| [1] | Besseling, J., Kastelein, J.J.P., Defesche, J.C., Hutten, B.A. and Hovingh, G.K. (2015) Association between Familial Hypercholesterolemia and Prevalence of Type 2 Diabetes Mellitus. JAMA, 313, 1029-1036. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Jiang, Y., Wang, X., Xia, L., Fu, X., Xu, Z., Ran, X., et al. (2015) A Cohort Study of Diabetic Patients and Diabetic Foot Ulceration Patients in China. Wound Repair and Regeneration, 23, 222-230. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Bandyk, D.F. (2018) The Diabetic Foot: Pathophysiology, Evaluation, and Treatment. Seminars in Vascular Surgery, 31, 43-48. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Everett, E. and Mathioudakis, N. (2018) Update on Management of Diabetic Foot Ulcers. Annals of the New York Academy of Sciences, 1411, 153-165. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Niu, Y., Li, Q., Ding, Y., Dong, L. and Wang, C. (2019) Engineered Delivery Strategies for Enhanced Control of Growth Factor Activities in Wound Healing. Advanced Drug Delivery Reviews, 146, 190-208. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Pirtskhalava, M., Vishnepolsky, B., Grigolava, M. and Managadze, G. (2021) Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals, 14, Article 471. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Yeaman, M.R. and Yount, N.Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews, 55, 27-55. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Gao, X., Ding, J., Liao, C., Xu, J., Liu, X. and Lu, W. (2021) Defensins: The Natural Peptide Antibiotic. Advanced Drug Delivery Reviews, 179, Article ID: 114008. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Brady, D., Grapputo, A., Romoli, O. and Sandrelli, F. (2019) Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. International Journal of Molecular Sciences, 20, Article 5862. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Wei, X., Zhang, L., Yang, Y., Hou, Y., Xu, Y., Wang, Z., et al. (2022) LL-37 Transports Immunoreactive cGAMP to Activate STING Signaling and Enhance Interferon-Mediated Host Antiviral Immunity. Cell Reports, 39, Article ID: 110880. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Fabisiak, A., Murawska, N. and Fichna, J. (2016) LL-37: Cathelicidin-Related Antimicrobial Peptide with Pleiotropic Activity. Pharmacological Reports, 68, 802-808. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Carretero, M., Escámez, M.J., García, M., Duarte, B., Holguín, A., Retamosa, L., et al. (2008) In Vitro and in Vivo Wound Healing-Promoting Activities of Human Cathelicidin LL-37. Journal of Investigative Dermatology, 128, 223-236. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Xi, L., Du, J., Xue, W., Shao, K., Jiang, X., Peng, W., et al. (2024) Cathelicidin LL-37 Promotes Wound Healing in Diabetic Mice by Regulating TFEB-Dependent Autophagy. Peptides, 175, Article ID: 171183. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Gomes, D., Santos, R., S. Soares, R., Reis, S., Carvalho, S., Rego, P., et al. (2020) Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections. Antibiotics, 9, Article 128. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Ferreira Cespedes, G., Nicolas Lorenzon, E., Festozo Vicente, E., Jose Soares Mendes-Giannini, M., Fontes, W., de Souza Castro, M., et al. (2012) Mechanism of Action and Relationship between Structure and Biological Activity of Ctx-Ha: A New Ceratotoxin-Like Peptide from Hypsiboas Albopunctatus. Protein & Peptide Letters, 19, 596-603. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Rai, D.K. and Qian, S. (2017) Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer. Scientific Reports, 7, Article No. 3719. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Yoneyama, F., Imura, Y., Ichimasa, S., Fujita, K., Zendo, T., Nakayama, J., et al. (2009) Lacticin Q, a Lactococcal Bacteriocin, Causes High-Level Membrane Permeability in the Absence of Specific Receptors. Applied and Environmental Microbiology, 75, 538-541. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Jekhmane, S., Derks, M.G.N., Maity, S., Slingerland, C.J., Tehrani, K.H.M.E., Medeiros-Silva, J., et al. (2024) Host Defence Peptide Plectasin Targets Bacterial Cell Wall Precursor Lipid II by a Calcium-Sensitive Supramolecular Mechanism. Nature Microbiology, 9, 1778-1791. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Barbosa, A.A.T., de Melo, M.R., da Silva, C.M.R., Jain, S. and Dolabella, S.S. (2021) Nisin Resistance in Gram-Positive Bacteria and Approaches to Circumvent Resistance for Successful Therapeutic Use. Critical Reviews in Microbiology, 47, 376-385. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Xuan, J., Feng, W., Wang, J., Wang, R., Zhang, B., Bo, L., et al. (2023) Antimicrobial Peptides for Combating Drug-Resistant Bacterial Infections. Drug Resistance Updates, 68, Article ID: 100954. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Li, W., Chen, H., Cai, J., Wang, M., Zhou, X. and Ren, L. (2023) Poly(pentahydropyrimidine)‐Based Hybrid Hydrogel with Synergistic Antibacterial and Pro‐Angiogenic Ability for the Therapy of Diabetic Foot Ulcers. Advanced Functional Materials, 33, Article ID: 2303147. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Huang, Y., Lin, C., Cheng, N., Cazzell, S.M., Chen, H., Huang, K., et al. (2021) Effect of a Novel Macrophage-Regulating Drug on Wound Healing in Patients with Diabetic Foot Ulcers: A Randomized Clinical Trial. JAMA Network Open, 4, e2122607. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Li, Z., Qu, W., Zhang, D., Sun, Y. and Shang, D. (2023) The Antimicrobial Peptide Chensinin-1b Alleviates the Inflammatory Response by Targeting the TLR4/NF-κB Signaling Pathway and Inhibits Pseudomonas aeruginosa Infection and LPS-Mediated Sepsis. Biomedicine & Pharmacotherapy, 165, Article ID: 115227. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Li, Y., Liu, T., Liu, Y., Tan, Z., Ju, Y., Yang, Y., et al. (2019) Antimicrobial Activity, Membrane Interaction and Stability of the D-Amino Acid Substituted Analogs of Antimicrobial Peptide W3R6. Journal of Photochemistry and Photobiology B: Biology, 200, Article ID: 111645. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Ma, X., Liu, Q., Kuai, L., Ma, X., Luo, Y., Luo, Y., et al. (2023) The Role of Neutrophils in Diabetic Ulcers and Targeting Therapeutic Strategies. International Immunopharmacology, 124, Article ID: 110861. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Yanagisawa, T., Ishii, M., Takahashi, M., Fujishima, K. and Nishimura, M. (2020) Human Cathelicidin Antimicrobial Peptide LL-37 Promotes Lymphangiogenesis in Lymphatic Endothelial Cells through the ERK and Akt Signaling Pathways. Molecular Biology Reports, 47, 6841-6854. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Herman, A. and Herman, A.P. (2023) Antimicrobial Peptides for Diabetic Wound Healing: Preclinical and Clinical Studies. Advances in Wound Care. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Sun, D., Guo, K., Liu, N., Li, Y., Li, Y., Hu, Y., et al. (2023) Peptide RL-QN15 Promotes Wound Healing of Diabetic Foot Ulcers through P38 Mitogen-Activated Protein Kinase and smad3/miR-4482-3p/vascular Endothelial Growth Factor B Axis. Burns & Trauma, 11, tkad035. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Li, F., Zhang, C., Zhong, X., Li, B., Zhang, M., Li, W., et al. (2024) A 3D Radially Aligned Nanofiber Scaffold Co-Loaded with LL37 Mimetic Peptide and PDGF-BB for the Management of Infected Chronic Wounds. Materials Today Bio, 28, Article ID: 101237. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Lipsky, B.A., Holroyd, K.J. and Zasloff, M. (2008) Topical versus Systemic Antimicrobial Therapy for Treating Mildly Infected Diabetic Foot Ulcers: A Randomized, Controlled, Double‐Blinded, Multicenter Trial of Pexiganan Cream. Clinical Infectious Diseases, 47, 1537-1545. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | E. Greber, K. and Dawgul, M. (2016) Antimicrobial Peptides Under Clinical Trials. Current Topics in Medicinal Chemistry, 17, 620-628. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Larson, D., Neelon, J., Karna, S.L.R. and Nuutila, K. (2025) Local Treatment of Wound Infections: A Review of Clinical Trials from 2013 to 2024. Advances in Wound Care, 14, 14-32. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Li, H. (2024) Antimicrobial Peptides—A Promising Novel Antimicrobial Agent. Theoretical and Natural Science, 40, 16-21. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Norahan, M.H., Pedroza-González, S.C., Sánchez-Salazar, M.G., Álvarez, M.M. and Trujillo de Santiago, G. (2023) Structural and Biological Engineering of 3D Hydrogels for Wound Healing. Bioactive Materials, 24, 197-235. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Soliman, B.G., Nguyen, A.K., Gooding, J.J. and Kilian, K.A. (2024) Advancing Synthetic Hydrogels through Nature‐inspired Materials Chemistry. Advanced Materials, 36, e2404235. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Zhou, J., Wang, Z., Yang, C., Zhang, H., Fareed, M.S., He, Y., et al. (2022) A Carrier-Free, Dual-Functional Hydrogel Constructed of Antimicrobial Peptide Jelleine-1 and 8BR-Camp for MRSA Infected Diabetic Wound Healing. Acta Biomaterialia, 151, 223-234. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Wei, S., Xu, P., Yao, Z., Cui, X., Lei, X., Li, L., et al. (2021) A Composite Hydrogel with Co-Delivery of Antimicrobial Peptides and Platelet-Rich Plasma to Enhance Healing of Infected Wounds in Diabetes. Acta Biomaterialia, 124, 205-218. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Li, Z., Chen, L., Yang, S., Han, J., Zheng, Y., Chen, Z., et al. (2024) Glucose and Ph Dual-Responsive Hydrogels with Antibacterial, Reactive Oxygen Species Scavenging, and Angiogenesis Properties for Promoting the Healing of Infected Diabetic Foot Ulcers. Acta Biomaterialia, 190, 205-218. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Jeong, S.H., Cheong, S., Kim, T.Y., Choi, H. and Hahn, S.K. (2023) Supramolecular Hydrogels for Precisely Controlled Antimicrobial Peptide Delivery for Diabetic Wound Healing. ACS Applied Materials & Interfaces, 15, 16471-16481. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Fang, J., Islam, W. and Maeda, H. (2020) Exploiting the Dynamics of the EPR Effect and Strategies to Improve the Therapeutic Effects of Nanomedicines by Using EPR Effect Enhancers. Advanced Drug Delivery Reviews, 157, 142-160. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Huang, F., Lu, X., Yang, Y., Yang, Y., Li, Y., Kuai, L., et al. (2022) Microenvironment‐Based Diabetic Foot Ulcer Nanomedicine. Advanced Science, 10, e2203308. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Ropero-Vega, J.L., Ardila-Rosas, N., Hernández, I.P. and Flórez-Castillo, J.M. (2020) Immobilization of Ib-M2 Peptide on Core@shell Nanostructures Based on SPION Nanoparticles and Their Antibacterial Activity against Escherichia coli O157:h7. Applied Surface Science, 515, Article ID: 146045. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [43] | Kamaraj, M., Moghimi, N., McCarthy, A., Chen, J., Cao, S., Chethikkattuveli Salih, A.R., et al. (2024) Granular Porous Nanofibrous Microspheres Enhance Cellular Infiltration for Diabetic Wound Healing. ACS Nano, 18, 28335-28348. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Wadhwani, P., Heidenreich, N., Podeyn, B., Bürck, J. and Ulrich, A.S. (2017) Antibiotic Gold: Tethering of Antimicrobial Peptides to Gold Nanoparticles Maintains Conformational Flexibility of Peptides and Improves Trypsin Susceptibility. Biomaterials Science, 5, 817-827. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Comune, M., Rai, A., Chereddy, K.K., Pinto, S., Aday, S., Ferreira, A.F., et al. (2017) Antimicrobial Peptide-Gold Nanoscale Therapeutic Formulation with High Skin Regenerative Potential. Journal of Controlled Release, 262, 58-71. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [46] | Cheng, H., Shi, Z., Yue, K., Huang, X., Xu, Y., Gao, C., et al. (2021) Sprayable Hydrogel Dressing Accelerates Wound Healing with Combined Reactive Oxygen Species-Scavenging and Antibacterial Abilities. Acta Biomaterialia, 124, 219-232. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | John, J.V., Sharma, N.S., Tang, G., Luo, Z., Su, Y., Weihs, S., et al. (2022) Nanofiber Aerogels with Precision Macrochannels and Ll‐37‐Mimic Peptides Synergistically Promote Diabetic Wound Healing. Advanced Functional Materials, 33, Article ID: 2206936. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Yang, H., Lv, D., Qu, S., Xu, H., Li, S., Wang, Z., et al. (2024) A Ros‐Responsive Lipid Nanoparticles Release Multifunctional Hydrogel Based on Microenvironment Regulation Promotes Infected Diabetic Wound Healing. Advanced Science, 11, Article ID: 2403219. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Vicente, A.M., Ballensiefen, W. and Jönsson, J. (2020) How Personalised Medicine Will Transform Healthcare by 2030: The ICPerMed Vision. Journal of Translational Medicine, 18, Article No. 180. [Google Scholar] [CrossRef] [PubMed] |