基于网络药理学与分子对接探讨越婢加半夏汤治疗慢性阻塞性肺疾病的作用机制
Mechanisms of Yuebi plus Banxia Decoction in Treating Chronic Obstructive Pulmonary Disease: A Study Based on Network Pharmacology and Molecular Docking
DOI: 10.12677/tcm.2025.145335, PDF, HTML, XML,    科研立项经费支持
作者: 廖乔浪, 梁梦婷, 刘泊宁, 潘 妍, 覃北兰, 郑梁宇坤, 张榕华:广西中医药大学研究生院,广西 南宁;王光耀, 许光兰*:广西中医药大学研究生院,广西 南宁;广西中医药大学第一附属医院,广西 南宁
关键词: 慢性阻塞性肺疾病越婢加半夏汤作用机制网络药理学分子对接Chronic Obstructive Pulmonary Disease Yuebi Decoction plus Banxia Mechanism Network Pharmacology Molecular Docking
摘要: 目的:探讨越婢加半夏汤治疗慢性阻塞性肺疾病的作用机制。方法:通过TCMSP平台检索获取越婢加半夏汤活性成分及靶基因,运用Swiss Target Prediction数据库预测潜在靶基因,使用GeneCards数据库筛选慢性阻塞性肺疾病相关靶基因,通过Venny 2.1获取越婢加半夏汤与慢性阻塞性肺疾病的共同靶基因。交集靶基因运用String数据库构建蛋白质互作(PPI)网络,采用Cytoscape软件构建“中药–有效成分–靶点”网络。运用DAVID数据库进行GO和KEGG富集分析,使用Autodock Tools对潜在有效成分与关键靶基因进行分子对接验证。结果:共筛选出越婢加半夏汤145个活性成分及959个药物作用靶基因,获得2419个COPD相关靶基因,449个交集靶基因。核心靶基因GO功能富集条目277个,KEGG通路127条。越婢加半夏汤的主要活性成分包括Glyuranolide、Glabridin、Glyasperin B、Pectolinarigenin、Glypallichalcone等,它们可能通过作用于TP53、SRC、STAT3、PIK3R1、PIK3CA、GRB2、PIK3CD、EP300、ESR1、EGFR、JAK2、PTPN11、PLCG1、JUN、PTK2、CREBBP、RELA、KDR、JAK3等靶点,可能通过调控癌症发展、PI3K-Akt信号通路、AGE-RAGE信号通路参与糖尿病并发症、前列腺癌、脂质和动脉粥样硬化、卡波西肉瘤相关疱疹病毒感染、EGFR酪氨酸激酶抑制剂抵抗,胰腺癌、癌症中枢碳代谢、乙型肝炎等途径。结论:越婢加半夏汤通过多成分–多靶点–多通路协同作用治疗COPD,为越婢加半夏汤治疗COPD作用机制和临床应用提供理论依据。
Abstract: Objective: To investigate the mechanism of the treatment of chronic obstructive pulmonary disease (COPD) with Yuebi decoction plus Banxia. Methods: Active components and Target genes of Yuebi decoction plus Banxia were retrieved by TCMSP platform, potential target genes were predicted by Swiss Target Prediction database, chronic obstructive pulmonary disease related target genes were screened by GeneCards database, and Venny was used 2.1 To obtain the common target gene of Yuebi decoction plus Banxia and chronic obstructive pulmonary disease. The protein interaction (PPI) network was constructed by using String database and Cytoscape software. The “Chinese Materia Medica—Active Ingredients—target” network was constructed. DAVID database was used for GO and KEGG enrichment analysis, and Autodock Tools was used to verify the molecular docking between potential active components and key target genes. Results: A total of 145 active ingredients and 959 drug action target genes were screened out, 2419 COPD related target genes and 449 intersection target genes were obtained. There were 277 GO functional enrichment items and 127 KEGG pathways of core target genes. The main active components of the decoction include Glyuranolide, Glabridin, Glyasperin B. Pectolinarigenin, Glypallichalcone, etc., which may be induced by the action of TP53, SRC, STAT3, PIK3R1, PIK3CA, GRB2, PIK3CD, EP300, ESR1, EGFR, JAK2, PTPN11, PLCG1, JUN, PTK2, CREBBP, RELA, KDR, JAK3 and potentially through Pathways in cancer, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic complications, Prostate cancer, Lipid and atherosclerosis, Kaposi sarcoma-associated herpesvirus infection, EGFR tyrosine kinase inhibitor resistance, Pancreatic cancer, Centrral carbon metabolism in cancer, Hepatitis B, etc. Conclusion: Yuebi Decoction plus Banxia exhibits multi-component, multi-target, and multi-pathway characteristics in treating COPD. These findings provide a theoretical basis for understanding the mechanism and clinical application of Yuebi Decoction plus Banxia in treating COPD.
文章引用:廖乔浪, 梁梦婷, 刘泊宁, 潘妍, 覃北兰, 郑梁宇坤, 张榕华, 王光耀, 许光兰. 基于网络药理学与分子对接探讨越婢加半夏汤治疗慢性阻塞性肺疾病的作用机制[J]. 中医学, 2025, 14(5): 2250-2263. https://doi.org/10.12677/tcm.2025.145335

1. 引言

慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)是以不可逆气流受限为主要临床特征的异质性疾病,其病理改变涉及气道慢性炎症、小气道纤维化及肺气肿性结构破坏。该疾病的发生发展与氧化应激失衡、炎症介质异常释放及信号通路失调等机制相关。流行病学数据显示,2019年全球因COPD导致的死亡病例达330万例,该疾病已成为重大公共卫生经济负担[1]。中医药在COPD临床管理中展现出独特优势,其复方制剂在肺功能改善、症状缓解及生活质量提升方面较常规西医疗法更具安全性[2]。中医理论将COPD归为“肺胀”病证,汉代张仲景《金匮要略》记载的越婢加半夏汤即为代表性方剂,该方由麻黄、石膏、半夏等药物组成,具有宣肺清热、降气平喘之效。方中麻黄发散表邪,石膏清泄里热,配伍半夏、生姜降逆下气,佐以甘草、大枣调和药性。尽管该方剂广泛应用于COPD临床治疗,但关于其作用机制的网络药理学研究仍较缺乏,亟待深入探索。

网络药理学作为新兴交叉学科,整合系统生物学、计算科学等多领域方法,通过生物信息学分析构建“成分–靶点–通路”多维网络。该技术体系包括三大核心环节:潜在靶标预测、网络模型构建及可视化分析,可系统揭示药物多组分协同作用机制[3]。其整体性研究思路与中医整体观念高度吻合,在中药现代化研究中具有重要价值:既能阐明复方多靶点协同作用原理,又能为配伍优化、精准用药及新药开发提供科学依据,现已成为中医药复杂系统研究的关键技术平台。

2. 材料与方法

2.1. 越婢加半夏汤有效成分与靶标蛋白获取

通过中药系统药理学数据库(TCMSP, https://old.tcmsp-e.com/tcmsp.php),以口服生物利用度(OB) ≥ 30%和类药性(DL) ≥ 0.18为筛选条件,获取越婢加半夏汤(含麻黄、石膏、生姜、大枣、甘草、半夏)的活性成分。随后,利用SwissTargetPrediction数据库(http://www.swisstargetprediction.ch/)预测这些成分的作用靶基因。

2.2. COPD相关靶基因筛选

利用GeneCards数据库(https://www.genecards.org/),以“chronic obstructive pulmonary disease”为检索词,筛选相关性评分(Relevance score) > 12.88的COPD相关基因靶点。

2.3. 蛋白互作网络(PPI)构建

利用Venny 2.1绘制韦恩图,并将交集靶基因导入String (https://string-db.org/)数据库中,Organism设定为Homo sapiens,设置最小要求交互分数为0.9 (高可信度),隐藏网络离散点,得到PPI网络拓扑及相应的文件[4]

2.4. 草药–有效成分–基因网络的构建

将步骤2.1中得到的活性成分靶基因和步骤2.2中得到的COPD疾病靶基因输入到Venny 2.1中,绘制Venn图,并且在Cytoscape 3.10.0软件中构建“草药–成分–基因”复杂图谱网络。

2.5. 核心靶基因富集分析

将越婢加半夏汤与COPD的交集靶基因导入DAVID数据库(https://david.ncifcrf.gov/)进行GO、KEGG富集分析。物种限定条件为“智人”(Homo sapiens)。分析的可视化数据是通过一个常用微生信平台进行数据处理(https://bioinformatics.com.cn/)完成的。进行GO生物过程(biological process, BP)、细胞组成(cellular component, CC)、分子功能(molecular function, MF)富集分析与KEGG富集分析,得到前20位的核心靶点GO与KEGG富集分析结果。

2.6. 分子对接

基于PDB数据库(https://www.rcsb.org/)和PubChem平台(https://pubchem.ncbi.nlm.nih.gov/)分别获取核心靶基因和活性成分的分子结构;使用ChemDraw软件完成分子结构标准化处理;随后通过AutoDockTools进行预处理:包括靶蛋白的去水化处理、氢原子补充及受体参数配置,同时对活性成分进行氢原子添加和配体化修饰;继而运用AutoDock软件实施分子对接模拟,通过特定参数设置计算结合自由能;最终采用PyMOL软件对最佳对接构象进行三维可视化呈现。

3. 结果

3.1. 越婢加半夏汤潜在有效成分及靶基因获取结果

通过TCMSP数据库(口服生物利用度OB ≥ 30%,类药性DL ≥ 0.18)共筛选越婢加半夏汤有效成分145个,有效成分对应靶标蛋白共计959个(经去重处理)。其中麻黄有效成分23个,生姜有效成分5个,大枣有效成分29个,甘草有效成分92个,半夏有效成分13个,石膏的有效成分未在TCMSP数据库中。有多个有效成分存在于多个中药中,其中,β-谷甾醇(β-sitosterol)存在于麻黄、生姜、大枣、半夏中;山奈酚(kaempferol)存在于麻黄、甘草中;槲皮素(quercetin)存在于麻黄、大枣、甘草、中;豆甾醇(stigmasterol)存在于麻黄、生姜、大枣、半夏中;儿茶素((+)-catechin)存在于麻黄、大枣中;豆甾-4-烯-3,6-二酮(24-Ethylcholest-4-en-3-one)存在于麻黄、半夏中;高良姜(poriferast-5-en-3beta-ol)存在于麻黄、生姜中;柚皮素(naringenin)存在于麻黄、甘草中。利用Swiss target prediction数据库获得规范化注释靶标蛋白9642个以及获取相应的编码基因,该方有17个有效成分未能成功获得靶标蛋白以及相应编码基因。

3.2. COPD靶基因获取结果

利用GeneCards数据库(https://www.genecards.org/),以“chronic obstructive pulmonary disease”为检索词,筛选相关性评分(Relevance score) > 12.88的COPD相关基因靶点。得到COPD疾病基因靶点2419个。将145个越婢加半夏汤有效成分对应的靶标蛋白编码基因与2419个COPD疾病基因靶点取交集,得到交集基因449个,即越婢加半夏汤治疗COPD的潜在治疗靶点,绘制韦恩图,见图1

Figure 1. Active ingredient gene targets and COPD disease genes intersection Venn diagram

1. 有效成分基因靶点与COPD疾病基因交集韦恩图

3.3. PPI网络分析

获得449个交集共同靶基因并导入String中,应用步骤2.3设置的参数,得到PPI网络拓扑结构及相应文件,如图2所示。统计显示,PPI网络中有1517条边,平均节点度值为6.76。

Figure 2. Intersection gene targets protein-protein interaction (PPI) network diagram

2. 交集基因靶点蛋白互作网络(PPI)图

3.4. 中药–有效成分–靶点网络分析

将中药、有效成分及449个潜在治疗靶点导入Cytoscape,得到中药–有效成分–靶点网络拓扑,共获得节点584个,边5316条,见图3。基于degree值,利用Analyze Network对该拓扑中的有效成分进行筛选,得到核心成分Glyuranolide、Glabridin、Glyasperin B、Pectolinarigenin、Glypallichalcone。

Figure 3. Traditional Chinese medicine-active ingredients-target network diagram

3. 中药–有效成分–基因靶点网络图

3.5. 核心靶基因富集分析结果

通过PPI拓扑文件导入Cytoscape 3.10.0的插件Cytohubba中,计算各靶点MCC、degree、closeness、betweenness拓扑参数,求出该PPI网络中MMC均数为56015.69,degree均数为16.31,closeness均数为0.27,betweenness均数为1030.05。以上述4个拓扑参数均数作为过滤条件,筛选出该PPI网络中核心靶点19个,见表1。19个核心靶点分别为TP53、SRC、STAT3、PIK3R1、PIK3CA、GRB2、PIK3CD、EP300、ESR1、EGFR、JAK2、PTPN11、PLCG1、JUN、PTK2、CREBBP、RELA、KDR和JAK3。通过GO富集分析,共获得了19个核心靶基因的187个生物过程、27个细胞组分和63个分子功能,筛选条件P < 0.01。将核心靶基因导入生物信息学平台进行GO和KEGG富集分析,得到前10个核心靶基因的富集结果。通过生物信息学平台分别选取前10名进行可视化处理,如图4所示。生物过程包括表皮生长因子受体信号通路、肽基I-酪氨酸磷酸化、蛋白激酶B信号正调控、细胞迁移正调控、“转录正调控、DNA模板化”等。细胞组分包括转录因子复合体、胞浆、细胞质、“磷脂酰肌醇3-激酶复合体,IA类”、质膜细胞质侧外源组分等。分子功能包括蛋白磷酸酶结合、蛋白激酶结合、蛋白酪氨酸激酶活性、胰岛素受体底物结合、蛋白丝氨酸/苏氨酸/酪氨酸激酶活性等。

通过KEGG通路富集分析,共获得越婢加半夏汤治疗COPD 19个核心靶基因显著富集的127条通路(P < 0.01)。P值接近于0,说明富集具有显著性。-log (pvalue)越大,说明基因富集程度越高。根据P值排序,利用微生信平台绘制前10条通路图,如图5所示。这些通路分别是癌症中的通路、PI3K-Akt信号通路、糖尿病并发症中的AGE-RAGE信号通路、前列腺癌、脂质和动脉粥样硬化、卡波西肉瘤相关疱疹病毒感染、EGFR酪氨酸激酶抑制剂抵抗、胰腺癌、癌症中的中枢碳代谢、乙型肝炎等。

Table 1. Detailed information of core targets

1. 核心靶点详细信息表

核心靶点

degree

MCC

closeness

betweenness

TP53

132

114269

0.403

20780.70

SRC

106

1840702

0.378

12152.25

STAT3

94

203982

0.395

9467.91

PIK3R1

90

2018872

0.360

2866.74

PIK3CA

90

1934252

0.371

3380.49

GRB2

88

875099

0.356

6799.11

PIK3CD

78

1060062

0.344

1542.98

EP300

68

102129

0.384

9713.19

ESR1

68

107922

0.382

3460.96

EGFR

64

1900221

0.379

4107.30

JAK2

62

2018246

0.336

3306.13

PTPN11

60

1846168

0.342

976.25

PLCG1

60

176800

0.342

2246.47

JUN

60

109664

0.386

4588.18

PTK2

58

1628990

0.359

2715.29

CREBBP

50

97027

0.366

4127.79

RELA

48

89174

0.361

1522.38

KDR

38

111299

0.327

1277.70

JAK3

34

93610

0.326

3161.98

Figure 4. GO enrichment analysis of 19 core targets

4. 19个核心靶点GO富集分析

Figure 5. KEGG enrichment analysis of 19 core targets

5. 19个核心靶点KEGG富集分析

3.6. 分子对接验证

分子对接研究的结合能越低,表明“靶基因和活性分子”之间的亲和力越高,表明构象更稳定,功能相互作用的可能性更大。本研究将5种潜在活性成分(Glyuranolide、Glabridin、Glyasperin B、Pectolinarigenin和Glypallichalcone)与5个靶基因(PTPN1、ESR2、CYP19A1、ESR1和ACHE)进行分子对接验证了它们的结合活性。结果如表2所示。在研究中,四种活性分子与其靶基因表现出良好的亲和性。通过进行分子对接,你们鉴定出25对结合能 ≤ −3.18 kcal/mol的“靶基因与活性分子”对。从中选择了结合能最低的6对来说明它们的对接模式,如图6所示。在对接模型中可视化这些相互作用不仅可以更清楚地了解这些分子如何融入其靶标的结合位点,还有助于评估这些分子作为药物开发先导物的可行性。这些见解对于进一步优化和修饰分子以增强其功效和特异性至关重要。活性化合物Glyuranolide和Glabridin与各自靶基因的结合作用主要通过氢键发生,氢键对于稳定药物靶标结合中的分子相互作用至关重要。由于Glyuranolide的结合能较低,它通过以下方式与靶基因形成氢键。Glyuranolide与PTPN1形成两个氢键。与CYP19A1结合,Glyuranolide形成一个氢键,Glabridin形成两个氢键。Glyuranolide与ESR1形成两个氢键。Glyuranolide与ACHE也建立了两个氢键,Glabridin也建立了一个氢键。

Table 2. Docking situations of core target genes and core active ingredients

2. 核心靶基因和核心有效成分对接情况

PTPN1

ESR2

CYP19A1

ESR1

ACHE

Glyuranolide结合能力(kcal/mol)

−9.10

−6.17

−7.27

−8.25

−6.93

Glabridin结合能力(kcal/mol)

−6.11

−4.38

−9.04

−5.66

−6.97

Glyasperin B结合能力(kcal/mol)

−6.01

−4.50

−4.13

−4.91

−4.53

Pectolinarigenin结合能力(kcal/mol)

−5.66

−4.51

−3.98

−4.03

−4.05

Glypallichalcone结合能力(kcal/mol)

−6.22

−6.61

−3.18

−6.13

−5.19

(A) (B)

(C) (D)

(E) (F)

Figure 6. Molecular docking models of the top 6 pairs with the lowest binding energy

6. 结合能最低的前6对分子对接模型

4. 讨论

慢性阻塞性肺疾病(COPD)是一种以慢性支气管炎、肺气肿及小气道功能障碍为主要临床表现的呼吸系统疾病。其病理特征表现为不可逆性气流受限,伴随气道慢性炎症反应、黏液高分泌状态及支气管黏膜上皮损伤等病理改变[5]。从中医理论角度分析,COPD的发病机制主要涉及肺、脾、肾三脏功能虚损,同时伴有痰浊瘀血壅阻肺络的病理变化。现代药理学研究表明,中药制剂在临床应用中展现出多重优势,包括降低药物不良反应发生率、减少化学药物依赖以及显著提升患者生存质量[6]。越婢加半夏汤作为传统经方,凭借其独特的宣肃肺气、清化热痰功效,在COPD的临床治疗中取得显著疗效,然而其分子层面的作用靶点和调控网络仍有待深入解析。基于此,本研究创新性地整合网络药理学预测与分子对接验证技术,旨在系统揭示该复方治疗COPD的多组分–多靶点–多通路协同作用机制。

基于TCMSP数据库,本研究得到越婢加半夏汤有效成分145个,进一步通过对“中药–有效成分–靶点”网络分析得到包括Glyuranolide、Glabridin、Glyasperin B、Pectolinarigenin、Glypallichalcone等有效成分,且国内外对其开展的研究较极少,对以上成分认识较少,故而应该得到更多的关注。这些核心成分可能通过作用靶基因,如TP53、SRC、STAT3、PIK3R1、PIK3CA、GRB2、PIK3CD、EP300、ESR1、EGFR、JAK2、PTPN11、PLCG1、JUN、PTK2、CREBBP、RELA、KDR和JAK3,可能通过调节细胞凋亡、脂质代谢、抑制炎性反应等途径进而发挥治疗COPD的功效。Glyuranolide来源于甘草,可能通过多种信号通路抑制炎症反应[6]。Glabridin具有抗炎、抗氧化、抗肿瘤、抗菌、保护肝脏、抗肥胖和抗糖尿病的特性,显著影响着药物研发和医疗领域。许多信号通路,包括NF-кB、MAPK、Wnt/β-catenin、ERo/SRC-1、PI3K/AKT和AMPK,都与Glabridin的调控活性有关[7]-[10]。COPD的炎症进展也与PI3K-Akt信号通路有关[11]。Glyasperin B与AKT1、EGFR、ESR1和PTGS2具有良好的亲和性,实验结果表明,它可以上调肝组织中p-PI3K/PI3K和p-Akt/Akt蛋白的表达比例。精方颗粒具有多组分、多靶点的减轻酒精性肝损伤的作用,可能与激活PI3K-Akt信号通路有关[12]。Pectolinarigenin作为类黄酮亚类,具有抗氧化、抗炎、抗糖尿病、抗肿瘤等作用,是一种很有前景的生物治疗药物,炎症反应是脓毒症期间肾损伤的重要机制[13] [14]。Pectolinarigenin降低促炎IL-6的产生,抑制Jak2/Stat3信号通路的激活Pectolinarigenin通过激活Nrf2和PPARa信号通路减少肝脏的氧化应激和炎症[14]-[16],并通过调节NF-xB/Nrf2通路表现出抗氧化和抗凋亡作用,并减少小鼠结肠炎[17] [18]。Pectolinarigenin通过抑制炎症信号通路具有抗炎和神经保护作用[19],可能通过下调PI3K/AKT/mTOR通路导致胃癌细胞周期阻滞和凋亡,从而发挥抗癌作用,可能抑制胃癌的进展[20] [21]。Glypallichalcone是甘草的重要活性成分。它可能通过促进自噬相关蛋白的表达,抑制细胞周期蛋白和血管生成因子的表达,调节自噬和凋亡来抑制细胞的增殖、迁移和侵袭[22],还可以抑制乙型肝炎病毒的复制,参与肝细胞修复,为治疗慢性乙型肝炎提供了新的策略[23]

通过GO富集分析,发现这些靶基因主要涉及细胞凋亡、炎症反应、信号转导等生物过程,例如“表皮生长因子受体信号通路”、“肽基I-酪氨酸磷酸化”、“蛋白激酶B信号正调控”等,这些过程与COPD的病理机制密切相关。COPD的慢性炎症和气道重塑过程涉及多种信号通路的异常激活,而越婢加半夏汤通过调控这些关键信号通路,可能有效抑制炎症反应,促进细胞凋亡,从而缓解COPD的病理变化。KEGG通路富集分析显示,这些靶基因显著富集于PI3K-Akt信号通路、AGE-RAGE信号通路、前列腺癌、脂质和动脉粥样硬化等通路。PI3K-Akt信号通路在细胞存活、增殖和代谢中起着关键作用,而COPD的病理过程中存在细胞异常增殖和凋亡障碍,这可能导致气道重塑和肺实质破坏。越婢加半夏汤通过调控PIK3R1、PIK3CA和PIK3CD等基因影响PI3K-Akt信号通路,可能有助于恢复细胞正常的增殖和凋亡平衡,从而缓解COPD的病理变化。此外,AGE-RAGE信号通路在糖尿病并发症中的作用也与COPD的氧化应激和炎症反应有关,越婢加半夏汤对这一通路的调控可能进一步减轻COPD的炎症损伤。

这些核心成分可能通过作用于核心靶基因如TP53、SRC、STAT3、PIK3R1、PIK3CA、GRB2、PIK3CD、EP300、ESR1、EGFR、JAK2、PTPN11、PLCG1、JUN、PTK2、CREBBP、RELA、KDR和JAK3来发挥治疗COPD作用[24]。ESR1、TP53、JUN、RELA是二陈方联合泻白散治疗COPD的核心靶点[25]。SRC是部分酪氨酸磷酸化的靶点,可调节蛋白质结构和相互作用,影响COPD的病理生理[26]。JAK抑制剂LAS194046可降低COPD患者JAK2/STAT3磷酸化,并具有抗炎作用[27]。序贯无创正压通气联合吸气肌训练可通过调节JAK2/STAT3信号介导的氧化应激显著缓解COPD进展[28]。多项研究表明,调节PIK3R1、PIK3CA和PIK3CD的表达影响COPD的进展[29]-[32]。GRB2靶点参与Ras信号转导。调节COPD的发展[33]。EP300表达水平与COPD的病理过程密切相关[34]。EGFR在控制COPD患者异常上皮重塑和粘液阻塞中发挥重要作用[35]。EGFR表达升高与COPD和肺腺癌的发展密切相关[36] [37]。PTPN11是一个研究热点,其变异与肺癌的发展有关,与COPD发展密切相关[38]-[40]。PLCG1被鉴定为与COPD的焦亡相关基因有密切关系,焦亡在COPD中起重要作用[41]。KDR又称VEGFR,COPD的进展可能由于VEGFR信号传导失调和肺细胞凋亡引起的[42]。Bevacizumab具有抗血管生成特性,可降低VEGF水平,已被用于治疗COPD等肺部疾病[43]。CREBBP靶突变在肺癌发生发展中发挥重要作用[44] [45]

利用分子对接技术,对5种核心蛋白(PTPN1、ESR2、CYP19A1、ESR1、ACHE)和5种核心成分(Glyuranolide、Glabridin、Glyasperin B、Pectolinarigenin、Glypallichalcone)的结合能活性进行评估。结合能越低,配体–受体结合越稳定。结果显示,所有对接Vina评分均小于−3.18 kcal/mol,说明越婢加半夏汤的核心成分对各核心靶基因都有一定的结合能力。结合亲和性最密切的6个基因与活性分子对分别为Glyuranolide和PTPN1,Glyuranolide和CYP19A1,Glyuranolide和ESR1,Glyuranolide和ACHE,Glabridin和CYP19A1,Glabridin和ACHE,它们结合能分别为−9.10、−7.27、−8.25、−6.93、−9.04、−6.97 kcal/mol,这表明它们对接效果良好。

本研究结果为越婢加半夏汤治疗COPD的临床应用提供了重要的理论依据和科学指导。首先,明确越婢加半夏汤多组分–多靶点–多通路的作用机制,有助于临床医生更好地理解和应用该方剂。在临床实践中,可根据患者的具体病情和个体差异,结合越婢加半夏汤的作用机制,制定更加精准的治疗方案。例如,对于以炎症反应为主的COPD患者,可重点关注越婢加半夏汤中具有抗炎作用的活性成分,如Glabridin和Pectolinarigenin,这些成分通过调控NF-κB、Jak2/Stat3等炎症相关信号通路,可能更有效地减轻患者的炎症症状。其次,研究结果为越婢加半夏汤的个体化治疗提供了可能的靶点和方向。临床医生可结合患者的基因检测信息,如TP53、EGFR等核心靶基因的表达水平和突变状态,预测患者对越婢加半夏汤的治疗反应,从而实现个体化治疗,提高治疗效果并减少不良反应。此外,本研究还为基于越婢加半夏汤的新型COPD治疗药物的研发提供了科学思路。通过进一步深入研究越婢加半夏汤的核心活性成分及其作用靶点,可开发出更具特异性和有效性的新型中药复方制剂或单体药物,为COPD患者提供更多治疗选择。

然而,网络药理学方法存在若干固有局限:首先,本研究未能充分考虑中药煎煮过程中可能发生的复杂化学转化以及活性成分在体内的代谢动力学过程,这些关键环节需要通过后续动物实验和临床研究加以验证;其次,该技术主要基于现有数据库信息进行分析,可能遗漏尚未被发现的作用靶点和信号通路。尽管如此,网络药理学方法仍为阐释越婢加半夏汤治疗COPD的多靶点协同作用机制提供了重要的研究思路和技术支撑。未来的研究可以通过动物实验和临床试验进一步验证这些预测结果,同时结合代谢组学和转录组学等多组学技术,更全面地解析越婢加半夏汤的作用机制,为COPD的治疗提供更精准的策略。

5. 结论

综上所述,本研究基于网络药理学和分子对接技术,初步探讨了越婢加半夏汤治疗COPD的作用机制。越婢加半夏汤的主要有效成分为Glyuranolide、Glabridin、Glyasperin B、Pectolinarigenin、Glypallichalcone等。它们可能通过TP53、SRC、STAT3、PIK3R1、PIK3CA、GRB2、PIK3CD、EP300、ESR1、EGFR、JAK2、PTPN11、PLCG1、JUN、PTK2、CREBBP、RELA、KDR、JAK3等靶基因,通过调控癌症发展、PI3K-Akt信号通路、AGE-RAGE信号通路参与糖尿病并发症、前列腺癌、脂质和动脉粥样硬化、卡波西肉瘤相关疱疹病毒感染、EGFR酪氨酸激酶抑制剂抵抗,胰腺癌、癌症中枢碳代谢、乙型肝炎等途径发挥治疗COPD的功效。此外,我们利用分子对接技术验证了越婢加半夏汤的核心有效成分与COPD的核心靶基因具有良好的结合活性。结果表明,越婢加半夏汤治疗COPD具有多组分,多靶点,多通路的特点。本研究结果为越婢加半夏汤治疗COPD的作用机制及临床运用提供了理论依据,为新药研发提供科学思路。然而,本研究还需要进一步的实验验证。

基金项目

国家自然科学基金地区科学基金项目(编号:82160889)。

NOTES

*通讯作者。

参考文献

[1] Safiri, S., Carson-Chahhoud, K., Noori, M., Nejadghaderi, S.A., Sullman, M.J.M., Ahmadian Heris, J., et al. (2022) Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990-2019: Results from the Global Burden of Disease Study 2019. BMJ, 378, e069679.
https://doi.org/10.1136/bmj-2021-069679
[2] Cao, X., Wang, Y., Chen, Y., Zhao, M., Liang, L., Yang, M., et al. (2023) Advances in Traditional Chinese Medicine for the Treatment of Chronic Obstructive Pulmonary Disease. Journal of Ethnopharmacology, 307, Article ID: 116229.
https://doi.org/10.1016/j.jep.2023.116229
[3] Barabási, A., Gulbahce, N. and Loscalzo, J. (2010) Network Medicine: A Network-Based Approach to Human Disease. Nature Reviews Genetics, 12, 56-68.
https://doi.org/10.1038/nrg2918
[4] Zhou, L., Zhang, L. and Tao, D. (2020) Investigation on the Mechanism of Qubi Formula in Treating Psoriasis Based on Network Pharmacology. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 4683254.
https://doi.org/10.1155/2020/4683254
[5] Guo, P., Li, R., Piao, T.H., Wang, C.L., Wu, X.L. and Cai, H.Y. (2022) Pathological Mechanism and Targeted Drugs of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 17, 1565-1575.
https://doi.org/10.2147/copd.s366126
[6] Li, W., Zhang, G., Zhao, Z., Zuo, Y., Sun, Z. and Chen, S. (2023) Exploring the Mechanism of Erchen Decoction in the Treatment of Atherosclerosis Based on Network Pharmacology and Molecular Docking. Medicine, 102, e35248.
https://doi.org/10.1097/md.0000000000035248
[7] Zhang, J., Wu, X., Zhong, B., Liao, Q., Wang, X., Xie, Y., et al. (2023) Review on the Diverse Biological Effects of Glabridin. Drug Design, Development and Therapy, 17, 15-37.
https://doi.org/10.2147/dddt.s385981
[8] Ye, Q., Zhang, Q., Yao, H., Xu, A., Liu, Y., Qi, J., et al. (2021) Active-Ingredient Screening and Synergistic Action Mechanism of Shegan Mixture for Anti-Asthma Effects Based on Network Pharmacology in a Mouse Model of Asthma. Drug Design, Development and Therapy, 15, 1765-1777.
https://doi.org/10.2147/dddt.s288829
[9] Carmeli, E. and Fogelman, Y. (2009) Antioxidant Effect of Polyphenolic Glabridin on LDL Oxidation. Toxicology and Industrial Health, 25, 321-324.
https://doi.org/10.1177/0748233709103034
[10] Zhu, K., Li, K., Wang, H., Kang, L., Dang, C. and Zhang, Y. (2019) Discovery of Glabridin as Potent Inhibitor of Epidermal Growth Factor Receptor in SK-BR-3 Cell. Pharmacology, 104, 113-125.
https://doi.org/10.1159/000496798
[11] Sun, X., Chen, L. and He, Z. (2019) PI3K/Akt-Nrf2 and Anti-Inflammation Effect of Macrolides in Chronic Obstructive Pulmonary Disease. Current Drug Metabolism, 20, 301-304.
https://doi.org/10.2174/1389200220666190227224748
[12] Gao, M., Yang, R.C., Liu, Q., et al. (2021) Mechanism of Jingfang Granules in Relieving Alcohol and Protecting Liver Based on Bioinformatics Technology. China Journal of Chinese Materia Medica, 46, 5683-5692.
[13] Cheriet, T., Ben-Bachir, B., Thamri, O., Seghiri, R. and Mancini, I. (2020) Isolation and Biological Properties of the Natural Flavonoids Pectolinarin and Pectolinarigenin—A Review. Antibiotics, 9, Article No. 417.
https://doi.org/10.3390/antibiotics9070417
[14] Shiraiwa, M., Kitakaze, T., Yamashita, Y., Ukawa, Y., Mukai, K. and Ashida, H. (2022) Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/Are Pathway in Hepg2 Cells. Antioxidants, 11, Article No. 675.
https://doi.org/10.3390/antiox11040675
[15] Tan, Z., Liu, Q., Chen, H., Zhang, Z., Wang, Q., Mu, Y., et al. (2023) Pectolinarigenin Alleviated Septic Acute Kidney Injury via Inhibiting Jak2/Stat3 Signaling and Mitochondria Dysfunction. Biomedicine & Pharmacotherapy, 159, Article ID: 114286.
https://doi.org/10.1016/j.biopha.2023.114286
[16] Li, Q., Zhang, W., Cheng, N., Zhu, Y., Li, H., Zhang, S., et al. (2023) Pectolinarigenin Ameliorates Acetaminophen-Induced Acute Liver Injury via Attenuating Oxidative Stress and Inflammatory Response in Nrf2 and PPARa Dependent Manners. Phytomedicine, 113, Article ID: 154726.
https://doi.org/10.1016/j.phymed.2023.154726
[17] Fu, R. (2023) Pectolinarigenin Improves Oxidative Stress and Apoptosis in Mouse NSC-34 Motor Neuron Cell Lines Induced by C9-ALS-Associated Proline-Arginine Dipeptide Repeat Proteins by Enhancing Mitochondrial Fusion Mediated via the SIRT3/OPA1 Axis. Antioxidants, 12, Article No. 2008.
https://doi.org/10.3390/antiox12112008
[18] Feng, Y., Bhandari, R., Li, C., Shu, P. and Shaikh, I.I. (2022) Pectolinarigenin Suppresses Lps-Induced Inflammatory Response in Macrophages and Attenuates DSS-Induced Colitis by Modulating the NF-κB/Nrf2 Signaling Pathway. Inflammation, 45, 2529-2543.
https://doi.org/10.1007/s10753-022-01710-4
[19] Heimfarth, L., Nascimento, L.d.S., Amazonas da Silva, M.d.J., Lucca Junior, W.d., Lima, E.S., Quintans-Junior, L.J., et al. (2021) Neuroprotective and Anti-Inflammatory Effect of Pectolinarigenin, a Flavonoid from Amazonian Aegiphila integrifolia (jacq.), against Lipopolysaccharide-Induced Inflammation in Astrocytes via NF-κB and MAPK Pathways. Food and Chemical Toxicology, 157, Article ID: 112538.
https://doi.org/10.1016/j.fct.2021.112538
[20] Lee, H.J., Venkatarame Gowda Saralamma, V., Kim, S.M., Ha, S.E., Raha, S., Lee, W.S., et al. (2018) Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway. Nutrients, 10, Article No. 1043.
https://doi.org/10.3390/nu10081043
[21] Lee, H.J., Kwon, Y.S., Lee, J.H., Moon, Y.G., Choi, J., Hyun, M., et al. (2024) Pectolinarigenin Regulates the Tumor-Associated Proteins in AGS-Xenograft BALB/c Nude Mice. Molecular Biology Reports, 51, Article No. 305.
https://doi.org/10.1007/s11033-023-09046-4
[22] Guo, F., Yang, X., Hu, C., Li, W. and Han, W. (2023) Network Pharmacology Combined with Machine Learning to Reveal the Action Mechanism of Licochalcone Intervention in Liver Cancer. International Journal of Molecular Sciences, 24, Article No. 15935.
https://doi.org/10.3390/ijms242115935
[23] Xu, T., Wang, P., Zheng, X., Yan, Z., Li, K., Xu, J., et al. (2021) The Therapeutic Effects and Mechanisms of Long Chai Fang on Chronic Hepatitis B. Annals of Translational Medicine, 9, Article No. 865.
https://doi.org/10.21037/atm-21-1923
[24] Wang, D., Han, D., Huang, T., Zhou, X. and Xu, Y. (2023) Efficacy Evaluation and Potential Pharmacological Mechanism of Tanreqing Injection in the Treatment of COPD Combined with Respiratory Failure Based on Meta-Analysis and Network Pharmacology. Heliyon, 9, e13513.
https://doi.org/10.1016/j.heliyon.2023.e13513
[25] Ye, H., He, B., Zhang, Y., Yu, Z., Feng, Y., Wen, C., et al. (2023) Herb-Symptom Analysis of Erchen Decoction Combined with Xiebai Powder Formula and Its Mechanism in the Treatment of Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 14, Article ID: 1117238.
https://doi.org/10.3389/fphar.2023.1117238
[26] Bandela, M., Belvitch, P., Garcia, J.G.N. and Dudek, S.M. (2022) Cortactin in Lung Cell Function and Disease. International Journal of Molecular Sciences, 23, Article No. 4606.
https://doi.org/10.3390/ijms23094606
[27] Milara, J., Ballester, B., de Diego, A., Calbet, M., Ramis, I., Miralpeix, M., et al. (2022) The Pan-Jak Inhibitor LAS194046 Reduces Neutrophil Activation from Severe Asthma and COPD Patients in Vitro. Scientific Reports, 12, Article No. 5132.
https://doi.org/10.1038/s41598-022-09241-6
[28] Lei, Y., He, J., Hu, F., Zhu, H., Gu, J., Tang, L., et al. (2023) Sequential Inspiratory Muscle Exercise-Noninvasive Positive Pressure Ventilation Alleviates Oxidative Stress in COPD by Mediating SOCS5/JAK2/STAT3 Pathway. BMC Pulmonary Medicine, 23, Article No. 385.
https://doi.org/10.1186/s12890-023-02656-5
[29] Tian, D., Miao, Y., Hao, W., Yang, N., Wang, P., Ge, Q., et al. (2022) Tanshinone IIA Protects against Chronic Obstructive Pulmonary Disease via Exosome-Shuttled miR‑486‑5p. International Journal of Molecular Medicine, 50, Article No. 97.
https://doi.org/10.3892/ijmm.2022.5153
[30] Hu, W., Zeng, Y., Zuo, Y. and Zhang, J. (2018) Identification of Novel Candidate Genes Involved in the Progression of Emphysema by Bioinformatic Methods. International Journal of Chronic Obstructive Pulmonary Disease, 13, 3733-3747.
https://doi.org/10.2147/copd.s183100
[31] Sawa, K., Koh, Y., Kawaguchi, T., Kambayashi, S., Asai, K., Mitsuoka, S., et al. (2017) PIK3CA Mutation as a Distinctive Genetic Feature of Non-Small Cell Lung Cancer with Chronic Obstructive Pulmonary Disease: A Comprehensive Mutational Analysis from a Multi-Institutional Cohort. Lung Cancer, 112, 96-101.
https://doi.org/10.1016/j.lungcan.2017.07.039
[32] Fu, H., Liu, X., Shi, L., Wang, L., Fang, H., Wang, X., et al. (2023) Regulatory Roles of Osteopontin in Lung Epithelial Inflammation and Epithelial‐Telocyte Interaction. Clinical and Translational Medicine, 13, e1381.
https://doi.org/10.1002/ctm2.1381
[33] Pavel, A.B., Garrison, C., Luo, L., Liu, G., Taub, D., Xiao, J., et al. (2023) Integrative Genetic and Genomic Networks Identify microRNA Associated with COPD and ILD. Scientific Reports, 13, Article No. 13076.
https://doi.org/10.1038/s41598-023-39751-w
[34] Zhang, Y., Sheng, Y., Gao, Y., Lin, Y., Cheng, B., Li, H., et al. (2023) Exploration of the Pathogenesis of Chronic Obstructive Pulmonary Disease Caused by Smoking—Based on Bioinformatics Analysis and in Vitro Experimental Evidence. Toxics, 11, Article No. 995.
https://doi.org/10.3390/toxics11120995
[35] Strickson, S., Houslay, K.F., Negri, V.A., Ohne, Y., Ottosson, T., Dodd, R.B., et al. (2023) Oxidised IL-33 Drives COPD Epithelial Pathogenesis via ST2-Independent RAGE/EGFR Signalling Complex. European Respiratory Journal, 62, Article ID: 2202210.
https://doi.org/10.1183/13993003.02210-2022
[36] Lu, W., Eapen, M.S., Hardikar, A., Chia, C., Robertson, I., Singhera, G.K., et al. (2023) Epithelial-Mesenchymal Transition Changes in Nonsmall Cell Lung Cancer Patients with Early COPD. ERJ Open Research, 9, Article ID: 00581-2023.
https://doi.org/10.1183/23120541.00581-2023
[37] Tsantikos, E., Gottschalk, T.A., L’Estrange-Stranieri, E., O’Brien, C.A., Raftery, A.L., Wickramasinghe, L.C., et al. (2023) Enhanced Lyn Activity Causes Severe, Progressive Emphysema and Lung Cancer. American Journal of Respiratory Cell and Molecular Biology, 69, 99-112.
https://doi.org/10.1165/rcmb.2022-0463oc
[38] Ali, M.K., Tian, X., Zhao, L., et al. (2023) PTPN1 Deficiency Modulates BMPR2 Signaling and Induces Endothelial Dysfunction in Pulmonary Arterial Hypertension. Cells, 12, Article No. 316.
https://doi.org/10.3390/cells12020316
[39] Li, S., Wang, X., Li, Q. and Li, C. (2022) Role of SHP2/PTPN11 in the Occurrence and Prognosis of Cancer: A Systematic Review and Meta-Analysis. Oncology Letters, 25, Article No. 19.
https://doi.org/10.3892/ol.2022.13605
[40] Chen, X., Keller, S.J., Hafner, P., Alrawashdeh, A.Y., Avery, T.Y., Norona, J., et al. (2024) Tyrosine Phosphatase PTPN11/SHP2 in Solid Tumors—Bull’s Eye for Targeted Therapy? Frontiers in Immunology, 15, Article ID: 1340726.
https://doi.org/10.3389/fimmu.2024.1340726
[41] Liu, X., Huang, X. and Xu, F. (2023) The Influence of Pyroptosis-Related Genes on the Development of Chronic Obstructive Pulmonary Disease. BMC Pulmonary Medicine, 23, Article No. 167.
https://doi.org/10.1186/s12890-023-02408-5
[42] Adini, A., Wu, H., Dao, D.T., Ko, V.H., Yu, L.J., Pan, A., et al. (2020) PR1P Stabilizes VEGF and Upregulates Its Signaling to Reduce Elastase-Induced Murine Emphysema. American Journal of Respiratory Cell and Molecular Biology, 63, 452-463.
https://doi.org/10.1165/rcmb.2019-0434oc
[43] Bolandi, S.M., Abdolmaleki, Z. and Assarehzadegan, M. (2021) Bevacizumab Regulates Inflammatory Cytokines and Inhibits VEGFR2 Signaling Pathway in an Ovalbumin-Induced Rat Model of Airway Hypersensitivity. Inflammopharmacology, 29, 683-694.
https://doi.org/10.1007/s10787-021-00798-8
[44] George, J., Maas, L., Abedpour, N., Cartolano, M., Kaiser, L., Fischer, R.N., et al. (2024) Evolutionary Trajectories of Small Cell Lung Cancer under Therapy. Nature, 627, 880-889.
https://doi.org/10.1038/s41586-024-07177-7
[45] Ikeda, S., Tsuboi, M., Sakai, K., Misumi, T., Akamatsu, H., Shoda, H., et al. (2023) NOTCH1 and CREBBP Co‐Mutations Negatively Affect the Benefit of Adjuvant Therapy in Completely Resected EGFR‐Mutated NSCLC: Translational Research of Phase III Impact Study. Molecular Oncology, 18, 305-316.
https://doi.org/10.1002/1878-0261.13542