[1]
|
Safiri, S., Carson-Chahhoud, K., Noori, M., Nejadghaderi, S.A., Sullman, M.J.M., Ahmadian Heris, J., et al. (2022) Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990-2019: Results from the Global Burden of Disease Study 2019. BMJ, 378, e069679. https://doi.org/10.1136/bmj-2021-069679
|
[2]
|
Cao, X., Wang, Y., Chen, Y., Zhao, M., Liang, L., Yang, M., et al. (2023) Advances in Traditional Chinese Medicine for the Treatment of Chronic Obstructive Pulmonary Disease. Journal of Ethnopharmacology, 307, Article ID: 116229. https://doi.org/10.1016/j.jep.2023.116229
|
[3]
|
Barabási, A., Gulbahce, N. and Loscalzo, J. (2010) Network Medicine: A Network-Based Approach to Human Disease. Nature Reviews Genetics, 12, 56-68. https://doi.org/10.1038/nrg2918
|
[4]
|
Zhou, L., Zhang, L. and Tao, D. (2020) Investigation on the Mechanism of Qubi Formula in Treating Psoriasis Based on Network Pharmacology. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 4683254. https://doi.org/10.1155/2020/4683254
|
[5]
|
Guo, P., Li, R., Piao, T.H., Wang, C.L., Wu, X.L. and Cai, H.Y. (2022) Pathological Mechanism and Targeted Drugs of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 17, 1565-1575. https://doi.org/10.2147/copd.s366126
|
[6]
|
Li, W., Zhang, G., Zhao, Z., Zuo, Y., Sun, Z. and Chen, S. (2023) Exploring the Mechanism of Erchen Decoction in the Treatment of Atherosclerosis Based on Network Pharmacology and Molecular Docking. Medicine, 102, e35248. https://doi.org/10.1097/md.0000000000035248
|
[7]
|
Zhang, J., Wu, X., Zhong, B., Liao, Q., Wang, X., Xie, Y., et al. (2023) Review on the Diverse Biological Effects of Glabridin. Drug Design, Development and Therapy, 17, 15-37. https://doi.org/10.2147/dddt.s385981
|
[8]
|
Ye, Q., Zhang, Q., Yao, H., Xu, A., Liu, Y., Qi, J., et al. (2021) Active-Ingredient Screening and Synergistic Action Mechanism of Shegan Mixture for Anti-Asthma Effects Based on Network Pharmacology in a Mouse Model of Asthma. Drug Design, Development and Therapy, 15, 1765-1777. https://doi.org/10.2147/dddt.s288829
|
[9]
|
Carmeli, E. and Fogelman, Y. (2009) Antioxidant Effect of Polyphenolic Glabridin on LDL Oxidation. Toxicology and Industrial Health, 25, 321-324. https://doi.org/10.1177/0748233709103034
|
[10]
|
Zhu, K., Li, K., Wang, H., Kang, L., Dang, C. and Zhang, Y. (2019) Discovery of Glabridin as Potent Inhibitor of Epidermal Growth Factor Receptor in SK-BR-3 Cell. Pharmacology, 104, 113-125. https://doi.org/10.1159/000496798
|
[11]
|
Sun, X., Chen, L. and He, Z. (2019) PI3K/Akt-Nrf2 and Anti-Inflammation Effect of Macrolides in Chronic Obstructive Pulmonary Disease. Current Drug Metabolism, 20, 301-304. https://doi.org/10.2174/1389200220666190227224748
|
[12]
|
Gao, M., Yang, R.C., Liu, Q., et al. (2021) Mechanism of Jingfang Granules in Relieving Alcohol and Protecting Liver Based on Bioinformatics Technology. China Journal of Chinese Materia Medica, 46, 5683-5692.
|
[13]
|
Cheriet, T., Ben-Bachir, B., Thamri, O., Seghiri, R. and Mancini, I. (2020) Isolation and Biological Properties of the Natural Flavonoids Pectolinarin and Pectolinarigenin—A Review. Antibiotics, 9, Article No. 417. https://doi.org/10.3390/antibiotics9070417
|
[14]
|
Shiraiwa, M., Kitakaze, T., Yamashita, Y., Ukawa, Y., Mukai, K. and Ashida, H. (2022) Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/Are Pathway in Hepg2 Cells. Antioxidants, 11, Article No. 675. https://doi.org/10.3390/antiox11040675
|
[15]
|
Tan, Z., Liu, Q., Chen, H., Zhang, Z., Wang, Q., Mu, Y., et al. (2023) Pectolinarigenin Alleviated Septic Acute Kidney Injury via Inhibiting Jak2/Stat3 Signaling and Mitochondria Dysfunction. Biomedicine & Pharmacotherapy, 159, Article ID: 114286. https://doi.org/10.1016/j.biopha.2023.114286
|
[16]
|
Li, Q., Zhang, W., Cheng, N., Zhu, Y., Li, H., Zhang, S., et al. (2023) Pectolinarigenin Ameliorates Acetaminophen-Induced Acute Liver Injury via Attenuating Oxidative Stress and Inflammatory Response in Nrf2 and PPARa Dependent Manners. Phytomedicine, 113, Article ID: 154726. https://doi.org/10.1016/j.phymed.2023.154726
|
[17]
|
Fu, R. (2023) Pectolinarigenin Improves Oxidative Stress and Apoptosis in Mouse NSC-34 Motor Neuron Cell Lines Induced by C9-ALS-Associated Proline-Arginine Dipeptide Repeat Proteins by Enhancing Mitochondrial Fusion Mediated via the SIRT3/OPA1 Axis. Antioxidants, 12, Article No. 2008. https://doi.org/10.3390/antiox12112008
|
[18]
|
Feng, Y., Bhandari, R., Li, C., Shu, P. and Shaikh, I.I. (2022) Pectolinarigenin Suppresses Lps-Induced Inflammatory Response in Macrophages and Attenuates DSS-Induced Colitis by Modulating the NF-κB/Nrf2 Signaling Pathway. Inflammation, 45, 2529-2543. https://doi.org/10.1007/s10753-022-01710-4
|
[19]
|
Heimfarth, L., Nascimento, L.d.S., Amazonas da Silva, M.d.J., Lucca Junior, W.d., Lima, E.S., Quintans-Junior, L.J., et al. (2021) Neuroprotective and Anti-Inflammatory Effect of Pectolinarigenin, a Flavonoid from Amazonian Aegiphila integrifolia (jacq.), against Lipopolysaccharide-Induced Inflammation in Astrocytes via NF-κB and MAPK Pathways. Food and Chemical Toxicology, 157, Article ID: 112538. https://doi.org/10.1016/j.fct.2021.112538
|
[20]
|
Lee, H.J., Venkatarame Gowda Saralamma, V., Kim, S.M., Ha, S.E., Raha, S., Lee, W.S., et al. (2018) Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway. Nutrients, 10, Article No. 1043. https://doi.org/10.3390/nu10081043
|
[21]
|
Lee, H.J., Kwon, Y.S., Lee, J.H., Moon, Y.G., Choi, J., Hyun, M., et al. (2024) Pectolinarigenin Regulates the Tumor-Associated Proteins in AGS-Xenograft BALB/c Nude Mice. Molecular Biology Reports, 51, Article No. 305. https://doi.org/10.1007/s11033-023-09046-4
|
[22]
|
Guo, F., Yang, X., Hu, C., Li, W. and Han, W. (2023) Network Pharmacology Combined with Machine Learning to Reveal the Action Mechanism of Licochalcone Intervention in Liver Cancer. International Journal of Molecular Sciences, 24, Article No. 15935. https://doi.org/10.3390/ijms242115935
|
[23]
|
Xu, T., Wang, P., Zheng, X., Yan, Z., Li, K., Xu, J., et al. (2021) The Therapeutic Effects and Mechanisms of Long Chai Fang on Chronic Hepatitis B. Annals of Translational Medicine, 9, Article No. 865. https://doi.org/10.21037/atm-21-1923
|
[24]
|
Wang, D., Han, D., Huang, T., Zhou, X. and Xu, Y. (2023) Efficacy Evaluation and Potential Pharmacological Mechanism of Tanreqing Injection in the Treatment of COPD Combined with Respiratory Failure Based on Meta-Analysis and Network Pharmacology. Heliyon, 9, e13513. https://doi.org/10.1016/j.heliyon.2023.e13513
|
[25]
|
Ye, H., He, B., Zhang, Y., Yu, Z., Feng, Y., Wen, C., et al. (2023) Herb-Symptom Analysis of Erchen Decoction Combined with Xiebai Powder Formula and Its Mechanism in the Treatment of Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 14, Article ID: 1117238. https://doi.org/10.3389/fphar.2023.1117238
|
[26]
|
Bandela, M., Belvitch, P., Garcia, J.G.N. and Dudek, S.M. (2022) Cortactin in Lung Cell Function and Disease. International Journal of Molecular Sciences, 23, Article No. 4606. https://doi.org/10.3390/ijms23094606
|
[27]
|
Milara, J., Ballester, B., de Diego, A., Calbet, M., Ramis, I., Miralpeix, M., et al. (2022) The Pan-Jak Inhibitor LAS194046 Reduces Neutrophil Activation from Severe Asthma and COPD Patients in Vitro. Scientific Reports, 12, Article No. 5132. https://doi.org/10.1038/s41598-022-09241-6
|
[28]
|
Lei, Y., He, J., Hu, F., Zhu, H., Gu, J., Tang, L., et al. (2023) Sequential Inspiratory Muscle Exercise-Noninvasive Positive Pressure Ventilation Alleviates Oxidative Stress in COPD by Mediating SOCS5/JAK2/STAT3 Pathway. BMC Pulmonary Medicine, 23, Article No. 385. https://doi.org/10.1186/s12890-023-02656-5
|
[29]
|
Tian, D., Miao, Y., Hao, W., Yang, N., Wang, P., Ge, Q., et al. (2022) Tanshinone IIA Protects against Chronic Obstructive Pulmonary Disease via Exosome-Shuttled miR‑486‑5p. International Journal of Molecular Medicine, 50, Article No. 97. https://doi.org/10.3892/ijmm.2022.5153
|
[30]
|
Hu, W., Zeng, Y., Zuo, Y. and Zhang, J. (2018) Identification of Novel Candidate Genes Involved in the Progression of Emphysema by Bioinformatic Methods. International Journal of Chronic Obstructive Pulmonary Disease, 13, 3733-3747. https://doi.org/10.2147/copd.s183100
|
[31]
|
Sawa, K., Koh, Y., Kawaguchi, T., Kambayashi, S., Asai, K., Mitsuoka, S., et al. (2017) PIK3CA Mutation as a Distinctive Genetic Feature of Non-Small Cell Lung Cancer with Chronic Obstructive Pulmonary Disease: A Comprehensive Mutational Analysis from a Multi-Institutional Cohort. Lung Cancer, 112, 96-101. https://doi.org/10.1016/j.lungcan.2017.07.039
|
[32]
|
Fu, H., Liu, X., Shi, L., Wang, L., Fang, H., Wang, X., et al. (2023) Regulatory Roles of Osteopontin in Lung Epithelial Inflammation and Epithelial‐Telocyte Interaction. Clinical and Translational Medicine, 13, e1381. https://doi.org/10.1002/ctm2.1381
|
[33]
|
Pavel, A.B., Garrison, C., Luo, L., Liu, G., Taub, D., Xiao, J., et al. (2023) Integrative Genetic and Genomic Networks Identify microRNA Associated with COPD and ILD. Scientific Reports, 13, Article No. 13076. https://doi.org/10.1038/s41598-023-39751-w
|
[34]
|
Zhang, Y., Sheng, Y., Gao, Y., Lin, Y., Cheng, B., Li, H., et al. (2023) Exploration of the Pathogenesis of Chronic Obstructive Pulmonary Disease Caused by Smoking—Based on Bioinformatics Analysis and in Vitro Experimental Evidence. Toxics, 11, Article No. 995. https://doi.org/10.3390/toxics11120995
|
[35]
|
Strickson, S., Houslay, K.F., Negri, V.A., Ohne, Y., Ottosson, T., Dodd, R.B., et al. (2023) Oxidised IL-33 Drives COPD Epithelial Pathogenesis via ST2-Independent RAGE/EGFR Signalling Complex. European Respiratory Journal, 62, Article ID: 2202210. https://doi.org/10.1183/13993003.02210-2022
|
[36]
|
Lu, W., Eapen, M.S., Hardikar, A., Chia, C., Robertson, I., Singhera, G.K., et al. (2023) Epithelial-Mesenchymal Transition Changes in Nonsmall Cell Lung Cancer Patients with Early COPD. ERJ Open Research, 9, Article ID: 00581-2023. https://doi.org/10.1183/23120541.00581-2023
|
[37]
|
Tsantikos, E., Gottschalk, T.A., L’Estrange-Stranieri, E., O’Brien, C.A., Raftery, A.L., Wickramasinghe, L.C., et al. (2023) Enhanced Lyn Activity Causes Severe, Progressive Emphysema and Lung Cancer. American Journal of Respiratory Cell and Molecular Biology, 69, 99-112. https://doi.org/10.1165/rcmb.2022-0463oc
|
[38]
|
Ali, M.K., Tian, X., Zhao, L., et al. (2023) PTPN1 Deficiency Modulates BMPR2 Signaling and Induces Endothelial Dysfunction in Pulmonary Arterial Hypertension. Cells, 12, Article No. 316. https://doi.org/10.3390/cells12020316
|
[39]
|
Li, S., Wang, X., Li, Q. and Li, C. (2022) Role of SHP2/PTPN11 in the Occurrence and Prognosis of Cancer: A Systematic Review and Meta-Analysis. Oncology Letters, 25, Article No. 19. https://doi.org/10.3892/ol.2022.13605
|
[40]
|
Chen, X., Keller, S.J., Hafner, P., Alrawashdeh, A.Y., Avery, T.Y., Norona, J., et al. (2024) Tyrosine Phosphatase PTPN11/SHP2 in Solid Tumors—Bull’s Eye for Targeted Therapy? Frontiers in Immunology, 15, Article ID: 1340726. https://doi.org/10.3389/fimmu.2024.1340726
|
[41]
|
Liu, X., Huang, X. and Xu, F. (2023) The Influence of Pyroptosis-Related Genes on the Development of Chronic Obstructive Pulmonary Disease. BMC Pulmonary Medicine, 23, Article No. 167. https://doi.org/10.1186/s12890-023-02408-5
|
[42]
|
Adini, A., Wu, H., Dao, D.T., Ko, V.H., Yu, L.J., Pan, A., et al. (2020) PR1P Stabilizes VEGF and Upregulates Its Signaling to Reduce Elastase-Induced Murine Emphysema. American Journal of Respiratory Cell and Molecular Biology, 63, 452-463. https://doi.org/10.1165/rcmb.2019-0434oc
|
[43]
|
Bolandi, S.M., Abdolmaleki, Z. and Assarehzadegan, M. (2021) Bevacizumab Regulates Inflammatory Cytokines and Inhibits VEGFR2 Signaling Pathway in an Ovalbumin-Induced Rat Model of Airway Hypersensitivity. Inflammopharmacology, 29, 683-694. https://doi.org/10.1007/s10787-021-00798-8
|
[44]
|
George, J., Maas, L., Abedpour, N., Cartolano, M., Kaiser, L., Fischer, R.N., et al. (2024) Evolutionary Trajectories of Small Cell Lung Cancer under Therapy. Nature, 627, 880-889. https://doi.org/10.1038/s41586-024-07177-7
|
[45]
|
Ikeda, S., Tsuboi, M., Sakai, K., Misumi, T., Akamatsu, H., Shoda, H., et al. (2023) NOTCH1 and CREBBP Co‐Mutations Negatively Affect the Benefit of Adjuvant Therapy in Completely Resected EGFR‐Mutated NSCLC: Translational Research of Phase III Impact Study. Molecular Oncology, 18, 305-316. https://doi.org/10.1002/1878-0261.13542
|