01)02376-6
[32] Galluzzi, L., Vitale, I., Abrams, J.M., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., et al. (2011) Molecular Definitions of Cell Death Subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation, 19, 107-120.
https://doi.org/10.1038/cdd.2011.96
[33] Han, W., Xie, J., Li, L., Liu, Z. and Hu, X. (2009) Necrostatin-1 Reverts Shikonin-Induced Necroptosis to Apoptosis. Apoptosis, 14, 674-686.
https://doi.org/10.1007/s10495-009-0334-x
[34] Majno, G. and Joris, I. (1995) Apoptosis, Oncosis, and Necrosis. An Overview of Cell Death. The American Journal of Pathology, 146, 3-15.
[35] Weerasinghe, P., Hallock, S., Brown, R.E., Loose, D.S. and Buja, L.M. (2013) A Model for Cardiomyocyte Cell Death: Insights into Mechanisms of Oncosis. Experimental and Molecular Pathology, 94, 289-300.
https://doi.org/10.1016/j.yexmp.2012.04.022
[36] Kornienko, A., Mathieu, V., Rastogi, S.K., Lefranc, F. and Kiss, R. (2013) Therapeutic Agents Triggering Nonapoptotic Cancer Cell Death. Journal of Medicinal Chemistry, 56, 4823-4839.
https://doi.org/10.1021/jm400136m
[37] Foo, N., Ahn, B.Y., Ma, X., Hyun, W. and Benedict Yen, T.S. (2002) Cellular Vacuolization and Apoptosis Induced by Hepatitis B Virus Large Surface Protein. Hepatology, 36, 1400-1407.
https://doi.org/10.1002/hep.1840360616