[1]
|
O’Shea, J.J., Schwartz, D.M., Villarino, A.V., et al. (2015) The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annual Review of Medicine, 66, 311-328.
|
[2]
|
Yu, Y. and Wang, Z. (2010) Advances of the Correlation between JAK-STAT3 Signaling Pathway and the Biological Behavior of Non-Small Cell Lung Cancer. Chinese Journal of Lung Cancer, 13, 160-164.
|
[3]
|
Xin, P., Xu, X., Deng, C., Liu, S., Wang, Y., Zhou, X., et al. (2020) The Role of JAK/STAT Signaling Pathway and Its Inhibitors in Diseases. International Immunopharmacology, 80, Article ID: 106210. https://doi.org/10.1016/j.intimp.2020.106210
|
[4]
|
邹雪, 张丽卿. Janus激酶抑制剂及其在类风湿关节炎治疗中的作用研究进展[J]. 山东医药, 2022, 62(31): 107-110.
|
[5]
|
黄永富, 余世庆, 许文荣. 支气管哮喘候选基因的表达与信号转导途径的调控[J]. 国际检验医学杂志, 2011, 32(3): 350-352.
|
[6]
|
Horvath, C.M. (2000) STAT Proteins and Transcriptional Responses to Extracellular Signals. Trends in Biochemical Sciences, 25, 496-502. https://doi.org/10.1016/s0968-0004(00)01624-8
|
[7]
|
Kawata, T., Shevchenko, A., Fukuzawa, M., Jermyn, K.A., Totty, N.F., Zhukovskaya, N.V., et al. (1997) SH2 Signaling in a Lower Eukaryote: A STAT Protein That Regulates Stalk Cell Differentiation in Dictyostelium. Cell, 89, 909-916. https://doi.org/10.1016/s0092-8674(00)80276-7
|
[8]
|
Barahmand-Pour, F., Meinke, A., Groner, B. and Decker, T. (1998) Jak2-Stat5 Interactions Analyzed in Yeast. Journal of Biological Chemistry, 273, 12567-12575. https://doi.org/10.1074/jbc.273.20.12567
|
[9]
|
Durham, G.A., Williams, J.J.L., Nasim, M.T. and Palmer, T.M. (2019) Targeting SOCS Proteins to Control JAK-STAT Signalling in Disease. Trends in Pharmacological Sciences, 40, 298-308. https://doi.org/10.1016/j.tips.2019.03.001
|
[10]
|
Yu, H. and Jove, R. (2004) The Stats of Cancer—New Molecular Targets Come of Age. Nature Reviews Cancer, 4, 97-105. https://doi.org/10.1038/nrc1275
|
[11]
|
Verhoeven, Y., Tilborghs, S., Jacobs, J., De Waele, J., Quatannens, D., Deben, C., et al. (2020) The Potential and Controversy of Targeting STAT Family Members in Cancer. Seminars in Cancer Biology, 60, 41-56. https://doi.org/10.1016/j.semcancer.2019.10.002
|
[12]
|
Jatiani, S.S., Cosenza, S.C., Reddy, M.V.R., Ha, J.H., Baker, S.J., Samanta, A.K., et al. (2010) A Non-ATP-Competitive Dual Inhibitor of JAK2V617F and BCR-ABLT315I Kinases: Elucidation of a Novel Therapeutic Spectrum Based on Substrate Competitive Inhibition. Genes & Cancer, 1, 331-345. https://doi.org/10.1177/1947601910371337
|
[13]
|
Wang (2010) Knockdown of STAT3 Expression by RNAi Suppresses Growth and Induces Apoptosis and Differentiation in Glioblastoma Stem Cells. International Journal of Oncology, 37, 103-110. https://doi.org/10.3892/ijo_00000658
|
[14]
|
Iwamaru, A., Szymanski, S., Iwado, E., Aoki, H., Yokoyama, T., Fokt, I., et al. (2006) A Novel Inhibitor of the STAT3 Pathway Induces Apoptosis in Malignant Glioma Cells Both in Vitro and in Vivo. Oncogene, 26, 2435-2444. https://doi.org/10.1038/sj.onc.1210031
|
[15]
|
Chen, F., Xu, Y., Luo, Y., Zheng, D., Song, Y., Yu, K., et al. (2010) Down-Regulation of Stat3 Decreases Invasion Activity and Induces Apoptosis of Human Glioma Cells. Journal of Molecular Neuroscience, 40, 353-359. https://doi.org/10.1007/s12031-009-9323-3
|
[16]
|
Lo, H., Cao, X., Zhu, H. and Ali-Osman, F. (2008) Constitutively Activated STAT3 Frequently Coexpresses with Epidermal Growth Factor Receptor in High-Grade Gliomas and Targeting STAT3 Sensitizes Them to Iressa and Alkylators. Clinical Cancer Research, 14, 6042-6054. https://doi.org/10.1158/1078-0432.ccr-07-4923
|
[17]
|
Schaefer, L.K., Ren, Z., Fuller, G.N. and Schaefer, T.S. (2002) Constitutive Activation of Stat3α in Brain Tumors: Localization to Tumor Endothelial Cells and Activation by the Endothelial Tyrosine Kinase Receptor (VEGFR-2). Oncogene, 21, 2058-2065. https://doi.org/10.1038/sj.onc.1205263
|
[18]
|
Fetell, M.R., Housepian, E.M., Oster, M.W., Cote, D.N., Sisti, M.B., Marcus, S.G., et al. (1990) Intratumor Administration of Beta-Interferon in Recurrent Malignant Gliomas. A Phase I Clinical and Laboratory Study. Cancer, 65, 78-83. https://doi.org/10.1002/1097-0142(19900101)65:1<78::aid-cncr2820650117>3.0.co;2-5
|
[19]
|
Han, E.S., Wen, W., Dellinger, T.H., Wu, J., Lu, S.A., Jove, R., et al. (2018) Ruxolitinib Synergistically Enhances the Anti-Tumor Activity of Paclitaxel in Human Ovarian Cancer. Oncotarget, 9, 24304-24319. https://doi.org/10.18632/oncotarget.24368
|
[20]
|
Fogelman, D., Cubillo, A., García‐Alfonso, P., Mirón, M.L.L., Nemunaitis, J., Flora, D., et al. (2018) Randomized, Double‐Blind, Phase Two Study of Ruxolitinib plus Regorafenib in Patients with Relapsed/Refractory Metastatic Colorectal Cancer. Cancer Medicine, 7, 5382-5393. https://doi.org/10.1002/cam4.1703
|
[21]
|
Cheng, Z., Fu, J., Liu, G., Zhang, L., Xu, Q. and Wang, S. (2017) Angiogenesis in JAK2 V617F Positive Myeloproliferative Neoplasms and Ruxolitinib Decrease VEGF, HIF-1 Enesis in JAK2 V617F Positive Cells. Leukemia & Lymphoma, 59, 196-203. https://doi.org/10.1080/10428194.2017.1324155
|
[22]
|
Delen, E. and Doğanlar, O. (2020) The Dose Dependent Effects of Ruxolitinib on the Invasion and Tumorigenesis in Gliomas Cells via Inhibition of Interferon Gamma-Depended JAK/STAT Signaling Pathway. Journal of Korean Neurosurgical Society, 63, 444-454. https://doi.org/10.3340/jkns.2019.0252
|
[23]
|
Goker Bagca, B., Ozates, N.P. and Biray Avci, C. (2022) Ruxolitinib Enhances Cytotoxic and Apoptotic Effects of Temozolomide on Glioblastoma Cells by Regulating WNT Signaling Pathway-Related Genes. Medical Oncology, 40, Article No. 37. https://doi.org/10.1007/s12032-022-01897-4
|
[24]
|
Rahaman, S.O., Harbor, P.C., Chernova, O., Barnett, G.H., Vogelbaum, M.A. and Haque, S.J. (2002) Inhibition of Constitutively Active Stat3 Suppresses Proliferation and Induces Apoptosis in Glioblastoma Multiforme Cells. Oncogene, 21, 8404-8413. https://doi.org/10.1038/sj.onc.1206047
|
[25]
|
Senft, C., Priester, M., Polacin, M., Schröder, K., Seifert, V., Kögel, D., et al. (2010) Inhibition of the JAK-2/STAT3 Signaling Pathway Impedes the Migratory and Invasive Potential of Human Glioblastoma Cells. Journal of Neuro-Oncology, 101, 393-403. https://doi.org/10.1007/s11060-010-0273-y
|
[26]
|
Sun, Y., Niu, W., Du, F., Du, C., Li, S., Wang, J., et al. (2016) Safety, Pharmacokinetics, and Antitumor Properties of Anlotinib, an Oral Multi-Target Tyrosine Kinase Inhibitor, in Patients with Advanced Refractory Solid Tumors. Journal of Hematology & Oncology, 9, Article No. 105. https://doi.org/10.1186/s13045-016-0332-8
|
[27]
|
Lin, B., Song, X., Yang, D., Bai, D., Yao, Y. and Lu, N. (2018) Anlotinib Inhibits Angiogenesis via Suppressing the Activation of VEGFR2, PDGFRβ and FGFR1. Gene, 654, 77-86. https://doi.org/10.1016/j.gene.2018.02.026
|
[28]
|
Liang, L., Hui, K., Hu, C., Wen, Y., Yang, S., Zhu, P., et al. (2019) Autophagy Inhibition Potentiates the Anti-Angiogenic Property of Multikinase Inhibitor Anlotinib through JAK2/STAT3/VEGFA Signaling in Non-Small Cell Lung Cancer Cells. Journal of Experimental & Clinical Cancer Research, 38, Article No. 71. https://doi.org/10.1186/s13046-019-1093-3
|
[29]
|
He, C., Wu, T. and Hao, Y. (2018) Anlotinib Induces Hepatocellular Carcinoma Apoptosis and Inhibits Proliferation via Erk and Akt Pathway. Biochemical and Biophysical Research Communications, 503, 3093-3099. https://doi.org/10.1016/j.bbrc.2018.08.098
|
[30]
|
Wang, G., Sun, M., Jiang, Y., Zhang, T., Sun, W., Wang, H., et al. (2019) Anlotinib, a Novel Small Molecular Tyrosine Kinase Inhibitor, Suppresses Growth and Metastasis via Dual Blockade of VEGFR2 and MET in Osteosarcoma. International Journal of Cancer, 145, 979-993. https://doi.org/10.1002/ijc.32180
|
[31]
|
Chen, X., Zhu, M., Zou, X., Mao, Y., Niu, J., Jiang, J., et al. (2022) CCl2-Targeted Ginkgolic Acid Exerts Anti-Glioblastoma Effects by Inhibiting the JAK3-STAT1/PI3K-AKT Signaling Pathway. Life Sciences, 311, Article ID: 121174. https://doi.org/10.1016/j.lfs.2022.121174
|
[32]
|
Yuan, Z., Yang, Z., Li, W., Wu, A., Su, Z., Jiang, B., et al. (2022) Triphlorethol‐a Attenuates U251 Human Glioma Cancer Cell Proliferation and Ameliorates Apoptosis through JAK2/STAT3 and P38 MAPK/ERK Signaling Pathways. Journal of Biochemical and Molecular Toxicology, 36, e23138. https://doi.org/10.1002/jbt.23138
|
[33]
|
Feng, Y., Wang, J., Cai, B., et al. (2022) Ivermectin Accelerates Autophagic Death of Glioma Cells by Inhibiting Glycolysis through Blocking GLUT4 Mediated JAK/STAT Signaling Pathway Activation. Environmental Toxicology, 37, 754-764.
|