|
[1]
|
Safiri, S., Carson-Chahhoud, K., Noori, M., Nejadghaderi, S.A., Sullman, M.J.M., Ahmadian Heris, J., et al. (2022) Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990-2019: Results from the Global Burden of Disease Study 2019. BMJ, 378, e069679. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cao, X., Wang, Y., Chen, Y., Zhao, M., Liang, L., Yang, M., et al. (2023) Advances in Traditional Chinese Medicine for the Treatment of Chronic Obstructive Pulmonary Disease. Journal of Ethnopharmacology, 307, Article ID: 116229. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Barabási, A., Gulbahce, N. and Loscalzo, J. (2010) Network Medicine: A Network-Based Approach to Human Disease. Nature Reviews Genetics, 12, 56-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhou, L., Zhang, L. and Tao, D. (2020) Investigation on the Mechanism of Qubi Formula in Treating Psoriasis Based on Network Pharmacology. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 4683254. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Guo, P., Li, R., Piao, T.H., Wang, C.L., Wu, X.L. and Cai, H.Y. (2022) Pathological Mechanism and Targeted Drugs of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 17, 1565-1575. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, W., Zhang, G., Zhao, Z., Zuo, Y., Sun, Z. and Chen, S. (2023) Exploring the Mechanism of Erchen Decoction in the Treatment of Atherosclerosis Based on Network Pharmacology and Molecular Docking. Medicine, 102, e35248. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, J., Wu, X., Zhong, B., Liao, Q., Wang, X., Xie, Y., et al. (2023) Review on the Diverse Biological Effects of Glabridin. Drug Design, Development and Therapy, 17, 15-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ye, Q., Zhang, Q., Yao, H., Xu, A., Liu, Y., Qi, J., et al. (2021) Active-Ingredient Screening and Synergistic Action Mechanism of Shegan Mixture for Anti-Asthma Effects Based on Network Pharmacology in a Mouse Model of Asthma. Drug Design, Development and Therapy, 15, 1765-1777. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Carmeli, E. and Fogelman, Y. (2009) Antioxidant Effect of Polyphenolic Glabridin on LDL Oxidation. Toxicology and Industrial Health, 25, 321-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhu, K., Li, K., Wang, H., Kang, L., Dang, C. and Zhang, Y. (2019) Discovery of Glabridin as Potent Inhibitor of Epidermal Growth Factor Receptor in SK-BR-3 Cell. Pharmacology, 104, 113-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sun, X., Chen, L. and He, Z. (2019) PI3K/Akt-Nrf2 and Anti-Inflammation Effect of Macrolides in Chronic Obstructive Pulmonary Disease. Current Drug Metabolism, 20, 301-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gao, M., Yang, R.C., Liu, Q., et al. (2021) Mechanism of Jingfang Granules in Relieving Alcohol and Protecting Liver Based on Bioinformatics Technology. China Journal of Chinese Materia Medica, 46, 5683-5692.
|
|
[13]
|
Cheriet, T., Ben-Bachir, B., Thamri, O., Seghiri, R. and Mancini, I. (2020) Isolation and Biological Properties of the Natural Flavonoids Pectolinarin and Pectolinarigenin—A Review. Antibiotics, 9, Article No. 417. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shiraiwa, M., Kitakaze, T., Yamashita, Y., Ukawa, Y., Mukai, K. and Ashida, H. (2022) Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/Are Pathway in Hepg2 Cells. Antioxidants, 11, Article No. 675. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tan, Z., Liu, Q., Chen, H., Zhang, Z., Wang, Q., Mu, Y., et al. (2023) Pectolinarigenin Alleviated Septic Acute Kidney Injury via Inhibiting Jak2/Stat3 Signaling and Mitochondria Dysfunction. Biomedicine & Pharmacotherapy, 159, Article ID: 114286. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, Q., Zhang, W., Cheng, N., Zhu, Y., Li, H., Zhang, S., et al. (2023) Pectolinarigenin Ameliorates Acetaminophen-Induced Acute Liver Injury via Attenuating Oxidative Stress and Inflammatory Response in Nrf2 and PPARa Dependent Manners. Phytomedicine, 113, Article ID: 154726. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fu, R. (2023) Pectolinarigenin Improves Oxidative Stress and Apoptosis in Mouse NSC-34 Motor Neuron Cell Lines Induced by C9-ALS-Associated Proline-Arginine Dipeptide Repeat Proteins by Enhancing Mitochondrial Fusion Mediated via the SIRT3/OPA1 Axis. Antioxidants, 12, Article No. 2008. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Feng, Y., Bhandari, R., Li, C., Shu, P. and Shaikh, I.I. (2022) Pectolinarigenin Suppresses Lps-Induced Inflammatory Response in Macrophages and Attenuates DSS-Induced Colitis by Modulating the NF-κB/Nrf2 Signaling Pathway. Inflammation, 45, 2529-2543. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Heimfarth, L., Nascimento, L.d.S., Amazonas da Silva, M.d.J., Lucca Junior, W.d., Lima, E.S., Quintans-Junior, L.J., et al. (2021) Neuroprotective and Anti-Inflammatory Effect of Pectolinarigenin, a Flavonoid from Amazonian Aegiphila integrifolia (jacq.), against Lipopolysaccharide-Induced Inflammation in Astrocytes via NF-κB and MAPK Pathways. Food and Chemical Toxicology, 157, Article ID: 112538. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lee, H.J., Venkatarame Gowda Saralamma, V., Kim, S.M., Ha, S.E., Raha, S., Lee, W.S., et al. (2018) Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway. Nutrients, 10, Article No. 1043. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lee, H.J., Kwon, Y.S., Lee, J.H., Moon, Y.G., Choi, J., Hyun, M., et al. (2024) Pectolinarigenin Regulates the Tumor-Associated Proteins in AGS-Xenograft BALB/c Nude Mice. Molecular Biology Reports, 51, Article No. 305. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Guo, F., Yang, X., Hu, C., Li, W. and Han, W. (2023) Network Pharmacology Combined with Machine Learning to Reveal the Action Mechanism of Licochalcone Intervention in Liver Cancer. International Journal of Molecular Sciences, 24, Article No. 15935. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xu, T., Wang, P., Zheng, X., Yan, Z., Li, K., Xu, J., et al. (2021) The Therapeutic Effects and Mechanisms of Long Chai Fang on Chronic Hepatitis B. Annals of Translational Medicine, 9, Article No. 865. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, D., Han, D., Huang, T., Zhou, X. and Xu, Y. (2023) Efficacy Evaluation and Potential Pharmacological Mechanism of Tanreqing Injection in the Treatment of COPD Combined with Respiratory Failure Based on Meta-Analysis and Network Pharmacology. Heliyon, 9, e13513. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ye, H., He, B., Zhang, Y., Yu, Z., Feng, Y., Wen, C., et al. (2023) Herb-Symptom Analysis of Erchen Decoction Combined with Xiebai Powder Formula and Its Mechanism in the Treatment of Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 14, Article ID: 1117238. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bandela, M., Belvitch, P., Garcia, J.G.N. and Dudek, S.M. (2022) Cortactin in Lung Cell Function and Disease. International Journal of Molecular Sciences, 23, Article No. 4606. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Milara, J., Ballester, B., de Diego, A., Calbet, M., Ramis, I., Miralpeix, M., et al. (2022) The Pan-Jak Inhibitor LAS194046 Reduces Neutrophil Activation from Severe Asthma and COPD Patients in Vitro. Scientific Reports, 12, Article No. 5132. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lei, Y., He, J., Hu, F., Zhu, H., Gu, J., Tang, L., et al. (2023) Sequential Inspiratory Muscle Exercise-Noninvasive Positive Pressure Ventilation Alleviates Oxidative Stress in COPD by Mediating SOCS5/JAK2/STAT3 Pathway. BMC Pulmonary Medicine, 23, Article No. 385. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Tian, D., Miao, Y., Hao, W., Yang, N., Wang, P., Ge, Q., et al. (2022) Tanshinone IIA Protects against Chronic Obstructive Pulmonary Disease via Exosome-Shuttled miR‑486‑5p. International Journal of Molecular Medicine, 50, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hu, W., Zeng, Y., Zuo, Y. and Zhang, J. (2018) Identification of Novel Candidate Genes Involved in the Progression of Emphysema by Bioinformatic Methods. International Journal of Chronic Obstructive Pulmonary Disease, 13, 3733-3747. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sawa, K., Koh, Y., Kawaguchi, T., Kambayashi, S., Asai, K., Mitsuoka, S., et al. (2017) PIK3CA Mutation as a Distinctive Genetic Feature of Non-Small Cell Lung Cancer with Chronic Obstructive Pulmonary Disease: A Comprehensive Mutational Analysis from a Multi-Institutional Cohort. Lung Cancer, 112, 96-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fu, H., Liu, X., Shi, L., Wang, L., Fang, H., Wang, X., et al. (2023) Regulatory Roles of Osteopontin in Lung Epithelial Inflammation and Epithelial‐Telocyte Interaction. Clinical and Translational Medicine, 13, e1381. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pavel, A.B., Garrison, C., Luo, L., Liu, G., Taub, D., Xiao, J., et al. (2023) Integrative Genetic and Genomic Networks Identify microRNA Associated with COPD and ILD. Scientific Reports, 13, Article No. 13076. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhang, Y., Sheng, Y., Gao, Y., Lin, Y., Cheng, B., Li, H., et al. (2023) Exploration of the Pathogenesis of Chronic Obstructive Pulmonary Disease Caused by Smoking—Based on Bioinformatics Analysis and in Vitro Experimental Evidence. Toxics, 11, Article No. 995. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Strickson, S., Houslay, K.F., Negri, V.A., Ohne, Y., Ottosson, T., Dodd, R.B., et al. (2023) Oxidised IL-33 Drives COPD Epithelial Pathogenesis via ST2-Independent RAGE/EGFR Signalling Complex. European Respiratory Journal, 62, Article ID: 2202210. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lu, W., Eapen, M.S., Hardikar, A., Chia, C., Robertson, I., Singhera, G.K., et al. (2023) Epithelial-Mesenchymal Transition Changes in Nonsmall Cell Lung Cancer Patients with Early COPD. ERJ Open Research, 9, Article ID: 00581-2023. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Tsantikos, E., Gottschalk, T.A., L’Estrange-Stranieri, E., O’Brien, C.A., Raftery, A.L., Wickramasinghe, L.C., et al. (2023) Enhanced Lyn Activity Causes Severe, Progressive Emphysema and Lung Cancer. American Journal of Respiratory Cell and Molecular Biology, 69, 99-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ali, M.K., Tian, X., Zhao, L., et al. (2023) PTPN1 Deficiency Modulates BMPR2 Signaling and Induces Endothelial Dysfunction in Pulmonary Arterial Hypertension. Cells, 12, Article No. 316. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, S., Wang, X., Li, Q. and Li, C. (2022) Role of SHP2/PTPN11 in the Occurrence and Prognosis of Cancer: A Systematic Review and Meta-Analysis. Oncology Letters, 25, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, X., Keller, S.J., Hafner, P., Alrawashdeh, A.Y., Avery, T.Y., Norona, J., et al. (2024) Tyrosine Phosphatase PTPN11/SHP2 in Solid Tumors—Bull’s Eye for Targeted Therapy? Frontiers in Immunology, 15, Article ID: 1340726. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Liu, X., Huang, X. and Xu, F. (2023) The Influence of Pyroptosis-Related Genes on the Development of Chronic Obstructive Pulmonary Disease. BMC Pulmonary Medicine, 23, Article No. 167. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Adini, A., Wu, H., Dao, D.T., Ko, V.H., Yu, L.J., Pan, A., et al. (2020) PR1P Stabilizes VEGF and Upregulates Its Signaling to Reduce Elastase-Induced Murine Emphysema. American Journal of Respiratory Cell and Molecular Biology, 63, 452-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bolandi, S.M., Abdolmaleki, Z. and Assarehzadegan, M. (2021) Bevacizumab Regulates Inflammatory Cytokines and Inhibits VEGFR2 Signaling Pathway in an Ovalbumin-Induced Rat Model of Airway Hypersensitivity. Inflammopharmacology, 29, 683-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
George, J., Maas, L., Abedpour, N., Cartolano, M., Kaiser, L., Fischer, R.N., et al. (2024) Evolutionary Trajectories of Small Cell Lung Cancer under Therapy. Nature, 627, 880-889. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ikeda, S., Tsuboi, M., Sakai, K., Misumi, T., Akamatsu, H., Shoda, H., et al. (2023) NOTCH1 and CREBBP Co‐Mutations Negatively Affect the Benefit of Adjuvant Therapy in Completely Resected EGFR‐Mutated NSCLC: Translational Research of Phase III Impact Study. Molecular Oncology, 18, 305-316. [Google Scholar] [CrossRef] [PubMed]
|