[1]
|
Kahn, S.E., Cooper, M.E. and Del Prato, S. (2014) Pathophysiology and Treatment of Type 2 Diabetes: Perspectives on the Past, Present, and Future. The Lancet, 383, 1068-1083. https://doi.org/10.1016/s0140-6736(13)62154-6
|
[2]
|
Magliano, D.J. and Boyko, E.J. (2022) IDF Diabetes Atlas.
|
[3]
|
Zheng, Y., Ley, S.H. and Hu, F.B. (2017) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98. https://doi.org/10.1038/nrendo.2017.151
|
[4]
|
Smith, M., Burton, A. and Falkenberg, T. (2014) World Health Organization Traditional Medicine Strategy 2014-2023: New Strategy for Traditional and Complementary Medicine Includes the Development and Use of Herbal Medicinal Preparations. Herbalgram, 102, 24, 26, 28-29.
|
[5]
|
Li, Y., Xu, Q., Xu, W., Guo, X., Zhang, S. and Chen, Y. (2015) Mechanisms of Protection against Diabetes-Induced Impairment of Endothelium-Dependent Vasorelaxation by Tanshinone IIA. Biochimica et Biophysica Acta—General Subjects, 1850, 813-823. https://doi.org/10.1016/j.bbagen.2015.01.007
|
[6]
|
Noh, E., Kim, J., Lee, H.Y., Song, H., Joung, S.O., Yang, H.J., et al. (2019) Immuno-Enhancement Effects of Platycodon grandiflorum Extracts in Splenocytes and a Cyclophosphamide-Induced Immunosuppressed Rat Model. BMC Complementary and Alternative Medicine, 19, Article No. 322. https://doi.org/10.1186/s12906-019-2724-0
|
[7]
|
Ji, M., Bo, A., Yang, M., Xu, J., Jiang, L., Zhou, B., et al. (2020) The Pharmacological Effects and Health Benefits of Platycodon Grandiflorus—A Medicine Food Homology Species. Foods, 9, Article 142. https://doi.org/10.3390/foods9020142
|
[8]
|
Kim, K., Seo, E., Lee, Y., Lee, T., Cho, Y., Ezaki, O., et al. (2000) Effect of Dietary Platycodon grandiflorum on the Improvement of Insulin Resistance in Obese Zucker Rats. The Journal of Nutritional Biochemistry, 11, 420-424. https://doi.org/10.1016/s0955-2863(00)00098-x
|
[9]
|
Zhou, Z., Chen, B., Chen, S., Lin, M., Chen, Y., Jin, S., et al. (2020) Applications of Network Pharmacology in Traditional Chinese Medicine Research. Evidence-Based Complementary and Alternative Medicine, 2020, Article 1646905. https://doi.org/10.1155/2020/1646905
|
[10]
|
Wu, J.S., Zhang, F., Li, Z.Z., et al. (2022) Integration Strategy of Network Pharmacology in Traditional Chinese Medicine: A Narrative Review. Journal of Traditional Chinese Medicine, 42, Article 479.
|
[11]
|
Daina, A., Michielin, O. and Zoete, V. (2017) Swiss ADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 7, Article No. 42717.
|
[12]
|
Thornalley, P. (2005) The Potential Role of Thiamine (Vitamin B1) in Diabetic Complications. Current Diabetes Reviews, 1, 287-298. https://doi.org/10.2174/157339905774574383
|
[13]
|
Deqiu, Z., Kang, L., Jiali, Y., Baolin, L. and Gaolin, L. (2011) Luteolin Inhibits Inflammatory Response and Improves Insulin Sensitivity in the Endothelium. Biochimie, 93, 506-512. https://doi.org/10.1016/j.biochi.2010.11.002
|
[14]
|
Dajani, R., Fraser, E., Roe, S.M., Young, N., Good, V., Dale, T.C., et al. (2001) Crystal Structure of Glycogen Synthase Kinase 3β. Cell, 105, 721-732. https://doi.org/10.1016/s0092-8674(01)00374-9
|
[15]
|
Arthur, D.E., Uzairu, A., Mamza, P., Abechi, S.E. and Shallangwa, G.A. (2018) Structure-Based Optimization of Tyrosine Kinase Inhibitors: A Molecular Docking Study. Network Modeling Analysis in Health Informatics and Bioinformatics, 7, Article No. 9. https://doi.org/10.1007/s13721-018-0170-4
|
[16]
|
Ji, Y., Kim, S., Kim, J., Jang, G.Y., Moon, M. and Kim, H.D. (2021) Crude Saponin from Platycodon grandiflorum Attenuates Aβ-Induced Neurotoxicity via Antioxidant, Anti-Inflammatory and Anti-Apoptotic Signaling Pathways. Antioxidants, 10, Article 1968. https://doi.org/10.3390/antiox10121968
|
[17]
|
Beltramo, E., Berrone, E., Tarallo, S. and Porta, M. (2008) Effects of Thiamine and Benfotiamine on Intracellular Glucose Metabolism and Relevance in the Prevention of Diabetic Complications. Acta Diabetologica, 45, 131-141. https://doi.org/10.1007/s00592-008-0042-y
|
[18]
|
Lu, H., Chen, Y., Sun, X., Tong, B. and Fan, X. (2015) Effects of Luteolin on Retinal Oxidative Stress and Inflammation in Diabetes. RSC Advances, 5, 4898-4904. https://doi.org/10.1039/c4ra10756j
|
[19]
|
Vincken, J., Heng, L., De Groot Aede, D.G.A. and Gruppen, H. (2007) Saponins, Classification and Occurrence in the Plant Kingdom. ChemInform, 38. https://doi.org/10.1002/chin.200720227
|
[20]
|
Tontonoz, P. and Spiegelman, B.M. (2008) Fat and beyond: The Diverse Biology of PPARγ. Annual Review of Biochemistry, 77, 289-312. https://doi.org/10.1146/annurev.biochem.77.061307.091829
|
[21]
|
Qvist, R. (2016) Role of PPARG (Pro 12 Ala) in Malaysian Type 2 Diabetes Mellitus Patients. Journal of Diabetes & Metabolism, 7, 1-17. https://doi.org/10.4172/2155-6156.c1.057
|
[22]
|
Eguchi, K., Manabe, I., Oishi-Tanaka, Y., Ohsugi, M., Kono, N., Ogata, F., et al. (2012) Saturated Fatty Acid and TLR Signaling Link Β Cell Dysfunction and Islet Inflammation. Cell Metabolism, 15, 518-533. https://doi.org/10.1016/j.cmet.2012.01.023
|
[23]
|
Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., et al. (2011) Fatty Acid-Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nature Immunology, 12, 408-415. https://doi.org/10.1038/ni.2022
|
[24]
|
Faccidomo, S., Holstein, S.E., Santanam, T.S., Saunders, B.L., Swaim, K.S., Reid, G.T., et al. (2020) Pharmacological Inhibition of Glycogen Synthase Kinase 3 Increases Operant Alcohol Self-Administration in a Manner Associated with Altered pGSK-3β, Protein Interacting with C Kinase and GluA2 Protein Expression in the Reward Pathway of Male C57BL/6J Mice. Behavioural Pharmacology, 31, 15-26. https://doi.org/10.1097/fbp.0000000000000501
|
[25]
|
Jensen, J., Brennesvik, E.O., Lai, Y. and Shepherd, P.R. (2007) GSK-3β Regulation in Skeletal Muscles by Adrenaline and Insulin: Evidence That PKA and PKB Regulate Different Pools of GSK-3. Cellular Signalling, 19, 204-210. https://doi.org/10.1016/j.cellsig.2006.06.006
|
[26]
|
Li, Z., Li, Y., Overstreet, J.M., Chung, S., Niu, A., Fan, X., et al. (2018) Inhibition of Epidermal Growth Factor Receptor Activation Is Associated with Improved Diabetic Nephropathy and Insulin Resistance in Type 2 Diabetes. Diabetes, 67, 1847-1857. https://doi.org/10.2337/db17-1513
|
[27]
|
Sheng, L., Bayliss, G. and Zhuang, S. (2021) Epidermal Growth Factor Receptor: A Potential Therapeutic Target for Diabetic Kidney Disease. Frontiers in Pharmacology, 11, Article 598910. https://doi.org/10.3389/fphar.2020.598910
|
[28]
|
Ding, X., Meng, C., Dong, H., Zhang, S., Zhou, H., Tan, W., et al. (2022) Extracellular Hsp90α, Which Participates in Vascular Inflammation, Is a Novel Serum Predictor of Atherosclerosis in Type 2 Diabetes. BMJ Open Diabetes Research & Care, 10, e002579. https://doi.org/10.1136/bmjdrc-2021-002579
|
[29]
|
Huang, X., Liu, G., Guo, J. and Su, Z. (2018) The PI3K/AKT Pathway in Obesity and Type 2 Diabetes. International Journal of Biological Sciences, 14, 1483-1496. https://doi.org/10.7150/ijbs.27173
|
[30]
|
Bouskila, M., Hunter, R.W., Ibrahim, A.F.M., Delattre, L., Peggie, M., van Diepen, J.A., et al. (2010) Allosteric Regulation of Glycogen Synthase Controls Glycogen Synthesis in Muscle. Cell Metabolism, 12, 456-466. https://doi.org/10.1016/j.cmet.2010.10.006
|
[31]
|
Chawla, D. and Kumar Tripathi, A. (2019) Role of Advanced Glycation End Products (Ages) and Its Receptor (Rage)-Mediated Diabetic Vascular Complications. Integrative Food, Nutrition and Metabolism, 3, 1-7. https://doi.org/10.15761/ifnm.1000267
|
[32]
|
Shraim, B.A., Moursi, M.O., et al. (2021) The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Frontiers in Pharmacology, 12, Article 701390.
|