|
[1]
|
Queiroz-Telles, F., de Hoog, S., Santos, D.W.C.L., Salgado, C.G., Vicente, V.A., Bonifaz, A., et al. (2017) Chromoblastomycosis. Clinical Microbiology Reviews, 30, 233-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Santos, D.W.C.L., de Azevedo, C.D.M.P.E.S., Vicente, V.A., Queiroz-Telles, F., Rodrigues, A.M., de Hoog, G.S., et al. (2021) The Global Burden of Chromoblastomycosis. PLOS Neglected Tropical Diseases, 15, e0009611. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Goyal, S., Castrillón-Betancur, J.C., Klaile, E. and Slevogt, H. (2018) The Interaction of Human Pathogenic Fungi with C-Type Lectin Receptors. Frontiers in Immunology, 9, Article 1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Han, H. and Yi, F. (2013) New Insights into TRP Channels: Interaction with Pattern Recognition Receptors. Channels, 8, 13-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dong, B., Tong, Z., Li, R., Chen, S.C., Liu, W., Liu, W., et al. (2018) Transformation of Fonsecaea pedrosoi into Sclerotic Cells Links to the Refractoriness of Experimental Chromoblastomycosis in BALB/c Mice via a Mechanism Involving a Chitin-Induced Impairment of IFN-γ Production. PLOS Neglected Tropical Diseases, 12, e0006237. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Breda, L.C.D., Menezes, I.G., Paulo, L.N.M. and de Almeida, S.R. (2020) Immune Sensing and Potential Immunotherapeutic Approaches to Control Chromoblastomycosis. Journal of Fungi, 7, Article 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
da Glória Sousa, M., Reid, D.M., Schweighoffer, E., Tybulewicz, V., Ruland, J., Langhorne, J., et al. (2011) Restoration of Pattern Recognition Receptor Costimulation to Treat Chromoblastomycosis, a Chronic Fungal Infection of the Skin. Cell Host & Microbe, 9, 436-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Breda, L.C.D., Breda, C.N.D.S., de Almeida, J.R.F., Paulo, L.N.M., Jannuzzi, G.P., Menezes, I.D.G., et al. (2020) Fonsecaeapedrosoi Conidia and Hyphae Activate Neutrophils Distinctly: Requirement of TLR-2 and TLR-4 in Neutrophil Effector Functions. Frontiers in Immunology, 11, Article 540064. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Drewniak, A., Gazendam, R.P., Tool, A.T.J., van Houdt, M., Jansen, M.H., van Hamme, J.L., et al. (2013) Invasive Fungal Infection and Impaired Neutrophil Killing in Human CARD9 Deficiency. Blood, 121, 2385-2392. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Huang, C., Deng, W., Zhang, Y., Zhang, K., Ma, Y., Song, Y., et al. (2022) CARD9 Deficiency Predisposing Chromoblastomycosis: A Case Report and Comparative Transcriptome Study. Frontiers in Immunology, 13, Article 984093. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, L.X. and Yoon, H. (2025) Dematiaceous Molds. Infectious Disease Clinics of North America, 39, 75-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tsuneto, L.T., Arce-Gomez, B., Petzl-Erler, M.L. and Queiroz-Telles, F. (1989) HLA-A29 and Genetic Susceptibility to Chromoblastomycosis. Medical Mycology, 27, 181-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wüthrich, M., Wang, H., Li, M., Lerksuthirat, T., Hardison, S.E., Brown, G.D., et al. (2015) Fonsecaea pedrosoi‐Induced Th17‐cell Differentiation in Mice Is Fostered by Dectin‐2 and Suppressed by Mincle Recognition. European Journal of Immunology, 45, 2542-2552. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Castro, R.J.A.D., Siqueira, I.M., Jerônimo, M.S., Basso, A.M.M., Veloso Junior, P.H.D.H., Magalhães, K.G., et al. (2017) The Major Chromoblastomycosis Etiologic Agent Fonsecaea pedrosoi Activates the NLRP3 Inflammasome. Frontiers in Immunology, 8, Article 1572. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kimura, T.F.E., Romera, L.M.D. and de Almeida, S.R. (2020) Fonsecaea pedrosoi Conidia Induces Activation of Dendritic Cells and Increases CD11c+ Cells in Regional Lymph Nodes during Experimental Chromoblastomycosis. Mycopathologia, 185, 245-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
da Silva, J.P., da Silva, M.B., Salgado, U.I., Diniz, J.A.P., Rozental, S. and Salgado, C.G. (2007) Phagocytosis of Fonsecaea pedrosoiconidia, But Not Sclerotic Cells Caused by Langerhans Cells, Inhibits CD40 and B7-2 Expression. FEMS Immunology & Medical Microbiology, 50, 104-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Alves de Lima Silva, A., Criado, P.R., Nunes, R.S., Kanashiro-Galo, L., Seixas Duarte, M.I., Sotto, M.N., et al. (2017) Langerhans Cells Express IL-17A in the Epidermis of Chromoblastomycosis Lesions. Biomedicine Hub, 2, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Breda, L.C.D., de Souza Breda, C.N., Kaihami, G.H., de Almeida, J.R.F., Jannuzzi, G.P., Ferreira, L.G., et al. (2021) Neutrophil-Suppressive Activity over T-Cell Proliferation and Fungal Clearance in a Murine Model of Fonsecaea pedrosoi Infection. Scientific Reports, 11, Article No. 220220. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
宋洋. 球形孢子丝菌黑素对巨噬细胞抗原呈递及CD4+T细胞活化的影响及机制研究[D]: [博士学位论文]. 长春: 吉林大学, 2016.
|
|
[20]
|
Qin, J., Zhang, J., Shi, M., Xi, L. and Zhang, J. (2020) Effect of Fonsecaea monophora on the Polarization of THP-1 Cells to Macrophages. Mycopathologia, 185, 467-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shi, M., Sun, J., Lu, S., Qin, J., Xi, L. and Zhang, J. (2019) Transcriptional Profiling of Macrophages Infected with Fonsecaea monophora. Mycoses, 62, 374-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, J., Wang, L., Xi, L., Huang, H., Hu, Y., Li, X., et al. (2012) Melanin in a Meristematic Mutant of Fonsecaea monophora Inhibits the Production of Nitric Oxide and Th1 Cytokines of Murine Macrophages. Mycopathologia, 175, 515-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gonçalves, R.d.C.R., Kitagawa, R.R., Raddi, M.S.G., Carlos, I.Z. and Pombeiro-Sponchiado, S.R. (2013) Inhibition of Nitric Oxide and Tumour Necrosis Factor-α Production in Peritoneal Macrophages by Aspergillus nidulans Melanin. Biological and Pharmaceutical Bulletin, 36, 1915-1920. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
蒋丽, 张军民, 孙九峰, 等. Fonsecaea monophora对巨噬细胞TLR2、TLR4、Dectin-1和TNF-α表达的影响[J].中国真菌学杂志, 2014, 9(3): 134-138.
|
|
[25]
|
Leeyaphan, C., Hau, C., Takeoka, S., Tada, Y., Bunyaratavej, S., Pattanaprichakul, P., et al. (2016) Immune Response in Human Chromoblastomycosis and Eumycetoma—Focusing on Human Interleukin‐17A, Interferon‐gamma, Tumour Necrosis Factor‐α, Interleukin‐1 β and Human β‐Defensin‐2. Mycoses, 59, 751-756. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Teixeira de Sousa, M.d.G., Ghosn, E.E.B. and Almeida, S.R. (2006) Absence of CD4+ T Cells Impairs Host Defence of Mice Infected with Fonsecaea pedrosoi. Scandinavian Journal of Immunology, 64, 595-600. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mazo Fávero Gimenes, V., Da Glória de Souza, M., Ferreira, K.S., Marques, S.G., Gonçalves, A.G., Vagner de Castro Lima Santos, D., et al. (2005) Cytokines and Lymphocyte Proliferation in Patients with Different Clinical Forms of Chromoblastomycosis. Microbes and Infection, 7, 708-713. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Siqueira, I.M., Wüthrich, M., Li, M., Wang, H., Las-Casas, L.d.O., de Castro, R.J.A., et al. (2020) Early Immune Response against Fonsecaea pedrosoi Requires Dectin-2-Mediated Th17 Activity, Whereas Th1 Response, Aided by Treg Cells, Is Crucial for Fungal Clearance in Later Stage of Experimental Chromoblastomycosis. PLOS Neglected Tropical Diseases, 14, e0008386. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Machado, A.P., Silva, M.R.R. and Fischman, O. (2010) Prolonged Infection by Fonsecaea Pedrosoi after Antigenic Co-Stimulation at Different Sites in Experimental Murine Chromoblastomycosis. Virulence, 1, 29-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wagener, J., MacCallum, D.M., Brown, G.D. and Gow, N.A.R. (2017) Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. mBio, 8, e01820-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Pinto, L., Granja, L.F.Z., Almeida, M.A.D., Alviano, D.S., Silva, M.H.D., Ejzemberg, R., et al. (2018) Melanin Particles Isolated from the Fungus Fonsecaea pedrosoi Activates the Human Complement System. Memórias do Instituto Oswaldo Cruz, 113, e180120. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Dong, B., Liu, W., Li, R., Chen, Y., Tong, Z., Zhang, X., et al. (2020) Muriform Cells Can Reproduce by Dividing in an Athymic Murine Model of Chromoblastomycosis Due to Fonsecaea pedrosoi. The American Journal of Tropical Medicine and Hygiene, 103, 704-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Siqueira, I.M., de Castro, R.J.A., Leonhardt, L.C.D.M., Jerônimo, M.S., Soares, A.C., Raiol, T., et al. (2017) Modulation of the Immune Response by Fonsecaea pedrosoi Morphotypes in the Course of Experimental Chromoblastomycosis and Their Role on Inflammatory Response Chronicity. PLOS Neglected Tropical Diseases, 11, e0005461. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
de Sousa, M.D.G.T., Belda, W., Spina, R., Lota, P.R., Valente, N.S., Brown, G.D., et al. (2014) Topical Application of Imiquimod as a Treatment for Chromoblastomycosis. Clinical Infectious Diseases, 58, 1734-1737. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wu, X., Chen, W., Yaqoob, M.D., Liu, K., Hu, Y., Lu, Y., et al. (2025) Effects of ALA-PDT on the Murine Footpad Model of Fonsecaea monophora Infection and Its Related Mechanisms in Vivo. Photodiagnosis and Photodynamic Therapy, 51, Article ID: 104452. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, X., Zhang, Z., Sun, J., Fang, R., Ran, X., Liu, Y., et al. (2024) Improving Treatment of Chromoblastomycosis: The Potential of COP1T-HA and Antimicrobial Photodynamic Therapy against Fonsecaea monophora in Vitro. Mycology, 16, 413-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, W., Wu, X., Yaqoob, M.D., Liu, K., Hu, Y., Ke, X., et al. (2025) Analysis of the Effect of ALA-PDT on Macrophages in Footpad Model of Mice Infected with Fonsecaea monophora Based on Single-Cell Sequencing. Open Medicine, 20, Article ID: 20241132. [Google Scholar] [CrossRef] [PubMed]
|