抗菌肽治疗糖尿病足溃疡的研究进展
Research Progress of Antimicrobial Peptides in the Treatment of Diabetic Foot Ulcers
DOI: 10.12677/hjbm.2025.153064, PDF, HTML, XML,   
作者: 巨翡叶, 覃佐东:湖南工业大学生命科学与化学学院,湖南 株洲;湖南科技学院化学与生物工程学院,湖南 永州;聂立波*:湖南工业大学生命科学与化学学院,湖南 株洲;罗小芳:湖南科技学院化学与生物工程学院,湖南 永州
关键词: 抗菌肽糖尿病足溃疡组织修复递送系统Antimicrobial Peptides Diabetic Foot Ulcers Tissue Repair Delivery Systems
摘要: 糖尿病足溃疡(DFU)是糖尿病严重的并发症,其慢性感染与组织修复障碍导致高截肢率及治疗成本攀升,给公共卫生体系带来了巨大临床挑战。抗菌肽(AMPs)因其多重抗菌机制及低耐药性风险使其成为治疗的新兴策略。现有研究表明,单一AMPs、联合疗法及相关递送系统均展现出显著疗效,尽管潜力显著,其具体分子机制、临床转化及长期安全性仍需深入探索。未来研究需聚焦于探索AMPs的分子作用机制、开发智能递送系统及大规模临床试验,以突破临床转化瓶颈。本文通过综述近年来国内外关于AMPs及相关治疗策略在促DFU修复中的最新研究进展,为AMPs作为治疗DFU感染的一种潜在的新策略提供理论指导,为改善糖尿病患者的生活质量带来新的治疗策略。
Abstract: Diabetic foot ulcer (DFU), a severe complication of diabetes mellitus, presents a significant clinical challenge to public health systems due to their propensity for chronic infection, impaired tissue repair, high amputation rates, and escalating treatment costs. Antimicrobial peptides (AMPs) have emerged as a promising therapeutic strategy, offering multiple antimicrobial mechanisms and a low risk of resistance. Current research indicates that single AMPs, combination therapies, and relevant delivery systems have shown considerable efficacy. However, despite their potential, the specific molecular mechanisms, clinical translation, and long-term safety of AMPs require further in-depth exploration. Future research should prioritize elucidating the molecular mechanisms of AMPs, developing intelligent delivery systems, and conducting large-scale clinical trials to overcome the barriers to clinical translation. This article reviews recent advancements in AMPs and related therapeutic strategies for promoting DFU repair, both domestically and internationally, aiming to provide theoretical guidance for AMPs as a potential novel treatment for DFU infections and to introduce new therapeutic strategies for enhancing the quality of life for diabetic patients.
文章引用:巨翡叶, 聂立波, 覃佐东, 罗小芳. 抗菌肽治疗糖尿病足溃疡的研究进展[J]. 生物医学, 2025, 15(3): 555-563. https://doi.org/10.12677/hjbm.2025.153064

1. 引言

糖尿病是21世纪最大的全球流行病,其主要是因为体内胰腺无法产生足够的胰岛素或者身体无法有效合理利用自身产生的胰岛素而导致的一种慢性的医学病症[1]。国际糖尿病联盟发布的《2021全球糖尿病地图(第10版)》显示,中国拥有全球最多的成年糖尿病患者(1.4亿)。糖尿病足溃疡(Diabetic foot ulcer, DFU)作为糖尿病最严重的并发症之一,其危害深远且临床数据触目惊心。全球每30秒即有一例糖尿病患者因DFU截肢,DFU患者1年内新溃疡发生率高达31.6%,且截肢后5年死亡率超过50% [2]

DFU发生的主要机制为高血糖与炎症反应、神经病变、血管病变和免疫功能障碍[3]。目前的临床治疗方法包括清创、药物治疗、创面敷料、高压氧治疗、负压创面治疗等[4]。药物治疗策略近年来在DFU治疗中越来越受关注,包括抗生素治疗、生长因子治疗等,如重组人血小板源性生长因子、重组人表皮生长因子,可刺激成纤维细胞生长因子释放,促进肉芽组织生成和上皮细胞的增殖、迁移,加速伤口愈合[5]。值得注意的是,DFU伤口中高血糖会抑制中性粒细胞趋化和吞噬功能,加之局部缺血,为微生物的生长提供了理想的环境,从而引发多重耐药菌(如MRSA、铜绿假单胞菌)的感染。抗菌肽(Antimicrobial peptides, AMPs)由于其广谱抗菌活性及靶向破坏细菌生物膜的机制,可高效抑制DFU伤口中多重耐药菌的定植与扩散,同时因非特异性杀菌作用降低耐药性风险,为传统抗生素治疗失效的顽固性感染提供了革新性干预策略。

本综述旨在系统阐述抗菌肽的功能特性,及其在治疗DFU上的作用机制、给药方式及临床转化进展,为开发新型疗法提供理论依据。

2. AMPs的生物学特性与功能

AMPs是一类由30~50个氨基酸组成的阳离子小分子多肽,源自动植物及微生物免疫防御系统。AMPs的结构特征表现为双亲构型,分为亲水区和疏水区,亲水区富含精氨酸、赖氨酸等带正电的氨基酸,赋予分子净正电荷;疏水区由脂肪族氨基酸构成,增强与微生物脂膜的亲和力。这种化学特性使其通过静电作用特异性结合带负电的病原体膜,从而避免攻击宿主细胞[6]。其抗菌机制依赖于两亲性结构的协同作用:阳离子端锚定于微生物膜表面后,疏水端插入脂双层,通过形成跨膜孔道或诱导膜崩解,破坏膜完整性并导致胞内物质外泄,最终杀灭病原体[7]。这种结构–功能特性使其兼具广谱抗菌活性与低耐药性诱导潜力。

根据AMPs来源可分为天然AMPs和合成多肽,天然AMPs来自各种生命领域,包括微生物,如细菌素、真菌素;植物,如植物防御素,脂转移蛋白(LTPs)等;动物,最常见的防御素(Defensins) [8],存在于人类和其他哺乳动物的免疫细胞中,天蚕素(Cecropins) [9],最初从蚕蛹中分离出来,具有强效的抗革兰氏阴性菌活性,LL-37,是人类皮肤和黏膜上皮细胞中的一种AMP,具有多种免疫调节功能[10]。LL-37是人类皮肤产生的AMPs中表征最充分的肽,其在促进伤口愈合中同样受到广泛关注。LL-37由于N端前含有的两个赖氨酸残基(L),且由37个氨基酸组成,故得名LL-37 [11]。早在2008年,Carretero等人证明了在II型糖尿病小鼠的切除伤口中,LL-37显着改善了再上皮化和肉芽组织形成[12]。最新研究表明LL-37通过激活转录因子EB依赖性自噬加速糖尿病小鼠的伤口愈合[13],为LL-37促进DFU愈合的机制提供了新的见解。合成AMPs通常是基于天然抗菌肽的结构和功能进行改造的AMPs,以提高其抗菌活性、稳定性和生物利用度,如Pexiganan,是基于天然AMP Magainin 2的合成类似物,在治疗DFU感染中具有潜力,但需优化给药方式及结合促血管生成等多学科综合治疗进一步提升临床价值[14]

3. AMPs治疗DFU的作用机制

3.1. 直接抗菌作用

AMPs的直接抗菌作用是其治疗DFU的核心机制之一,主要通过多靶点破坏病原微生物的生理结构及代谢功能实现快速杀菌。首先,AMPs凭借阳离子特性与细菌膜表面负电荷成分(如革兰氏阳性菌的磷壁酸、革兰氏阴性菌的脂多糖)发生静电吸附,随后通过疏水作用插入膜内,引发膜结构破坏。根据作用模式可分为桶板模型、地毯模型及环孔模型:桶板模型中AMPs (如Ctx-Ha [15])通过疏水端嵌入膜内形成跨膜孔道,导致胞质泄漏;地毯模型中AMPs (如aurein 1.2 [16])覆盖膜表面,降低膜张力并引发崩解;环孔模型中AMPs (如Lacticin Q [17])诱导磷脂单层弯曲形成环状孔洞,最终引发膜去极化及细菌死亡。其次,部分AMPs通过靶向细胞壁合成关键分子(如脂质II)抑制肽聚糖交联,例如Plecatasin与脂质II结合阻断细胞壁形成[18],而Nisin通过移除脂质II抑制革兰氏阳性菌增殖[19]

此外,AMPs还可穿透膜屏障干扰胞内代谢,包括与DNA结合抑制复制、结合核糖体阻断蛋白质翻译,或抑制呼吸链酶活性阻碍ATP生成[20]。最新研究显示,厦门大学开发的可用于治疗DFU的聚五氢嘧啶基水凝胶,不仅通过硼酸苯基靶向肽聚糖破坏细胞壁,还能协同释放Fe2+增强膜渗透性,实现双重抗菌效应[21]。此外,一种新的治疗DFU的药物ON101乳膏[22],其中的PA-F4组分通过破坏铜绿假单胞菌膜完整性,显著降低生物膜形成能力,进一步验证了直接抗菌机制在复杂感染中的有效性。这些多途径作用使AMPs不易诱发耐药性,且对多重耐药菌仍保持高效杀伤力,为DFU治疗提供了新策略。

3.2. 免疫调节与促愈合作用

AMPs可以通过调控免疫反应和修复信号通路,突破DFU慢性炎症的恶性循环。在免疫调节方面,AMPs通过调控巨噬细胞表型极化,减轻炎症反应。在DFU早期,高糖环境诱导巨噬细胞向促炎型M1表型分化,释放TNF-α、IL-1β等炎症因子加重组织损伤。据报道,一种源自中国林蛙的AMP Chensinin-1b及其改造肽W3R6,能够抑制M1型巨噬细胞标志物CD86的表达,同时上调M2型抗炎因子IL-10和TGF-β1的分泌,并通过调控NF-κB和MAPK信号通路降低炎症反应[23] [24]。人源AMP LL-37在糖尿病创面中,通过与巨噬细胞表面的受体结合,激活细胞内信号通路,从而引导巨噬细胞向M2型极化,减少炎症因子如IL-6、TNF-α的释放,同时增加抗炎因子如IL-10的产生,有效减轻创面的炎症反应,为组织修复创造有利的微环境[25]

AMPs还可以通过激活生长因子等多信号通路,促血管生成、成纤维细胞等的增殖分化与上皮再生加速创面修复。例如,LL-37、能够刺激血管内皮细胞分泌血管内皮生长因子(VEGF)和表皮生长因子(FGF),增强血管生成能力,改善DFU缺血微环境,LL-37同时还可以通过激活PI3K/AKT和ERK通路促进上皮细胞迁移与增殖[26]。天蚕素B (Cecropin B)则通过上调表皮生长因子受体(EGFR)磷酸化水平,促进角质形成细胞迁移与再上皮化[27]。肽RL-QN15被证明可通过激活转化生长因子-β (TGF-β)信号通路中经典的Smad3通路而促进角质形成细胞迁移和增殖,加速了DFU的愈合[28]。此外,AMPs的阳离子特性使其能够与带负电的生长因子形成复合物,如血小板源性生长因子(PDGF),延长其在创面的滞留时间并增强生物利用度。例如,LL-37与PDGF的协同作用可显著加速肉芽组织形成[29]。这些作用机制共同构成了AMPs在治疗DFU中的独特优势,为其在临床研究提供了理论依据。

4. AMPs在DFU治疗中的研究进展

4.1. AMPs临床研究进展

近年来,AMPs在DFU治疗中的临床转化取得显著进展,已有部分AMPs进入临床试验阶段,例如,抗菌肽PL-5 (Peceleganan)喷雾剂在美国完成了II期临床研究,用于治疗DFU的轻度感染。Pexiganan在治疗糖尿病足部感染的II期临床试验中,表现出良好的安全性和有效性[30]。此外,Omiganan、Novexatin等AMPs也在临床试验中显示出治疗潜力[31]。联合治疗策略方面,AMPs与抗生素、生长因子、干细胞疗法等联合应用,可增强抗菌效果、促进组织修复。例如,将Pexiganan与氧氟沙星联合使用,可提高对DFU感染的治疗效果。一些AMPs创新药物也已进入临床试验阶段。例如前一节提到的ON101乳膏(香雷糖足膏)是一种具有调节巨噬细胞M1/M2稳态作用的治疗DFU的新型药物[22],已在我国和美国多家医院进行了多中心Ⅲ期临床研究,并于2023年获得中国国家药品监督管理局批准上市。尽管实验室研究显示AMPs在DFU中的潜力,AMPs的临床应用仍受到其毒性和稳定性的限制,临床数据仍需积累,以验证其安全性和有效性。

4.2. AMPs递送系统

AMPs在感染伤口治疗中的应用面临多重挑战,包括释放失控、生物相容性不足、降解敏感性高、毒性及代谢活性低下100。其短半衰期易受环境因素(如pH、蛋白水解、氧化等)影响,导致疗效受限。传统递送方式易引发毒性,而化学修饰难以彻底优化性能。因此,开发高效递送系统,如纳米技术和水凝胶等,成为关键研究方向,旨在提升递送效率、增强靶向性,同时减少剂量与给药频率,精准调控释放,以降低副作用并最大化AMPs的抗菌与促愈合活性。

4.2.1. 局部递送技术

DFU通常存在复杂的微生物环境,传统的全身给药方式难以在创面局部达到有效浓度,而局部递送技术能够提高AMPs在创面的滞留性,从而增强抗菌效果,同时降低全身副作用,促进创面愈合。近年来,以喷雾剂、水凝胶为代表的局部递送技术通过增强创面滞留性、实现可控释放及优化AMPs稳定性,显著提升了疗效。例如,PL-5喷雾剂是一种新型的AMPs递送形式,其主要成分为Peceleganan,其III期临床研究结果显示,PL-5喷雾剂治疗组的临床有效率达到90.4%,显著优于阳性对照组[32]。喷雾剂能够方便地将AMPs直接喷洒在创面上,使药物均匀覆盖创面,增强药物与创面的接触面积,此外能够抵御创面蛋白酶降解,还能利用静电靶向作用增强细菌膜穿透效率,其抑菌活性较传统抗生素提升超10倍[33]

水凝胶技术则聚焦长效缓释与微环境调控。水凝胶是由聚合物组成的水合三维网络,具有良好的生物相容性和易降解性,作为伤口敷料具有很大的潜力[34]。将AMPs结合到水凝胶中,保留了AMPs的固有优势与先进伤口护理材料的模拟天然ECM环境[35]、可控输送和持续释放能力,实现了对慢性伤口局部微环境的精准、延伸调控,在有效控制感染的同时,为伤口愈合创造了最佳环境。如Zhou等人[36]在水凝胶中加入了天然AMP Jelline-1 (J-1)和8Br-cAMP,除了抑制MRSA外,实验证明水凝胶还显示出能够促进TGF-β和VEGFA的分泌,从而促进细胞迁移和血管生成,展现出了强大的促进糖尿病伤口愈合的潜力。

近年来,研究者针对DFU复杂伤口微环境,开发了多种功能化水凝胶体系。例如,Wei等人[37]将AMP和富含血小板的血浆(PRP)一同加载到水凝胶中,AMP可以调节炎症,PRP可以增强胶原沉积和血管生成,该水凝胶表现出良好的生物相容性和缓释AMP和生长因子的能力,有效促进糖尿病伤口愈合。Li等人[38]研究报道了一种同时负载普伐他汀的壳聚糖纳米颗粒和负载AMP-AB7的二氧化硅纳米颗粒的水凝胶。该水凝胶对酸性条件和高葡萄糖水平表现出良好的响应性,同时有效清除各种类型的ROS,并在MRSA感染的DFU大鼠模型中,能够增加VEGF的分泌以及降低TNF-α等炎症因子的水平,显著促进伤口愈合。Jeong等人[39]开发了一种精确控制AMP释放可注射水凝胶平台,该水凝胶由环糊精(HA-CD)和金刚烷(Ad-HA)改性的透明质酸制备,Ad-HA通过由基质金属蛋白酶(MMP)和ROS可切割序列(Ad-HA-AMP)组成的环状肽接头与AMP结合。该水凝胶只有响应到糖尿病伤口环境中的MMP和ROS水平,才会释放出AMP发挥治疗作用。多功能AMPs水凝胶通过智能响应与多机制协同突破DFU治疗瓶颈,未来结合临床转化与综合治疗策略,有望实现从创面杀菌到组织再生的精准调控。

4.2.2. 纳米载体与缓释系统

纳米给药策略可以有效缓解AMPs的药代动力学及药效学缺陷,提高AMPs的稳定性和生物利用度,增强抗菌效果,降低毒副作用。近年来,随着纳米技术的发展,多种抗菌肽基纳米材料被开发出来,为DFU等难愈创面治疗提供高效、精准的新途径。纳米颗粒具有较小的尺寸,能够有效包裹AMPs、抗生素和生长因子等各种药物。它们可以通过被动靶向(基于肿瘤组织或炎症部位的增强渗透与滞留效应,即EPR效应[40])或主动靶向(通过修饰纳米颗粒表面的靶向配体,使其能够特异性地识别并结合DFU部位的细胞表面受体[41])将AMPs递送至DFU部位,在提高AMPs原有生物活性的同时,也降低了给药剂量和给药频率。例如,有研究将AMP Ib-M2固定在磁性纳米颗粒表面,可提高抗菌效率,缩短抑制时间,并增加了控制AMP递送的靶特异性[42]。Kamaraj等人[43]报道了一种多孔的颗粒纳米纤维微球(NMs)治疗DFU的方案,使用静电纺丝聚(乳酸–羟基乙酸共聚物) (PLGA):明胶短纳米纤维构建多孔NMs,然后明胶交联。对载细胞NM的动态注射研究进一步阐明了它们在压力下保护负载细胞的能力,表明该微球能提高所负载药物的稳定性。此外,该NMs在小鼠DFU模型中可促进宿主细胞浸润、新生血管形成和再上皮化[43],证明了纳米颗粒技术在治疗DFU方面的有效性。

AMPs偶联金属纳米颗粒在稳定AMPs释放及感染伤口治疗方面潜力巨大。Wadhwani等人[44]选择了五种具有代表性的拴在Au NPs上的两性α-螺旋型AMPs,与游离AMP相比,这种纳米结构可以保持AMP侧链的柔韧性,并显著提高胰蛋白酶的耐受性。Comune等人[45]研究了LL-37共轭Au NPs在体内外的伤口愈合潜力,结果证明LL37-Au NPs具有延长EGFR和ERK1/2磷酸化的能力,并增强了慢性伤口模型中角质形成细胞的迁移特性。LL37-Au NPs处理组中的动物伤口具有更高的胶原蛋白、IL6和VEGF表达,这些都是DFU等伤口愈合过程中组织再生中的重要表达因子。

此外,水凝胶包裹其他纳米生物活性物质联合AMPs,在治疗DFU等慢性伤口感染方面表现出适应性。在一项研究中,开发了负载氧化铈纳米颗和AMPs的可喷涂水凝胶,实现伤口环境中抗菌效果的同时还能清除ROS [46],突显了其在伤口修复领域的巨大转化潜力。John等人[47]将LL-37模拟肽W379加载到具有精确宏通道的纳米纤维气凝胶中,用于实现糖尿病伤口快速愈合。该研究指出该凝胶可以极大地促进细胞浸润,同时促进了新生血管形成和角质形成细胞和真皮成纤维细胞的迁移和增殖。脂质体凭借其生物相容性与仿生膜特性可高效包载两亲性AMPs,保护其免受创面蛋白酶降解,并通过表面修饰(如阳离子或靶向配体)增强细菌膜靶向性。Yang等人[48]设计了一种负载AMP和葛根素的ROS响应性脂质体,加载到水凝胶中后在抗菌、抗炎、调节炎症反应和调节血管功能方面表现出显著的功效,有助于治疗糖尿病感染伤口。

综上所述,与单一AMPs治疗策略相比,这些递送策略能保护AMPs免受DFU微环境、蛋白酶降解和血清失活的影响,降低其固有毒性,提高其靶向性和延长递送时间。此外,考虑到DFU患者的病情具有很大的个体差异,包括溃疡的严重程度、感染的细菌种类、患者的基础疾病等。个性化医疗策略[49]可以通过对DFU患者的溃疡组织进行细菌培养和药敏试验,确定感染的细菌种类和对不同AMPs的敏感性。根据药敏试验结果选择最有效的AMPs进行治疗,可以提高治疗效果,减少耐药性的产生。总之,AMPs相关递送策略凭借其独特抗菌机制、促进组织修复等特性,有望突破传统治疗局限,为DFU治疗带来新变革,显著改善患者预后,极具发展前景。

5. 讨论与总结

AMPs凭借其广谱抗菌活性、低耐药性风险以及免疫调节与促组织修复功能,在DFU治疗中展现出独特优势,被视为“后抗生素时代”的核心候选疗法。然而,其临床转化仍面临多重挑战:规模化生产成本高、体内半衰期短及潜在毒性评估不足等问题制约了广泛应用。为突破瓶颈,未来研究需聚焦人工智能辅助设计,通过优化氨基酸序列提升AMPs的稳定性和靶向性,降低毒副作用;同时开发多模态制剂以及先进递送系统,整合抗菌、促愈合与免疫调节功能,以协同应对DFU复杂的病理微环境。此外,推进全球多中心III期临床试验(如PL-5的2024年计划)是验证AMPs安全性与有效性的关键步骤,也是迈向临床应用的必经之路。

当前研究已证实,AMPs通过破坏病原体膜结构、调控巨噬细胞极化及激活生长因子通路,显著改善感染控制与组织再生,结合智能递送系统(如响应性水凝胶、纳米载体)更可实现精准治疗。然而,全面释放其潜力仍需跨学科合作,融合生物工程、材料科学及临床医学等领域的创新技术,优化递送策略并制定个体化治疗方案。AMPs研究的突破不仅有望降低DFU截肢率及死亡率,更将为耐药菌感染治疗提供革新路径,最终改善患者生活质量,推动医疗模式向高效、安全方向转型。

NOTES

*通讯作者。

参考文献

[1] Besseling, J., Kastelein, J.J.P., Defesche, J.C., Hutten, B.A. and Hovingh, G.K. (2015) Association between Familial Hypercholesterolemia and Prevalence of Type 2 Diabetes Mellitus. JAMA, 313, 1029-1036.
https://doi.org/10.1001/jama.2015.1206
[2] Jiang, Y., Wang, X., Xia, L., Fu, X., Xu, Z., Ran, X., et al. (2015) A Cohort Study of Diabetic Patients and Diabetic Foot Ulceration Patients in China. Wound Repair and Regeneration, 23, 222-230.
https://doi.org/10.1111/wrr.12263
[3] Bandyk, D.F. (2018) The Diabetic Foot: Pathophysiology, Evaluation, and Treatment. Seminars in Vascular Surgery, 31, 43-48.
https://doi.org/10.1053/j.semvascsurg.2019.02.001
[4] Everett, E. and Mathioudakis, N. (2018) Update on Management of Diabetic Foot Ulcers. Annals of the New York Academy of Sciences, 1411, 153-165.
https://doi.org/10.1111/nyas.13569
[5] Niu, Y., Li, Q., Ding, Y., Dong, L. and Wang, C. (2019) Engineered Delivery Strategies for Enhanced Control of Growth Factor Activities in Wound Healing. Advanced Drug Delivery Reviews, 146, 190-208.
https://doi.org/10.1016/j.addr.2018.06.002
[6] Pirtskhalava, M., Vishnepolsky, B., Grigolava, M. and Managadze, G. (2021) Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals, 14, Article 471.
https://doi.org/10.3390/ph14050471
[7] Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews, 55, 27-55.
https://doi.org/10.1124/pr.55.1.2
[8] Gao, X., Ding, J., Liao, C., Xu, J., Liu, X. and Lu, W. (2021) Defensins: The Natural Peptide Antibiotic. Advanced Drug Delivery Reviews, 179, Article ID: 114008.
https://doi.org/10.1016/j.addr.2021.114008
[9] Brady, D., Grapputo, A., Romoli, O. and Sandrelli, F. (2019) Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. International Journal of Molecular Sciences, 20, Article 5862.
https://doi.org/10.3390/ijms20235862
[10] Wei, X., Zhang, L., Yang, Y., Hou, Y., Xu, Y., Wang, Z., et al. (2022) LL-37 Transports Immunoreactive cGAMP to Activate STING Signaling and Enhance Interferon-Mediated Host Antiviral Immunity. Cell Reports, 39, Article ID: 110880.
https://doi.org/10.1016/j.celrep.2022.110880
[11] Fabisiak, A., Murawska, N. and Fichna, J. (2016) LL-37: Cathelicidin-Related Antimicrobial Peptide with Pleiotropic Activity. Pharmacological Reports, 68, 802-808.
https://doi.org/10.1016/j.pharep.2016.03.015
[12] Carretero, M., Escámez, M.J., García, M., Duarte, B., Holguín, A., Retamosa, L., et al. (2008) In Vitro and in Vivo Wound Healing-Promoting Activities of Human Cathelicidin LL-37. Journal of Investigative Dermatology, 128, 223-236.
https://doi.org/10.1038/sj.jid.5701043
[13] Xi, L., Du, J., Xue, W., Shao, K., Jiang, X., Peng, W., et al. (2024) Cathelicidin LL-37 Promotes Wound Healing in Diabetic Mice by Regulating TFEB-Dependent Autophagy. Peptides, 175, Article ID: 171183.
https://doi.org/10.1016/j.peptides.2024.171183
[14] Gomes, D., Santos, R., S. Soares, R., Reis, S., Carvalho, S., Rego, P., et al. (2020) Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections. Antibiotics, 9, Article 128.
https://doi.org/10.3390/antibiotics9030128
[15] Ferreira Cespedes, G., Nicolas Lorenzon, E., Festozo Vicente, E., Jose Soares Mendes-Giannini, M., Fontes, W., de Souza Castro, M., et al. (2012) Mechanism of Action and Relationship between Structure and Biological Activity of Ctx-Ha: A New Ceratotoxin-Like Peptide from Hypsiboas Albopunctatus. Protein & Peptide Letters, 19, 596-603.
https://doi.org/10.2174/092986612800494011
[16] Rai, D.K. and Qian, S. (2017) Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer. Scientific Reports, 7, Article No. 3719.
https://doi.org/10.1038/s41598-017-03795-6
[17] Yoneyama, F., Imura, Y., Ichimasa, S., Fujita, K., Zendo, T., Nakayama, J., et al. (2009) Lacticin Q, a Lactococcal Bacteriocin, Causes High-Level Membrane Permeability in the Absence of Specific Receptors. Applied and Environmental Microbiology, 75, 538-541.
https://doi.org/10.1128/aem.01827-08
[18] Jekhmane, S., Derks, M.G.N., Maity, S., Slingerland, C.J., Tehrani, K.H.M.E., Medeiros-Silva, J., et al. (2024) Host Defence Peptide Plectasin Targets Bacterial Cell Wall Precursor Lipid II by a Calcium-Sensitive Supramolecular Mechanism. Nature Microbiology, 9, 1778-1791.
https://doi.org/10.1038/s41564-024-01696-9
[19] Barbosa, A.A.T., de Melo, M.R., da Silva, C.M.R., Jain, S. and Dolabella, S.S. (2021) Nisin Resistance in Gram-Positive Bacteria and Approaches to Circumvent Resistance for Successful Therapeutic Use. Critical Reviews in Microbiology, 47, 376-385.
https://doi.org/10.1080/1040841x.2021.1893264
[20] Xuan, J., Feng, W., Wang, J., Wang, R., Zhang, B., Bo, L., et al. (2023) Antimicrobial Peptides for Combating Drug-Resistant Bacterial Infections. Drug Resistance Updates, 68, Article ID: 100954.
https://doi.org/10.1016/j.drup.2023.100954
[21] Li, W., Chen, H., Cai, J., Wang, M., Zhou, X. and Ren, L. (2023) Poly(pentahydropyrimidine)‐Based Hybrid Hydrogel with Synergistic Antibacterial and Pro‐Angiogenic Ability for the Therapy of Diabetic Foot Ulcers. Advanced Functional Materials, 33, Article ID: 2303147.
https://doi.org/10.1002/adfm.202303147
[22] Huang, Y., Lin, C., Cheng, N., Cazzell, S.M., Chen, H., Huang, K., et al. (2021) Effect of a Novel Macrophage-Regulating Drug on Wound Healing in Patients with Diabetic Foot Ulcers: A Randomized Clinical Trial. JAMA Network Open, 4, e2122607.
https://doi.org/10.1001/jamanetworkopen.2021.22607
[23] Li, Z., Qu, W., Zhang, D., Sun, Y. and Shang, D. (2023) The Antimicrobial Peptide Chensinin-1b Alleviates the Inflammatory Response by Targeting the TLR4/NF-κB Signaling Pathway and Inhibits Pseudomonas aeruginosa Infection and LPS-Mediated Sepsis. Biomedicine & Pharmacotherapy, 165, Article ID: 115227.
https://doi.org/10.1016/j.biopha.2023.115227
[24] Li, Y., Liu, T., Liu, Y., Tan, Z., Ju, Y., Yang, Y., et al. (2019) Antimicrobial Activity, Membrane Interaction and Stability of the D-Amino Acid Substituted Analogs of Antimicrobial Peptide W3R6. Journal of Photochemistry and Photobiology B: Biology, 200, Article ID: 111645.
https://doi.org/10.1016/j.jphotobiol.2019.111645
[25] Ma, X., Liu, Q., Kuai, L., Ma, X., Luo, Y., Luo, Y., et al. (2023) The Role of Neutrophils in Diabetic Ulcers and Targeting Therapeutic Strategies. International Immunopharmacology, 124, Article ID: 110861.
https://doi.org/10.1016/j.intimp.2023.110861
[26] Yanagisawa, T., Ishii, M., Takahashi, M., Fujishima, K. and Nishimura, M. (2020) Human Cathelicidin Antimicrobial Peptide LL-37 Promotes Lymphangiogenesis in Lymphatic Endothelial Cells through the ERK and Akt Signaling Pathways. Molecular Biology Reports, 47, 6841-6854.
https://doi.org/10.1007/s11033-020-05741-8
[27] Herman, A. and Herman, A.P. (2023) Antimicrobial Peptides for Diabetic Wound Healing: Preclinical and Clinical Studies. Advances in Wound Care.
https://doi.org/10.1089/wound.2023.0011
[28] Sun, D., Guo, K., Liu, N., Li, Y., Li, Y., Hu, Y., et al. (2023) Peptide RL-QN15 Promotes Wound Healing of Diabetic Foot Ulcers through P38 Mitogen-Activated Protein Kinase and smad3/miR-4482-3p/vascular Endothelial Growth Factor B Axis. Burns & Trauma, 11, tkad035.
https://doi.org/10.1093/burnst/tkad035
[29] Li, F., Zhang, C., Zhong, X., Li, B., Zhang, M., Li, W., et al. (2024) A 3D Radially Aligned Nanofiber Scaffold Co-Loaded with LL37 Mimetic Peptide and PDGF-BB for the Management of Infected Chronic Wounds. Materials Today Bio, 28, Article ID: 101237.
https://doi.org/10.1016/j.mtbio.2024.101237
[30] Lipsky, B.A., Holroyd, K.J. and Zasloff, M. (2008) Topical versus Systemic Antimicrobial Therapy for Treating Mildly Infected Diabetic Foot Ulcers: A Randomized, Controlled, Double‐Blinded, Multicenter Trial of Pexiganan Cream. Clinical Infectious Diseases, 47, 1537-1545.
https://doi.org/10.1086/593185
[31] E. Greber, K. and Dawgul, M. (2016) Antimicrobial Peptides Under Clinical Trials. Current Topics in Medicinal Chemistry, 17, 620-628.
https://doi.org/10.2174/1568026616666160713143331
[32] Larson, D., Neelon, J., Karna, S.L.R. and Nuutila, K. (2025) Local Treatment of Wound Infections: A Review of Clinical Trials from 2013 to 2024. Advances in Wound Care, 14, 14-32.
https://doi.org/10.1089/wound.2024.0129
[33] Li, H. (2024) Antimicrobial Peptides—A Promising Novel Antimicrobial Agent. Theoretical and Natural Science, 40, 16-21.
https://doi.org/10.54254/2753-8818/40/20241206
[34] Norahan, M.H., Pedroza-González, S.C., Sánchez-Salazar, M.G., Álvarez, M.M. and Trujillo de Santiago, G. (2023) Structural and Biological Engineering of 3D Hydrogels for Wound Healing. Bioactive Materials, 24, 197-235.
https://doi.org/10.1016/j.bioactmat.2022.11.019
[35] Soliman, B.G., Nguyen, A.K., Gooding, J.J. and Kilian, K.A. (2024) Advancing Synthetic Hydrogels through Nature‐inspired Materials Chemistry. Advanced Materials, 36, e2404235.
https://doi.org/10.1002/adma.202404235
[36] Zhou, J., Wang, Z., Yang, C., Zhang, H., Fareed, M.S., He, Y., et al. (2022) A Carrier-Free, Dual-Functional Hydrogel Constructed of Antimicrobial Peptide Jelleine-1 and 8BR-Camp for MRSA Infected Diabetic Wound Healing. Acta Biomaterialia, 151, 223-234.
https://doi.org/10.1016/j.actbio.2022.07.066
[37] Wei, S., Xu, P., Yao, Z., Cui, X., Lei, X., Li, L., et al. (2021) A Composite Hydrogel with Co-Delivery of Antimicrobial Peptides and Platelet-Rich Plasma to Enhance Healing of Infected Wounds in Diabetes. Acta Biomaterialia, 124, 205-218.
https://doi.org/10.1016/j.actbio.2021.01.046
[38] Li, Z., Chen, L., Yang, S., Han, J., Zheng, Y., Chen, Z., et al. (2024) Glucose and Ph Dual-Responsive Hydrogels with Antibacterial, Reactive Oxygen Species Scavenging, and Angiogenesis Properties for Promoting the Healing of Infected Diabetic Foot Ulcers. Acta Biomaterialia, 190, 205-218.
https://doi.org/10.1016/j.actbio.2024.10.020
[39] Jeong, S.H., Cheong, S., Kim, T.Y., Choi, H. and Hahn, S.K. (2023) Supramolecular Hydrogels for Precisely Controlled Antimicrobial Peptide Delivery for Diabetic Wound Healing. ACS Applied Materials & Interfaces, 15, 16471-16481.
https://doi.org/10.1021/acsami.3c00191
[40] Fang, J., Islam, W. and Maeda, H. (2020) Exploiting the Dynamics of the EPR Effect and Strategies to Improve the Therapeutic Effects of Nanomedicines by Using EPR Effect Enhancers. Advanced Drug Delivery Reviews, 157, 142-160.
https://doi.org/10.1016/j.addr.2020.06.005
[41] Huang, F., Lu, X., Yang, Y., Yang, Y., Li, Y., Kuai, L., et al. (2022) Microenvironment‐Based Diabetic Foot Ulcer Nanomedicine. Advanced Science, 10, e2203308.
https://doi.org/10.1002/advs.202203308
[42] Ropero-Vega, J.L., Ardila-Rosas, N., Hernández, I.P. and Flórez-Castillo, J.M. (2020) Immobilization of Ib-M2 Peptide on Core@shell Nanostructures Based on SPION Nanoparticles and Their Antibacterial Activity against Escherichia coli O157:h7. Applied Surface Science, 515, Article ID: 146045.
https://doi.org/10.1016/j.apsusc.2020.146045
[43] Kamaraj, M., Moghimi, N., McCarthy, A., Chen, J., Cao, S., Chethikkattuveli Salih, A.R., et al. (2024) Granular Porous Nanofibrous Microspheres Enhance Cellular Infiltration for Diabetic Wound Healing. ACS Nano, 18, 28335-28348.
https://doi.org/10.1021/acsnano.4c10044
[44] Wadhwani, P., Heidenreich, N., Podeyn, B., Bürck, J. and Ulrich, A.S. (2017) Antibiotic Gold: Tethering of Antimicrobial Peptides to Gold Nanoparticles Maintains Conformational Flexibility of Peptides and Improves Trypsin Susceptibility. Biomaterials Science, 5, 817-827.
https://doi.org/10.1039/c7bm00069c
[45] Comune, M., Rai, A., Chereddy, K.K., Pinto, S., Aday, S., Ferreira, A.F., et al. (2017) Antimicrobial Peptide-Gold Nanoscale Therapeutic Formulation with High Skin Regenerative Potential. Journal of Controlled Release, 262, 58-71.
https://doi.org/10.1016/j.jconrel.2017.07.007
[46] Cheng, H., Shi, Z., Yue, K., Huang, X., Xu, Y., Gao, C., et al. (2021) Sprayable Hydrogel Dressing Accelerates Wound Healing with Combined Reactive Oxygen Species-Scavenging and Antibacterial Abilities. Acta Biomaterialia, 124, 219-232.
https://doi.org/10.1016/j.actbio.2021.02.002
[47] John, J.V., Sharma, N.S., Tang, G., Luo, Z., Su, Y., Weihs, S., et al. (2022) Nanofiber Aerogels with Precision Macrochannels and Ll‐37‐Mimic Peptides Synergistically Promote Diabetic Wound Healing. Advanced Functional Materials, 33, Article ID: 2206936.
https://doi.org/10.1002/adfm.202206936
[48] Yang, H., Lv, D., Qu, S., Xu, H., Li, S., Wang, Z., et al. (2024) A Ros‐Responsive Lipid Nanoparticles Release Multifunctional Hydrogel Based on Microenvironment Regulation Promotes Infected Diabetic Wound Healing. Advanced Science, 11, Article ID: 2403219.
https://doi.org/10.1002/advs.202403219
[49] Vicente, A.M., Ballensiefen, W. and Jönsson, J. (2020) How Personalised Medicine Will Transform Healthcare by 2030: The ICPerMed Vision. Journal of Translational Medicine, 18, Article No. 180.
https://doi.org/10.1186/s12967-020-02316-w