[1]
|
Saglani, S., Fleming, L., Sonnappa, S. and Bush, A. (2019) Advances in the Aetiology, Management, and Prevention of Acute Asthma Attacks in Children. The Lancet Child & Adolescent Health, 3, 354-364. https://doi.org/10.1016/s2352-4642(19)30025-2
|
[2]
|
Nabe, T. (2020) Steroid-Resistant Asthma and Neutrophils. Biological and Pharmaceutical Bulletin, 43, 31-35. https://doi.org/10.1248/bpb.b19-00095
|
[3]
|
Wheless, J.W. (2008) History of the Ketogenic Diet. Epilepsia, 49, 3-5. https://doi.org/10.1111/j.1528-1167.2008.01821.x
|
[4]
|
Karagiannis, F., Masouleh, S.K., Wunderling, K., Surendar, J., Schmitt, V., Kazakov, A., et al. (2020) Lipid-Droplet Formation Drives Pathogenic Group 2 Innate Lymphoid Cells in Airway Inflammation. Immunity, 52, 620-634.e6. https://doi.org/10.1016/j.immuni.2020.03.003
|
[5]
|
Simpson, J.L., Scott, R., Boyle, M.J. and Gibson, P.G. (2006) Inflammatory Subtypes in Asthma: Assessment and Identification Using Induced Sputum. Respirology, 11, 54-61. https://doi.org/10.1111/j.1440-1843.2006.00784.x
|
[6]
|
Nair, P., Aziz-Ur-Rehman, A. and Radford, K. (2015) Therapeutic Implications of “Neutrophilic Asthma”. Current Opinion in Pulmonary Medicine, 21, 33-38. https://doi.org/10.1097/mcp.0000000000000120
|
[7]
|
Khan, M.A., Ali, Z.S., Sweezey, N., Grasemann, H. and Palaniyar, N. (2019) Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes, 10, Article No. 183. https://doi.org/10.3390/genes10030183
|
[8]
|
Tu, H., Ren, H., Jiang, J., Shao, C., Shi, Y. and Li, P. (2023) Dying to Defend: Neutrophil Death Pathways and Their Implications in Immunity. Advanced Science, 11, Article ID: 2306457. https://doi.org/10.1002/advs.202306457
|
[9]
|
Liu, Q.Y. and Fu, Z. (2023) The Role of Neutrophils in the Occurrence and Development of Asthma. Advances in Clinical Medicine, 13, 3194-3199. https://doi.org/10.12677/acm.2023.133454
|
[10]
|
Blevins, H.M., Xu, Y., Biby, S. and Zhang, S. (2022) The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Aging Neuroscience, 14, Article ID: 879021. https://doi.org/10.3389/fnagi.2022.879021
|
[11]
|
Mills, K.H.G. (2022) IL-17 and Il-17-Producing Cells in Protection versus Pathology. Nature Reviews Immunology, 23, 38-54. https://doi.org/10.1038/s41577-022-00746-9
|
[12]
|
Yang, X., Li, C., Ng, K.T., Liu, J., Liu, H., Zhang, W., et al. (2020) IL-17a Exacerbates Hepatic Ischemia-Reperfusion Injury in Fatty Liver by Promoting Neutrophil Infiltration and Mitochondria-Driven Apoptosis. Journal of Leukocyte Biology, 108, 1603-1613. https://doi.org/10.1002/jlb.3ma0520-716r
|
[13]
|
McKinley, L., Alcorn, J.F., Peterson, A., DuPont, R.B., Kapadia, S., Logar, A., et al. (2008) TH17 Cells Mediate Steroid-Resistant Airway Inflammation and Airway Hyperresponsiveness in Mice. The Journal of Immunology, 181, 4089-4097. https://doi.org/10.4049/jimmunol.181.6.4089
|
[14]
|
Hellings, P.W., Kasran, A., Liu, Z., Vandekerckhove, P., Wuyts, A., Overbergh, L., et al. (2003) Interleukin-17 Orchestrates the Granulocyte Influx into Airways after Allergen Inhalation in a Mouse Model of Allergic Asthma. American Journal of Respiratory Cell and Molecular Biology, 28, 42-50. https://doi.org/10.1165/rcmb.4832
|
[15]
|
Chen, D., Zhang, Y., Yao, C., Li, B., Li, S., Liu, W., et al. (2021) Increased Levels of Serum IL-17 and Induced Sputum Neutrophil Percentage Are Associated with Severe Early-Onset Asthma in Adults. Allergy, Asthma & Clinical Immunology, 17, 1-8. https://doi.org/10.1186/s13223-021-00568-9
|
[16]
|
Chen, H., Wang, J., Ji, Q. and Jiang, Z. (2024) Sodium Butyrate Restricts Neutrophils Migration and Nets Formation through Reducing Macrophage-Derived CXCL16 in Calculous Cholecystitis. Heliyon, 10, e25189. https://doi.org/10.1016/j.heliyon.2024.e25189
|
[17]
|
Keir, H.R. and Chalmers, J.D. (2022) Neutrophil Extracellular Traps in Chronic Lung Disease: Implications for Pathogenesis and Therapy. European Respiratory Review, 31, Article ID: 210241. https://doi.org/10.1183/16000617.0241-2021
|
[18]
|
Yüksel, H. and Tunca, S. (2021) Destiny of Airway Disease: Interplay between Epithelial Barrier and the Innate Immune System. Tissue Barriers, 10, Article ID: 2020706. https://doi.org/10.1080/21688370.2021.2020706
|
[19]
|
叶红伟, 梁民勇, 王小莉, 等. MMP-9与支气管哮喘气道重塑的相关性及其临床应用研究进展[J]. 中国当代医药, 2019, 26(2): 25-28.
|
[20]
|
Grzela, K., Litwiniuk, M., Zagorska, W. and Grzela, T. (2015) Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: The Role of Matrix Metalloproteinase-9. Archivum Immunologiae et Therapiae Experimentalis, 64, 47-55. https://doi.org/10.1007/s00005-015-0345-y
|
[21]
|
Ohbayashi, H. and Shimokata, K. (2005) Matrix Metalloproteinase-9 and Airway Remodeling in Asthma. Current Drug Target-Inflammation & Allergy, 4, 177-181. https://doi.org/10.2174/1568010053586246
|
[22]
|
Barbaro, M.P.F., Spanevello, A., Palladino, G.P., Salerno, F.G., Lacedonia, D. and Carpagnano, G.E. (2014) Exhaled Matrix Metalloproteinase-9 (MMP-9) in Different Biological Phenotypes of Asthma. European Journal of Internal Medicine, 25, 92-96. https://doi.org/10.1016/j.ejim.2013.08.705
|
[23]
|
Seys, S.F., Lokwani, R., Simpson, J.L. and Bullens, D.M.A. (2019) New Insights in Neutrophilic Asthma. Current Opinion in Pulmonary Medicine, 25, 113-120. https://doi.org/10.1097/mcp.0000000000000543
|
[24]
|
王迪, 吴静, 于丽. 中性粒细胞胞外诱捕网产生的分子机制及其在相关疾病中的作用[J]. 中华微生物学和免疫学杂志, 2021, 41(1): 69-73.
|
[25]
|
Hinks, T.S.C., Brown, T., Lau, L.C.K., Rupani, H., Barber, C., Elliott, S., et al. (2016) Multidimensional Endotyping in Patients with Severe Asthma Reveals Inflammatory Heterogeneity in Matrix Metalloproteinases and Chitinase 3-Like Protein 1. Journal of Allergy and Clinical Immunology, 138, 61-75. https://doi.org/10.1016/j.jaci.2015.11.020
|
[26]
|
Lachowicz-Scroggins, M.E., Dunican, E.M., Charbit, A.R., Raymond, W., Looney, M.R., Peters, M.C., et al. (2019) Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 199, 1076-1085. https://doi.org/10.1164/rccm.201810-1869oc
|
[27]
|
Varricchi, G., Modestino, L., Poto, R., Cristinziano, L., Gentile, L., Postiglione, L., et al. (2021) Neutrophil Extracellular Traps and Neutrophil-Derived Mediators as Possible Biomarkers in Bronchial Asthma. Clinical and Experimental Medicine, 22, 285-300. https://doi.org/10.1007/s10238-021-00750-8
|
[28]
|
Schreck, K.C., Lwin, M., Strowd, R.E., Henry-Barron, B.J., Blakeley, J.O. and Cervenka, M.C. (2017) Effect of Ketogenic Diets on Leukocyte Counts in Patients with Epilepsy. Nutritional Neuroscience, 22, 522-527. https://doi.org/10.1080/1028415x.2017.1416740
|
[29]
|
Ruskin, D.N., Kawamura, M. and Masino, S.A. (2009) Reduced Pain and Inflammation in Juvenile and Adult Rats Fed a Ketogenic Diet. PLOS ONE, 4, e8349. https://doi.org/10.1371/journal.pone.0008349
|
[30]
|
Mank, M.M., Reed, L.F., Walton, C.J., Barup, M.L.T., Ather, J.L. and Poynter, M.E. (2022) Therapeutic Ketosis Decreases Methacholine Hyperresponsiveness in Mouse Models of Inherent Obese Asthma. American Journal of Physiology-Lung Cellular and Molecular Physiology, 322, L243-L257. https://doi.org/10.1152/ajplung.00309.2021
|
[31]
|
Youm, Y., Nguyen, K.Y., Grant, R.W., Goldberg, E.L., Bodogai, M., Kim, D., et al. (2015) The Ketone Metabolite Β-Hydroxybutyrate Blocks NLRP3 Inflammasome-Mediated Inflammatory Disease. Nature Medicine, 21, 263-269. https://doi.org/10.1038/nm.3804
|
[32]
|
Yamanashi, T., Iwata, M., Kamiya, N., Tsunetomi, K., Kajitani, N., Wada, N., et al. (2017) Beta-Hydroxybutyrate, an Endogenic NLRP3 Inflammasome Inhibitor, Attenuates Stress-Induced Behavioral and Inflammatory Responses. Scientific Reports, 7, Article No. 7677. https://doi.org/10.1038/s41598-017-08055-1
|
[33]
|
Hasan-Olive, M.M., Lauritzen, K.H., Ali, M., Rasmussen, L.J., Storm-Mathisen, J. and Bergersen, L.H. (2018) A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the Pgc1α-Sirt3-Ucp2 Axis. Neurochemical Research, 44, 22-37. https://doi.org/10.1007/s11064-018-2588-6
|
[34]
|
Abais, J.M., Zhang, C., Xia, M., Liu, Q., Gehr, T.W.B., Boini, K.M., et al. (2013) NADPH Oxidase-Mediated Triggering of Inflammasome Activation in Mouse Podocytes and Glomeruli during Hyperhomocysteinemia. Antioxidants & Redox Signaling, 18, 1537-1548. https://doi.org/10.1089/ars.2012.4666
|
[35]
|
Michaeloudes, C., Abubakar-Waziri, H., Lakhdar, R., Raby, K., Dixey, P., Adcock, I.M., et al. (2022) Molecular Mechanisms of Oxidative Stress in Asthma. Molecular Aspects of Medicine, 85, Article ID: 101026. https://doi.org/10.1016/j.mam.2021.101026
|
[36]
|
Wilson, H.M. (2014) SOCS Proteins in Macrophage Polarization and Function. Frontiers in Immunology, 5, Article No. 357. https://doi.org/10.3389/fimmu.2014.00357
|
[37]
|
Bai, Y., Xing, Y., Ma, T., Li, K., Zhang, T., Wang, D., et al. (2024) β-Hydroxybutyrate Suppresses M1 Macrophage Polarization through β-Hydroxybutyrylation of the STAT1 Protein. Cell Death & Disease, 15, 1-14. https://doi.org/10.1038/s41419-024-07268-3
|
[38]
|
Starkey, M.R., McKenzie, A.N., Belz, G.T. and Hansbro, P.M. (2019) Pulmonary Group 2 Innate Lymphoid Cells: Surprises and Challenges. Mucosal Immunology, 12, 299-311. https://doi.org/10.1038/s41385-018-0130-4
|
[39]
|
Emami Fard, N., Xiao, M. and Sehmi, R. (2023) Regulatory ILC2—Role of IL-10 Producing ILC2 in Asthma. Cells, 12, Article No. 2556. https://doi.org/10.3390/cells12212556
|
[40]
|
Halwani, R., Sultana, A., Vazquez-Tello, A., Jamhawi, A., Al-Masri, A.A. and Al-Muhsen, S. (2017) Th-17 Regulatory Cytokines IL-21, IL-23, and IL-6 Enhance Neutrophil Production of IL-17 Cytokines during Asthma. Journal of Asthma, 54, 893-904. https://doi.org/10.1080/02770903.2017.1283696
|
[41]
|
Rondanelli, M., Gasparri, C., Peroni, G., Faliva, M.A., Naso, M., Perna, S., et al. (2021) The Potential Roles of Very Low Calorie, Very Low Calorie Ketogenic Diets and Very Low Carbohydrate Diets on the Gut Microbiota Composition. Frontiers in Endocrinology, 12, Article ID: 662591. https://doi.org/10.3389/fendo.2021.662591
|
[42]
|
Al Bander, Z., Nitert, M.D., Mousa, A. and Naderpoor, N. (2020) The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 17, Article No. 7618. https://doi.org/10.3390/ijerph17207618
|
[43]
|
Ma, D., Wang, A.C., Parikh, I., Green, S.J., Hoffman, J.D., Chlipala, G., et al. (2018) Ketogenic Diet Enhances Neurovascular Function with Altered Gut Microbiome in Young Healthy Mice. Scientific Reports, 8, Article No. 6670. https://doi.org/10.1038/s41598-018-25190-5
|
[44]
|
Beam, A., Clinger, E. and Hao, L. (2021) Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients, 13, Article No. 2795. https://doi.org/10.3390/nu13082795
|
[45]
|
Attaye, I., van Oppenraaij, S., Warmbrunn, M.V. and Nieuwdorp, M. (2021) The Role of the Gut Microbiota on the Beneficial Effects of Ketogenic Diets. Nutrients, 14, Article No. 191. https://doi.org/10.3390/nu14010191
|
[46]
|
Meng, Y., Sun, J. and Zhang, G. (2024) Take the Bull by the Horns and Tackle the Potential Downsides of the Ketogenic Diet. Nutrition, 125, Article ID: 112480. https://doi.org/10.1016/j.nut.2024.112480
|
[47]
|
Joshi, S., Shi, R. and Patel, J. (2023) Risks of the Ketogenic Diet in CKD—The Con Part. Clinical Kidney Journal, 17, sfad274. https://doi.org/10.1093/ckj/sfad274
|