基于网络药理学和分子对接的桔梗抗糖尿病作用机制研究
Research on the Anti-Diabetic Mechanism of Platycodon grandiflorus Based on Network Pharmacology and Molecular Docking
DOI: 10.12677/hjbm.2025.153073, PDF, HTML, XML,    科研立项经费支持
作者: 刘雪颖, 张 娜:北京工业大学化学与生命科学学院,北京
关键词: 2型糖尿病桔梗网络药理学Type 2 Diabetes Mellitus Platycodon grandiflorus Network Pharmacology
摘要: 目的:通过网络药理学探究桔梗抗2型糖尿病(T2DM)的治疗机制。方法:利用TCMSP和HERB数据库筛选桔梗活性成分,通过PharmMapper和SwissTargetPrediction数据库获取成分作用靶点,结合GEO和GeneCards数据库获取T2DM相关基因。将共有靶点导入STRING数据库进行蛋白互作分析,使用Cytoscape 3.8.2可视化,并通过Metascape进行GO和KEGG富集分析。分子对接评估活性成分与靶点的结合能力。结果:筛选出27个桔梗活性成分,对应192个药物作用靶点、1815个疾病靶点及74个共有靶点。GO分析显示靶基因参与MAPK信号调控和蛋白质磷酸化等过程;KEGG分析表明桔梗成分通过PI3K-AKT信号通路、胰岛素抵抗及AGE-RAGE糖尿病并发症通路发挥作用。分子对接结果表明,桔梗中的木犀草素、硫胺素等活性成分与核心靶点具有较强结合能力。结论:桔梗通过EGFR、GSK3B、HSP90AA1、PPARG、TLR4等多靶点调控胰岛素受体,协同治疗T2DM。
Abstract: Objective: To explore the therapeutic mechanisms of Platycodon grandiflorus (Platycodon) against type 2 diabetes mellitus (T2DM) using network pharmacology. Methods: Active components of Platycodon were screened using the TCMSP and HERB databases. The targets of these components were obtained through the PharmMapper and SwissTargetPrediction databases, while T2DM-related genes were collected from the GEO and GeneCards databases. Common targets were imported into the STRING database for protein-protein interaction (PPI) analysis, visualized using Cytoscape 3.8.2, and subjected to GO and KEGG enrichment analysis via Metascape. Molecular docking was performed to evaluate the binding affinity between active components and their targets. Results: A total of 27 active components of Platycodon were identified, corresponding to 192 drug targets, 1815 disease targets, and 74 common targets. GO analysis revealed that the target genes were involved in processes such as MAPK signaling regulation and protein phosphorylation. KEGG analysis indicated that Platycodon components exert their effects through the PI3K-AKT signaling pathway, insulin resistance, and the AGE-RAGE diabetic complications pathway. Molecular docking results demonstrated strong binding affinities between Platycodon’s active components (e.g., luteolin and thiamine) and core targets. Conclusion: Platycodon regulates insulin receptors through multiple targets, including EGFR, GSK3B, HSP90AA1, PPARG, and TLR4, synergistically treating T2DM.
文章引用:刘雪颖, 张娜. 基于网络药理学和分子对接的桔梗抗糖尿病作用机制研究[J]. 生物医学, 2025, 15(3): 651-664. https://doi.org/10.12677/hjbm.2025.153073

1. 引言

糖尿病(Diabetes Mellitus, DM)是一种慢性代谢性疾病,核心机制为胰岛素分泌不足或作用异常,导致高血糖[1]。随着生活方式改变,糖尿病已成为全球公共卫生的重要挑战,对患者健康和社会经济造成沉重负担[2]。2型糖尿病(T2DM)的西医治疗包括生活方式干预、口服降糖药物及胰岛素注射等方法,但存在难以坚持、副作用、耐药性和依从性差等问题[3]。中医强调整体观念和辨证论治,通过调和气血阴阳,标本兼治,有效缓解并发症并提高患者生活质量[4]

桔梗作为传统中药材,因其多糖类、三萜皂苷类、黄酮类等活性成分[5],具有广泛的药理作用。研究表明,桔梗在代谢性疾病、炎症、肿瘤、心血管疾病及肝脏保护等方面均显示出疗效[6] [7]。尤其在糖尿病研究中,桔梗通过改善胰岛素敏感性、调控葡萄糖代谢和保护胰岛β细胞,表现出显著的降血糖效果[8]

网络药理学通过整合化学、生物和药理数据[9],全面解析药物的多成分、多靶点、多通路作用特点[10],从系统和整体的角度研究药物与生物体之间的相互作用。本研究拟通过网络药理学方法分析桔梗治疗T2DM的作用机制,为桔梗治疗T2DM提供细胞分子层面的参考。

2. 材料与方法

2.1. 桔梗活性成分收集

基于TCMSP和HERB数据库中所报道的桔梗化学成分,通过Swiss ADME平台[11] (http://www.swissadme.ch/)进行吸收、分布及毒性预测以筛选桔梗有效活性成分,具体标准为:① 肠胃吸收为“High”,表明成分具备良好口服生物利用度;② 5类药性预测(Lipinski, Ghose, Veber, Egan, Muegge)结果中至少2项为“Yes”。

2.2. 活性化合物作用靶标及疾病靶点的筛选

将上述筛选得到的有效成分导入SwissTargetPrediction数据库(http://www.swisstargetprediction.ch/)和PharmMapper (https://lilab-ecust.cn/)数据库,预测其潜在作用靶点,选取每个活性成分排名前十的作用靶点,获得桔梗活性成分作用靶点。

基于GEO数据库,设定LogFC > 0.5为上调基因,LogFC < −0.5为下调基因,分析T2DM患者与非患者胰岛细胞周期基因表达谱,筛选差异表达基因(DEGs)。以“T2DM”为关键词通过GeneCards数据库(https://www.genecards.org)将两个数据库得到的靶点去除重复基因,得到T2DM相关靶点。

2.3. 构建活性成分–交集靶点的作用网络

将活性成分靶点和疾病靶点上传至Venny 2.1.0平台(http://www.liuxiaoyuyuan.cn/),获得活性成分作用靶标与T2DM靶点的交集靶点。进一步运用Cytoscape 3.8.2构建活性成分与交集靶点的作用网络,并计算节点Degree、Betweenness centrality及Closeness centrality等拓扑参数以识别重要活性成分及靶点。

2.4. 交互网络的构建及核心网络筛选

将活性成分–疾病交集靶点导入STRING数据库(https://string-db.org/),设置物种为“Homo sapiens”,置信度阈值 ≥ 0.9,获取蛋白相互作用关系。利用Cytoscape 3.8.2构建PPI网络并进行可视化,通过MODE插件识别核心网络模块。

2.5. GO生物分析和KEGG通路分析

将筛选得到的交集靶点导入Metascape数据库(https://metascape.org/),设定阈值P < 0.05,进行GO生物学过程富集分析和KEGG代谢通路富集分析,并通过微生信在线绘图平台进行可视化。

2.6. 分子对接

本研究采用基于结构的分子对接方法,利用Discovery Studio 4.0进行分子对接。选取桔梗抗T2DM活性成分及其核心靶点进行对接。靶点蛋白晶体结构从RCSB PDB数据库(http://www.rcsb.org/pdb)获取,对接后根据结合自由能(ΔG, kcal/mol)筛选最优构象,并通过“Analyze Ligand Poses”模块分析氢键、疏水作用、π-π堆积及静电相互作用。

3. 结果

3.1. 桔梗活性成分

基于TCMSP和HERB数据库检索结果,经SwissADME药代动力学预测,共获得27个桔梗活性化合物(表1)。筛选得到的活性成分可以根据化学结构大致分为以下几类:含苯环的芳香族化合物(如黄酮类、酚类等)、含糖链的糖苷类化合物、含长碳链的脂肪酸类化合物、含甾体骨架的甾醇类化合物,以及含氮杂环的生物碱类化合物等。

3.2. 桔梗活性成分作用靶点与T2DM交集靶点的筛选

利用SwissTargetPrediction和PharmMapper数据库筛选各成分相关度前十的靶点,去重后得到192

Table 1. Information on active ingredients in Platycodon grandiflorus

1. 桔梗中活性成分的信息

成分编号

成分名称

结构式

MOL001689

acacetin

MOL000006

luteolin

MOL004580

cis-Dihydroquercetin

HBIN040223

platycoside h

MOL006070

robinin

MOL004355

Spinasterol

HBIN015686

α-spinasteryl-β-d-glucoside

续表

HBIN016949

Artemisetin

MOL001691

vitamin c

MOL002778

THZ

MOL000421

nicotinic acid

MOL006000

Cyclopentenone

MOL005990

1-methoxy-1,2-butadiene

MOL005991

ISOPROPYL FORMATE

MOL005999

Crotonaldehyde

MOL006001

Isobutenol

MOL006005

Allyloxyethylene

MOL006020

5-hexenoic acid

MOL006039

Methyl 3-methyl-2-pentenoate

MOL000069

palmitic acid

续表

MOL000067

L-Valin

MOL000068

L-Ile

HBIN037099

(+)-n-methyl laurotetanine

HBIN037116

n-methylplatydesmin

MOL006047

Methylbutyl-1,2-benzenedicarboxylate

MOL006077

Thiamine

个桔梗活性成分作用靶点。基于GEO数据库分析2型糖尿病(T2DM)患者与非患者胰岛细胞周期基因表达谱,筛选出119个差异表达基因(图1)。结合GeneCards数据库检索获得的1725个疾病相关基因,整合并去重后,最终获得1815个T2DM相关基因。将得到的药物潜在靶点与疾病靶点进行对比,得到桔梗T2DM交集基因74个,见图2

3.3. 构建活性成分–交集靶点的作用网络分析

化合物–疾病–靶点网络包含103个节点(27个活性化合物、74个靶点、1个桔梗节点、1个T2DM节点)和216条边(图3)。红色节点代表桔梗活性化合物,绿色节点代表药物–疾病交集靶点,边表示化合物–靶点及疾病间的相互作用关系。节点度值反映其连接数,高值节点可能为关键化合物或靶点。网络呈现多成分–多靶点相互作用机制,体现中药多靶点特性。度值前5的化合物为棕榈酸、α-菠菜甾醇基-β-d-葡萄糖苷、5-己烯酸、菠菜甾醇和硫胺素,分别与8、8、7、7、6个靶点相互作用;度值前5的靶点为ACHE、CA1、AKR1B1、HSD11B1和PTPN1,分别与5、5、4、4、4个化合物相互作用。

Figure 1. The differential gene expression map of cell cycle genes in islet cells between T2DM patients and non-patients

1. T2DM患者与非患者胰岛细胞周期基因表达谱差异基因图

Figure 2. Venn diagram of the intersection genes between the targets of Platycodon grandiflorus and those related to T2DM

2. 桔梗作用靶点与T2DM相关靶点的交集基因韦恩图

3.4. 交互网络的构建及核心网络筛选

将上述交集基因导入STRING数据库进行蛋白相互作用分析,结果通过Cytoscape 3.8.2可视化。PPI网络包含74个节点和458条边(图4),节点代表靶点蛋白,其大小和颜色与度值成正比(节点越大、颜色越蓝表示度值越高),边代表蛋白相互作用。

网络拓扑参数分析显示,网络度值中位数为10.5。以度值中位数的二倍为筛选条件,获得9个重要靶点:PPARG、STAT3、GSK3B、EGFR、JUN、PPARA、ESR1、TLR4、HSP90AA1,分别与43、39、34、32、31、29、28、27、26个交集靶点相互作用,作为核心基因靶点筛选的首个条件。利用MCODE

Figure 3. Network diagram of “drug-active ingredient-potential target-disease”

3. “药物–活性成分–潜在靶点–疾病”网络图

Figure 4. Protein-protein interaction network diagram of disease targets treated by Platycodon

4. 桔梗治疗疾病靶点的蛋白质相互作用网络图

模块对74个交集靶点进行聚类分析,获得两个模块,选取评分较高的模块(Score = 13.143,15个节点,92条边,图5),推测其为桔梗治疗T2DM的关键模块,表明桔梗可能通过多靶点协同作用发挥抗T2DM效应。

Figure 5. Key module diagram of the protein-protein interaction network for disease targets treated by Platycodon

5. 桔梗治疗疾病靶点的蛋白质相互作用网络关键模块图

3.5. GO生物分析和KEGG通路分析

对桔梗抗T2DM靶点进行GO功能富集分析(P < 0.05),筛选出913个生物过程(BP)、79个细胞组成(CC)和112个分子功能(MF)条目。按P值排序,选取前10条BP、CC和MF绘制条形图(图6)。富集结果显示,交集靶点主要参与MAPK级联反应调节、磷代谢和蛋白质修饰的正向调控、ERK1/ERK2级联反应调节等生物过程,涉及APP、DRD2、DUSP1、EGFR、ELANE、HMGCR等29个基因,作为核心靶点筛选的第二个条件。

对桔梗抗T2DM靶点进行KEGG功能富集分析,筛选出307条通路,按P值排序后选取前20条显著性通路进行可视化(图7)。图中圆圈大小表示富集基因占通路基因的比例,颜色由绿到红表示P值由小到大。结果显示,桔梗主要通过PI3K-AKT信号通路、胰岛素抵抗信号通路和AGE-RAGE信号通路等发挥抗T2DM作用,涉及BCL2L1、EGFR、GSK3B、HSP90AA1、IL2等21个靶点,作为核心基因靶点筛选的第三个条件。

综合上述三个条件,取交集获得5个核心靶点EGFR、GSK3B、HSP90AA1、PPARG、TLR4 (图8)。

3.6. 分子对接

据上述研究结果及相关文献报道,木犀草素(Luteolin)与硫胺素(Thiamine)等活性化合物表现出显著的降糖作用[12] [13]。选取木犀草素与硫胺素作为配体,与其对应的核心靶点进行分子对接分析,如图9

Figure 6. Bar chart of GO functional enrichment analysis results

6. GO功能富集分析结果柱形图

示,活性化合物与靶点蛋白的结合位点均位于激酶结构域内,与关键氨基酸残基形成特异性相互作用。前者与GSK3β活性位点Asp200、Val135和Lys85形成极性作用(图9(a)),其苯环与Phe67形成π-π堆积作用。后者与GSK3β分别与Val110、Tyr134、Arg141和Ile62形成极性与非极性作用(图9(b))。上述结果与文献报道的靶点蛋白抑制剂结合模式一致[14] [15],验证了分子对接结果的可靠性。

4. 讨论

桔梗(Platycodon grandiflorus)是一种传统中药材,其干燥根部被广泛用于中医药领域。现代药理学研究表明,桔梗具有多种生物活性,主要含有皂苷、黄酮及甾醇类化合物,具有抗炎、免疫调节、抗氧化和

Figure 7. Bubble chart of KEGG pathway enrichment analysis for intersection targets

7. 交集靶点KEGG通路富集分析气泡图

Figure 8. Intersection target diagram of PPI network topology analysis, GO, and KEGG analysis

8. PPI网络拓扑分析、GO及KEGG分析交集靶点图

Figure 9. Visualization of molecular docking of luteolin with GSK3B (a), visualization of molecular docking of thiamine with GSK3B (b)

9. 木犀草素与GSK3B分子对接可视化图(a),硫胺素与GSK3B分子对接可视化图(b)

抗肿瘤[16]等药理作用。

桔梗的27个活性化合物作用于74个靶点,体现了中药多成分、多靶点的治疗特点。部分化合物已证实具有降糖作用:硫胺素可改善糖尿病性神经病变和肾病,缓解疼痛并降低蛋白尿[17];木犀草素通过抑制NF-κB信号通路减少促炎因子(如TNF-α、IL-6)释放,改善胰岛素抵抗[18],同时激活AMPK通路,增强葡萄糖摄取和代谢,降低血糖并提高胰岛素敏感性[13]。然而,桔梗皂苷类化合物因分子量大、极性高、溶解性差及药代动力学不佳[19],未充分体现其治疗作用。其他化合物虽缺乏直接治疗糖尿病的报道,但具有抗炎、抗氧化及代谢调节潜力,可能对糖尿病治疗有益,需进一步研究验证,为桔梗治疗T2DM提供理论依据。

化合物–疾病–靶点网络分析表明,桔梗治疗T2DM通过多靶点协同作用实现,其中PPARG、TLR4、GSK3B、EGFR和HSP90AA1可能是核心靶点。PPARG是调节胰岛素敏感性、脂质代谢和炎症的关键核受体,其激活可改善葡萄糖和脂质代谢,减轻炎症反应[20]。研究表明,PPARG基因的p.Pro12Ala变异与2型糖尿病风险显著相关,可能通过影响脂肪细胞分化和胰岛素敏感性增加疾病易感性[21]。TLR4通过识别游离脂肪酸(FFAs)、晚期糖基化终末产物(AGEs)等内源性配体,激活NF-κB/MAPK信号通路,促进促炎因子(TNF-α、IL-6等)释放,导致胰岛素受体底物(IRS)信号抑制,加剧胰岛素抵抗[22]。在胰岛β细胞中,TLR4过度激活可诱导细胞凋亡,损害胰岛素分泌功能[23]。GSK3B是葡萄糖代谢的重要调节激酶,其过度活化会抑制糖原合酶,减少血糖利用,导致胰岛素抵抗和高血糖[24]。胰岛素通过PI3K/Akt通路抑制GSK3B活性,促进糖原合成和葡萄糖代谢[25]。EGFR (表皮生长因子受体)在糖尿病治疗中的潜在作用主要与其调控代谢和组织修复功能相关,研究表明,EGFR信号通路可能影响胰腺β细胞的增殖与存活、肝脏和脂肪组织的胰岛素敏感性,并参与糖尿病肾病和视网膜病变的进展[26] [27]。HSP90AA1作为重要的分子伴侣蛋白,在糖尿病发生发展中发挥双重调控作用:一方面通过稳定IKKβ/NF-κB和TGF-β/Smad3等信号通路,加剧肝脏和脂肪组织的胰岛素抵抗、促进糖尿病肾病等并发症进展;另一方面又通过维持AKT/PDX1等关键蛋白稳定性来保护胰岛β细胞功能[28]。其他靶点可能通过改善胰岛素信号和减少炎症,在T2DM治疗及并发症管理中发挥重要作用。

KEGG通路富集分析表明,靶点显著富集于PI3K-AKT信号通路、胰岛素抵抗信号通路、AGE-RAGE信号通路和ErbB信号通路,这些通路与糖尿病密切相关。PI3K-AKT通路通过调节胰岛素信号传导、葡萄糖和脂质代谢以及抑制炎症反应[29],在T2DM治疗中发挥核心作用。胰岛素抵抗是T2DM的关键病理特征,胰岛素通过激活PI3K-AKT通路调节下游GSK3β和糖原合酶(GS),促进糖原合成[30]。AGE-RAGE信号通路的激活会加剧炎症和氧化应激,晚期糖基化终末产物(AGEs)通过RAGE受体触发慢性炎症和氧化应激,加重糖尿病并发症(如心血管病和肾病) [31]。抑制该通路可减少AGE-RAGE相互作用,缓解并发症。ErbB信号通路(如EGFR/Her家族)通过调控胰岛素敏感性、β细胞功能和并发症参与糖尿病进程[32]

综上研究,本研究通过数据挖掘和分子对接技术对桔梗多成分、多靶点、多通路抗T2DM的作用机制进行预测,发现桔梗的主要活性成分可通过靶向PPARG、TLR4、GSK3B、EGFR和HSP90AA1等核心靶点作用在PI3K-AKT信号通路、胰岛素抵抗信号通路、AGE-RAGE信号通路和ErbB等信号通路发挥抗T2DM的作用。鉴于网络药理学的局限性,课题组后期将围绕物质基础–药效学评价–通路验证等开展实验研究,为桔梗治疗T2DM以及后期的药物开发提供理论和实验依据。

基金项目

北京工业大学研究生精品课程建设,北京工业大学教育教学课题(ER2024RCA02)。

参考文献

[1] Kahn, S.E., Cooper, M.E. and Del Prato, S. (2014) Pathophysiology and Treatment of Type 2 Diabetes: Perspectives on the Past, Present, and Future. The Lancet, 383, 1068-1083.
https://doi.org/10.1016/s0140-6736(13)62154-6
[2] Magliano, D.J. and Boyko, E.J. (2022) IDF Diabetes Atlas.
[3] Zheng, Y., Ley, S.H. and Hu, F.B. (2017) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98.
https://doi.org/10.1038/nrendo.2017.151
[4] Smith, M., Burton, A. and Falkenberg, T. (2014) World Health Organization Traditional Medicine Strategy 2014-2023: New Strategy for Traditional and Complementary Medicine Includes the Development and Use of Herbal Medicinal Preparations. Herbalgram, 102, 24, 26, 28-29.
[5] Li, Y., Xu, Q., Xu, W., Guo, X., Zhang, S. and Chen, Y. (2015) Mechanisms of Protection against Diabetes-Induced Impairment of Endothelium-Dependent Vasorelaxation by Tanshinone IIA. Biochimica et Biophysica ActaGeneral Subjects, 1850, 813-823.
https://doi.org/10.1016/j.bbagen.2015.01.007
[6] Noh, E., Kim, J., Lee, H.Y., Song, H., Joung, S.O., Yang, H.J., et al. (2019) Immuno-Enhancement Effects of Platycodon grandiflorum Extracts in Splenocytes and a Cyclophosphamide-Induced Immunosuppressed Rat Model. BMC Complementary and Alternative Medicine, 19, Article No. 322.
https://doi.org/10.1186/s12906-019-2724-0
[7] Ji, M., Bo, A., Yang, M., Xu, J., Jiang, L., Zhou, B., et al. (2020) The Pharmacological Effects and Health Benefits of Platycodon Grandiflorus—A Medicine Food Homology Species. Foods, 9, Article 142.
https://doi.org/10.3390/foods9020142
[8] Kim, K., Seo, E., Lee, Y., Lee, T., Cho, Y., Ezaki, O., et al. (2000) Effect of Dietary Platycodon grandiflorum on the Improvement of Insulin Resistance in Obese Zucker Rats. The Journal of Nutritional Biochemistry, 11, 420-424.
https://doi.org/10.1016/s0955-2863(00)00098-x
[9] Zhou, Z., Chen, B., Chen, S., Lin, M., Chen, Y., Jin, S., et al. (2020) Applications of Network Pharmacology in Traditional Chinese Medicine Research. Evidence-Based Complementary and Alternative Medicine, 2020, Article 1646905.
https://doi.org/10.1155/2020/1646905
[10] Wu, J.S., Zhang, F., Li, Z.Z., et al. (2022) Integration Strategy of Network Pharmacology in Traditional Chinese Medicine: A Narrative Review. Journal of Traditional Chinese Medicine, 42, Article 479.
[11] Daina, A., Michielin, O. and Zoete, V. (2017) Swiss ADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 7, Article No. 42717.
[12] Thornalley, P. (2005) The Potential Role of Thiamine (Vitamin B1) in Diabetic Complications. Current Diabetes Reviews, 1, 287-298.
https://doi.org/10.2174/157339905774574383
[13] Deqiu, Z., Kang, L., Jiali, Y., Baolin, L. and Gaolin, L. (2011) Luteolin Inhibits Inflammatory Response and Improves Insulin Sensitivity in the Endothelium. Biochimie, 93, 506-512.
https://doi.org/10.1016/j.biochi.2010.11.002
[14] Dajani, R., Fraser, E., Roe, S.M., Young, N., Good, V., Dale, T.C., et al. (2001) Crystal Structure of Glycogen Synthase Kinase 3β. Cell, 105, 721-732.
https://doi.org/10.1016/s0092-8674(01)00374-9
[15] Arthur, D.E., Uzairu, A., Mamza, P., Abechi, S.E. and Shallangwa, G.A. (2018) Structure-Based Optimization of Tyrosine Kinase Inhibitors: A Molecular Docking Study. Network Modeling Analysis in Health Informatics and Bioinformatics, 7, Article No. 9.
https://doi.org/10.1007/s13721-018-0170-4
[16] Ji, Y., Kim, S., Kim, J., Jang, G.Y., Moon, M. and Kim, H.D. (2021) Crude Saponin from Platycodon grandiflorum Attenuates Aβ-Induced Neurotoxicity via Antioxidant, Anti-Inflammatory and Anti-Apoptotic Signaling Pathways. Antioxidants, 10, Article 1968.
https://doi.org/10.3390/antiox10121968
[17] Beltramo, E., Berrone, E., Tarallo, S. and Porta, M. (2008) Effects of Thiamine and Benfotiamine on Intracellular Glucose Metabolism and Relevance in the Prevention of Diabetic Complications. Acta Diabetologica, 45, 131-141.
https://doi.org/10.1007/s00592-008-0042-y
[18] Lu, H., Chen, Y., Sun, X., Tong, B. and Fan, X. (2015) Effects of Luteolin on Retinal Oxidative Stress and Inflammation in Diabetes. RSC Advances, 5, 4898-4904.
https://doi.org/10.1039/c4ra10756j
[19] Vincken, J., Heng, L., De Groot Aede, D.G.A. and Gruppen, H. (2007) Saponins, Classification and Occurrence in the Plant Kingdom. ChemInform, 38.
https://doi.org/10.1002/chin.200720227
[20] Tontonoz, P. and Spiegelman, B.M. (2008) Fat and beyond: The Diverse Biology of PPARγ. Annual Review of Biochemistry, 77, 289-312.
https://doi.org/10.1146/annurev.biochem.77.061307.091829
[21] Qvist, R. (2016) Role of PPARG (Pro 12 Ala) in Malaysian Type 2 Diabetes Mellitus Patients. Journal of Diabetes & Metabolism, 7, 1-17.
https://doi.org/10.4172/2155-6156.c1.057
[22] Eguchi, K., Manabe, I., Oishi-Tanaka, Y., Ohsugi, M., Kono, N., Ogata, F., et al. (2012) Saturated Fatty Acid and TLR Signaling Link Β Cell Dysfunction and Islet Inflammation. Cell Metabolism, 15, 518-533.
https://doi.org/10.1016/j.cmet.2012.01.023
[23] Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., et al. (2011) Fatty Acid-Induced NLRP3-ASC Inflammasome Activation Interferes with Insulin Signaling. Nature Immunology, 12, 408-415.
https://doi.org/10.1038/ni.2022
[24] Faccidomo, S., Holstein, S.E., Santanam, T.S., Saunders, B.L., Swaim, K.S., Reid, G.T., et al. (2020) Pharmacological Inhibition of Glycogen Synthase Kinase 3 Increases Operant Alcohol Self-Administration in a Manner Associated with Altered pGSK-3β, Protein Interacting with C Kinase and GluA2 Protein Expression in the Reward Pathway of Male C57BL/6J Mice. Behavioural Pharmacology, 31, 15-26.
https://doi.org/10.1097/fbp.0000000000000501
[25] Jensen, J., Brennesvik, E.O., Lai, Y. and Shepherd, P.R. (2007) GSK-3β Regulation in Skeletal Muscles by Adrenaline and Insulin: Evidence That PKA and PKB Regulate Different Pools of GSK-3. Cellular Signalling, 19, 204-210.
https://doi.org/10.1016/j.cellsig.2006.06.006
[26] Li, Z., Li, Y., Overstreet, J.M., Chung, S., Niu, A., Fan, X., et al. (2018) Inhibition of Epidermal Growth Factor Receptor Activation Is Associated with Improved Diabetic Nephropathy and Insulin Resistance in Type 2 Diabetes. Diabetes, 67, 1847-1857.
https://doi.org/10.2337/db17-1513
[27] Sheng, L., Bayliss, G. and Zhuang, S. (2021) Epidermal Growth Factor Receptor: A Potential Therapeutic Target for Diabetic Kidney Disease. Frontiers in Pharmacology, 11, Article 598910.
https://doi.org/10.3389/fphar.2020.598910
[28] Ding, X., Meng, C., Dong, H., Zhang, S., Zhou, H., Tan, W., et al. (2022) Extracellular Hsp90α, Which Participates in Vascular Inflammation, Is a Novel Serum Predictor of Atherosclerosis in Type 2 Diabetes. BMJ Open Diabetes Research & Care, 10, e002579.
https://doi.org/10.1136/bmjdrc-2021-002579
[29] Huang, X., Liu, G., Guo, J. and Su, Z. (2018) The PI3K/AKT Pathway in Obesity and Type 2 Diabetes. International Journal of Biological Sciences, 14, 1483-1496.
https://doi.org/10.7150/ijbs.27173
[30] Bouskila, M., Hunter, R.W., Ibrahim, A.F.M., Delattre, L., Peggie, M., van Diepen, J.A., et al. (2010) Allosteric Regulation of Glycogen Synthase Controls Glycogen Synthesis in Muscle. Cell Metabolism, 12, 456-466.
https://doi.org/10.1016/j.cmet.2010.10.006
[31] Chawla, D. and Kumar Tripathi, A. (2019) Role of Advanced Glycation End Products (Ages) and Its Receptor (Rage)-Mediated Diabetic Vascular Complications. Integrative Food, Nutrition and Metabolism, 3, 1-7.
https://doi.org/10.15761/ifnm.1000267
[32] Shraim, B.A., Moursi, M.O., et al. (2021) The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Frontiers in Pharmacology, 12, Article 701390.