[1]
|
Queiroz-Telles, F., de Hoog, S., Santos, D.W.C.L., Salgado, C.G., Vicente, V.A., Bonifaz, A., et al. (2017) Chromoblastomycosis. Clinical Microbiology Reviews, 30, 233-276. https://doi.org/10.1128/cmr.00032-16
|
[2]
|
Santos, D.W.C.L., de Azevedo, C.D.M.P.E.S., Vicente, V.A., Queiroz-Telles, F., Rodrigues, A.M., de Hoog, G.S., et al. (2021) The Global Burden of Chromoblastomycosis. PLOS Neglected Tropical Diseases, 15, e0009611. https://doi.org/10.1371/journal.pntd.0009611
|
[3]
|
Goyal, S., Castrillón-Betancur, J.C., Klaile, E. and Slevogt, H. (2018) The Interaction of Human Pathogenic Fungi with C-Type Lectin Receptors. Frontiers in Immunology, 9, Article 1261. https://doi.org/10.3389/fimmu.2018.01261
|
[4]
|
Han, H. and Yi, F. (2013) New Insights into TRP Channels: Interaction with Pattern Recognition Receptors. Channels, 8, 13-19. https://doi.org/10.4161/chan.27178
|
[5]
|
Dong, B., Tong, Z., Li, R., Chen, S.C., Liu, W., Liu, W., et al. (2018) Transformation of Fonsecaea pedrosoi into Sclerotic Cells Links to the Refractoriness of Experimental Chromoblastomycosis in BALB/c Mice via a Mechanism Involving a Chitin-Induced Impairment of IFN-γ Production. PLOS Neglected Tropical Diseases, 12, e0006237. https://doi.org/10.1371/journal.pntd.0006237
|
[6]
|
Breda, L.C.D., Menezes, I.G., Paulo, L.N.M. and de Almeida, S.R. (2020) Immune Sensing and Potential Immunotherapeutic Approaches to Control Chromoblastomycosis. Journal of Fungi, 7, Article 3. https://doi.org/10.3390/jof7010003
|
[7]
|
da Glória Sousa, M., Reid, D.M., Schweighoffer, E., Tybulewicz, V., Ruland, J., Langhorne, J., et al. (2011) Restoration of Pattern Recognition Receptor Costimulation to Treat Chromoblastomycosis, a Chronic Fungal Infection of the Skin. Cell Host & Microbe, 9, 436-443. https://doi.org/10.1016/j.chom.2011.04.005
|
[8]
|
Breda, L.C.D., Breda, C.N.D.S., de Almeida, J.R.F., Paulo, L.N.M., Jannuzzi, G.P., Menezes, I.D.G., et al. (2020) Fonsecaeapedrosoi Conidia and Hyphae Activate Neutrophils Distinctly: Requirement of TLR-2 and TLR-4 in Neutrophil Effector Functions. Frontiers in Immunology, 11, Article 540064. https://doi.org/10.3389/fimmu.2020.540064
|
[9]
|
Drewniak, A., Gazendam, R.P., Tool, A.T.J., van Houdt, M., Jansen, M.H., van Hamme, J.L., et al. (2013) Invasive Fungal Infection and Impaired Neutrophil Killing in Human CARD9 Deficiency. Blood, 121, 2385-2392. https://doi.org/10.1182/blood-2012-08-450551
|
[10]
|
Huang, C., Deng, W., Zhang, Y., Zhang, K., Ma, Y., Song, Y., et al. (2022) CARD9 Deficiency Predisposing Chromoblastomycosis: A Case Report and Comparative Transcriptome Study. Frontiers in Immunology, 13, Article 984093. https://doi.org/10.3389/fimmu.2022.984093
|
[11]
|
Li, L.X. and Yoon, H. (2025) Dematiaceous Molds. Infectious Disease Clinics of North America, 39, 75-92. https://doi.org/10.1016/j.idc.2024.11.006
|
[12]
|
Tsuneto, L.T., Arce-Gomez, B., Petzl-Erler, M.L. and Queiroz-Telles, F. (1989) HLA-A29 and Genetic Susceptibility to Chromoblastomycosis. Medical Mycology, 27, 181-185. https://doi.org/10.1080/02681218980000241
|
[13]
|
Wüthrich, M., Wang, H., Li, M., Lerksuthirat, T., Hardison, S.E., Brown, G.D., et al. (2015) Fonsecaea pedrosoi‐Induced Th17‐cell Differentiation in Mice Is Fostered by Dectin‐2 and Suppressed by Mincle Recognition. European Journal of Immunology, 45, 2542-2552. https://doi.org/10.1002/eji.201545591
|
[14]
|
Castro, R.J.A.D., Siqueira, I.M., Jerônimo, M.S., Basso, A.M.M., Veloso Junior, P.H.D.H., Magalhães, K.G., et al. (2017) The Major Chromoblastomycosis Etiologic Agent Fonsecaea pedrosoi Activates the NLRP3 Inflammasome. Frontiers in Immunology, 8, Article 1572. https://doi.org/10.3389/fimmu.2017.01572
|
[15]
|
Kimura, T.F.E., Romera, L.M.D. and de Almeida, S.R. (2020) Fonsecaea pedrosoi Conidia Induces Activation of Dendritic Cells and Increases CD11c+ Cells in Regional Lymph Nodes during Experimental Chromoblastomycosis. Mycopathologia, 185, 245-256. https://doi.org/10.1007/s11046-020-00429-w
|
[16]
|
da Silva, J.P., da Silva, M.B., Salgado, U.I., Diniz, J.A.P., Rozental, S. and Salgado, C.G. (2007) Phagocytosis of Fonsecaea pedrosoiconidia, But Not Sclerotic Cells Caused by Langerhans Cells, Inhibits CD40 and B7-2 Expression. FEMS Immunology & Medical Microbiology, 50, 104-111. https://doi.org/10.1111/j.1574-695x.2007.00239.x
|
[17]
|
Alves de Lima Silva, A., Criado, P.R., Nunes, R.S., Kanashiro-Galo, L., Seixas Duarte, M.I., Sotto, M.N., et al. (2017) Langerhans Cells Express IL-17A in the Epidermis of Chromoblastomycosis Lesions. Biomedicine Hub, 2, 1-8. https://doi.org/10.1159/000477954
|
[18]
|
Breda, L.C.D., de Souza Breda, C.N., Kaihami, G.H., de Almeida, J.R.F., Jannuzzi, G.P., Ferreira, L.G., et al. (2021) Neutrophil-Suppressive Activity over T-Cell Proliferation and Fungal Clearance in a Murine Model of Fonsecaea pedrosoi Infection. Scientific Reports, 11, Article No. 220220. https://doi.org/10.1038/s41598-021-99847-z
|
[19]
|
宋洋. 球形孢子丝菌黑素对巨噬细胞抗原呈递及CD4+T细胞活化的影响及机制研究[D]: [博士学位论文]. 长春: 吉林大学, 2016.
|
[20]
|
Qin, J., Zhang, J., Shi, M., Xi, L. and Zhang, J. (2020) Effect of Fonsecaea monophora on the Polarization of THP-1 Cells to Macrophages. Mycopathologia, 185, 467-476. https://doi.org/10.1007/s11046-020-00444-x
|
[21]
|
Shi, M., Sun, J., Lu, S., Qin, J., Xi, L. and Zhang, J. (2019) Transcriptional Profiling of Macrophages Infected with Fonsecaea monophora. Mycoses, 62, 374-383. https://doi.org/10.1111/myc.12894
|
[22]
|
Zhang, J., Wang, L., Xi, L., Huang, H., Hu, Y., Li, X., et al. (2012) Melanin in a Meristematic Mutant of Fonsecaea monophora Inhibits the Production of Nitric Oxide and Th1 Cytokines of Murine Macrophages. Mycopathologia, 175, 515-522. https://doi.org/10.1007/s11046-012-9588-x
|
[23]
|
Gonçalves, R.d.C.R., Kitagawa, R.R., Raddi, M.S.G., Carlos, I.Z. and Pombeiro-Sponchiado, S.R. (2013) Inhibition of Nitric Oxide and Tumour Necrosis Factor-α Production in Peritoneal Macrophages by Aspergillus nidulans Melanin. Biological and Pharmaceutical Bulletin, 36, 1915-1920. https://doi.org/10.1248/bpb.b13-00445
|
[24]
|
蒋丽, 张军民, 孙九峰, 等. Fonsecaea monophora对巨噬细胞TLR2、TLR4、Dectin-1和TNF-α表达的影响[J].中国真菌学杂志, 2014, 9(3): 134-138.
|
[25]
|
Leeyaphan, C., Hau, C., Takeoka, S., Tada, Y., Bunyaratavej, S., Pattanaprichakul, P., et al. (2016) Immune Response in Human Chromoblastomycosis and Eumycetoma—Focusing on Human Interleukin‐17A, Interferon‐gamma, Tumour Necrosis Factor‐α, Interleukin‐1 β and Human β‐Defensin‐2. Mycoses, 59, 751-756. https://doi.org/10.1111/myc.12526
|
[26]
|
Teixeira de Sousa, M.d.G., Ghosn, E.E.B. and Almeida, S.R. (2006) Absence of CD4+ T Cells Impairs Host Defence of Mice Infected with Fonsecaea pedrosoi. Scandinavian Journal of Immunology, 64, 595-600. https://doi.org/10.1111/j.1365-3083.2006.01846.x
|
[27]
|
Mazo Fávero Gimenes, V., Da Glória de Souza, M., Ferreira, K.S., Marques, S.G., Gonçalves, A.G., Vagner de Castro Lima Santos, D., et al. (2005) Cytokines and Lymphocyte Proliferation in Patients with Different Clinical Forms of Chromoblastomycosis. Microbes and Infection, 7, 708-713. https://doi.org/10.1016/j.micinf.2005.01.006
|
[28]
|
Siqueira, I.M., Wüthrich, M., Li, M., Wang, H., Las-Casas, L.d.O., de Castro, R.J.A., et al. (2020) Early Immune Response against Fonsecaea pedrosoi Requires Dectin-2-Mediated Th17 Activity, Whereas Th1 Response, Aided by Treg Cells, Is Crucial for Fungal Clearance in Later Stage of Experimental Chromoblastomycosis. PLOS Neglected Tropical Diseases, 14, e0008386. https://doi.org/10.1371/journal.pntd.0008386
|
[29]
|
Machado, A.P., Silva, M.R.R. and Fischman, O. (2010) Prolonged Infection by Fonsecaea Pedrosoi after Antigenic Co-Stimulation at Different Sites in Experimental Murine Chromoblastomycosis. Virulence, 1, 29-36. https://doi.org/10.4161/viru.1.1.9920
|
[30]
|
Wagener, J., MacCallum, D.M., Brown, G.D. and Gow, N.A.R. (2017) Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. mBio, 8, e01820-16. https://doi.org/10.1128/mbio.01820-16
|
[31]
|
Pinto, L., Granja, L.F.Z., Almeida, M.A.D., Alviano, D.S., Silva, M.H.D., Ejzemberg, R., et al. (2018) Melanin Particles Isolated from the Fungus Fonsecaea pedrosoi Activates the Human Complement System. Memórias do Instituto Oswaldo Cruz, 113, e180120. https://doi.org/10.1590/0074-02760180120
|
[32]
|
Dong, B., Liu, W., Li, R., Chen, Y., Tong, Z., Zhang, X., et al. (2020) Muriform Cells Can Reproduce by Dividing in an Athymic Murine Model of Chromoblastomycosis Due to Fonsecaea pedrosoi. The American Journal of Tropical Medicine and Hygiene, 103, 704-712. https://doi.org/10.4269/ajtmh.19-0465
|
[33]
|
Siqueira, I.M., de Castro, R.J.A., Leonhardt, L.C.D.M., Jerônimo, M.S., Soares, A.C., Raiol, T., et al. (2017) Modulation of the Immune Response by Fonsecaea pedrosoi Morphotypes in the Course of Experimental Chromoblastomycosis and Their Role on Inflammatory Response Chronicity. PLOS Neglected Tropical Diseases, 11, e0005461. https://doi.org/10.1371/journal.pntd.0005461
|
[34]
|
de Sousa, M.D.G.T., Belda, W., Spina, R., Lota, P.R., Valente, N.S., Brown, G.D., et al. (2014) Topical Application of Imiquimod as a Treatment for Chromoblastomycosis. Clinical Infectious Diseases, 58, 1734-1737. https://doi.org/10.1093/cid/ciu168
|
[35]
|
Wu, X., Chen, W., Yaqoob, M.D., Liu, K., Hu, Y., Lu, Y., et al. (2025) Effects of ALA-PDT on the Murine Footpad Model of Fonsecaea monophora Infection and Its Related Mechanisms in Vivo. Photodiagnosis and Photodynamic Therapy, 51, Article ID: 104452. https://doi.org/10.1016/j.pdpdt.2024.104452
|
[36]
|
Liu, X., Zhang, Z., Sun, J., Fang, R., Ran, X., Liu, Y., et al. (2024) Improving Treatment of Chromoblastomycosis: The Potential of COP1T-HA and Antimicrobial Photodynamic Therapy against Fonsecaea monophora in Vitro. Mycology, 16, 413-417. https://doi.org/10.1080/21501203.2024.2383640
|
[37]
|
Chen, W., Wu, X., Yaqoob, M.D., Liu, K., Hu, Y., Ke, X., et al. (2025) Analysis of the Effect of ALA-PDT on Macrophages in Footpad Model of Mice Infected with Fonsecaea monophora Based on Single-Cell Sequencing. Open Medicine, 20, Article ID: 20241132. https://doi.org/10.1515/med-2024-1132
|