[1]
|
Yan, X., Zhou, Y. and Wang, S. (2024) Nano‐High Entropy Materials in Electrocatalysis. Advanced Functional Materials, 35, Article 2413115. https://doi.org/10.1002/adfm.202413115
|
[2]
|
Lu, S., Ying, J., Liu, T., Wang, Y., Guo, M., Shen, Q., et al. (2024) A Novel Thiophene-Linked Metalloporphyrin Conjugated Polymer: A Highly Efficient Trifunctional Electrocatalyst for Overall Water Splitting and Oxygen Reduction. Journal of Materials Chemistry A, 12, 17676-17687. https://doi.org/10.1039/d4ta02463j
|
[3]
|
Li, R., Niu, W., Zhao, W., Yu, B., Cai, C., Xu, L., et al. (2024) Achievements and Challenges in Surfactants‐Assisted Synthesis of MOFs‐Derived Transition Metal-Nitrogen-Carbon as a Highly Efficient Electrocatalyst for ORR, OER, and Her. Small, 21, Article 2408227. https://doi.org/10.1002/smll.202408227
|
[4]
|
Yang, X., Lin, L., Guo, X. and Zhang, S. (2024) Design of Multifunctional Electrocatalysts for ORR/OER/HER/HOR: Janus Makes Difference. Small, 20, Article 2404000. https://doi.org/10.1002/smll.202404000
|
[5]
|
Gu, T., Shen, J., Sun, Z., Li, F., Zhi, C., Zhu, M., et al. (2024) Engineering Non‐Precious Trifunctional Cobalt‐Based Electrocatalysts for Industrial Water Splitting and Ultra‐High‐Temperature Flexible Zinc‐Air Battery. Small, 20, Article 2308355. https://doi.org/10.1002/smll.202308355
|
[6]
|
Chen, W., Zhu, X., Wei, W., Chen, H., Dong, T., Wang, R., et al. (2023) Neighboring Platinum Atomic Sites Activate Platinum-Cobalt Nanoclusters as High‐Performance ORR/OER/HER Electrocatalysts. Small, 19, Article 2304294. https://doi.org/10.1002/smll.202304294
|
[7]
|
Jiang, D., Wan, G., Halldin Stenlid, J., García-Vargas, C.E., Zhang, J., Sun, C., et al. (2023) Dynamic and Reversible Transformations of Subnanometre-Sized Palladium on Ceria for Efficient Methane Removal. Nature Catalysis, 6, 618-627. https://doi.org/10.1038/s41929-023-00983-8
|
[8]
|
Talib, S.H., Lu, Z., Yu, X., Ahmad, K., Bashir, B., Yang, Z., et al. (2021) Theoretical Inspection of M1/PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). ACS Catalysis, 11, 8929-8941. https://doi.org/10.1021/acscatal.1c01294
|
[9]
|
Tamtaji, M., Goddard III, W.A., Hu, Z. and Chen, G. (2025) High-Throughput Screening of Axially Bonded Dual Atom Catalysts for Enhanced Electrocatalytic Reactions: The Effect of Van Der Waals Interaction. Journal of Materials Science & Technology, 218, 126-134. https://doi.org/10.1016/j.jmst.2024.09.009
|
[10]
|
Humayun, M., Israr, M., Khan, A. and Bououdina, M. (2023) State-of-the-Art Single-Atom Catalysts in Electrocatalysis: From Fundamentals to Applications. Nano Energy, 113, Article 108570. https://doi.org/10.1016/j.nanoen.2023.108570
|
[11]
|
Eschrig, H. (1996) The Fundamentals of Density Functional Theory. Springer. https://doi.org/10.1007/978-3-322-97620-8
|
[12]
|
Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
|
[13]
|
Hammer, B., Hansen, L.B. and Nørskov, J.K. (1999) Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B, 59, 7413-7421. https://doi.org/10.1103/PhysRevB.59.7413
|
[14]
|
Perdew, J. P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
|
[15]
|
Rangel, T., Caliste, D., Genovese, L. and Torrent, M. (2016) A Wavelet-Based Projector Augmented-Wave (PAW) Method: Reaching Frozen-Core All-Electron Precision with a Systematic, Adaptive and Localized Wavelet Basis Set. Computer Physics Communications, 208, 1-8. https://doi.org/10.1016/j.cpc.2016.06.012
|
[16]
|
Wang, V., Xu, N., Liu, J., Tang, G. and Geng, W. (2021) VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Computer Physics Communications, 267, Article 108033. https://doi.org/10.1016/j.cpc.2021.108033
|
[17]
|
Maintz, S., Deringer, V.L., Tchougréeff, A.L. and Dronskowski, R. (2016) LOBSTER: A Tool to Extract Chemical Bonding from Plane‐Wave Based DFT. Journal of Computational Chemistry, 37, 1030-1035. https://doi.org/10.1002/jcc.24300
|
[18]
|
Falin, A., Cai, Q., Santos, E.J.G., Scullion, D., Qian, D., Zhang, R., et al. (2017) Mechanical Properties of Atomically Thin Boron Nitride and the Role of Interlayer Interactions. Nature Communications, 8, Article 15815. https://doi.org/10.1038/ncomms15815
|
[19]
|
Maity, A., Grenadier, S.J., Li, J., Lin, J.Y. and Jiang, H.X. (2020) High Efficiency Hexagonal Boron Nitride Neutron Detectors with 1 cm2 Detection Areas. Applied Physics Letters, 116, Article 142102. https://doi.org/10.1063/1.5143808
|
[20]
|
Zhang, K., Feng, Y., Wang, F., Yang, Z. and Wang, J. (2017) Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. Journal of Materials Chemistry C, 5, 11992-12022. https://doi.org/10.1039/c7tc04300g
|
[21]
|
Roy, S., Zhang, X., Puthirath, A.B., Meiyazhagan, A., Bhattacharyya, S., Rahman, M.M., et al. (2021) Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. Advanced Materials, 33, e2101589. https://doi.org/10.1002/adma.202101589
|
[22]
|
Zhang, Y., Wang, D., Wei, G., Li, B., Mao, Z., Xu, S., et al. (2024) Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS2 Bilayer for Enhanced Nitrogen Reduction. JACS Au, 4, 1509-1520. https://doi.org/10.1021/jacsau.4c00030
|
[23]
|
Wang, Q., Yu, G., Yang, E. and Chen, W. (2023) Through the Self-Optimization Process to Achieve High OER Activity of SAC Catalysts within the Framework of TMO3@G and TMO4@G: A High-Throughput Theoretical Study. Journal of Colloid and Interface Science, 640, 405-414. https://doi.org/10.1016/j.jcis.2023.02.122
|
[24]
|
Zhang, Y., Zhang, Y., Guo, Z., Fang, Y., Tang, C., Miao, N., et al. (2023) Establishing Theoretical Landscapes for Identifying Basal Plane Active Sites in MBene toward Multifunctional HER, OER, and ORR Catalysts. Journal of Colloid and Interface Science, 652, 1954-1964. https://doi.org/10.1016/j.jcis.2023.09.006
|
[25]
|
Lu, S., Huynh, H.L., Lou, F., Guo, K. and Yu, Z. (2021) Single Transition Metal Atom Embedded Antimonene Monolayers as Efficient Trifunctional Electrocatalysts for the HER, OER and ORR: A Density Functional Theory Study. Nanoscale, 13, 12885-12895. https://doi.org/10.1039/d1nr02235k
|
[26]
|
Zhou, Y., Sheng, L., Luo, Q., Zhang, W. and Yang, J. (2021) Improving the Activity of Electrocatalysts toward the Hydrogen Evolution Reaction, the Oxygen Evolution Reaction, and the Oxygen Reduction Reaction via Modification of Metal and Ligand of Conductive Two-Dimensional Metal-Organic Frameworks. The Journal of Physical Chemistry Letters, 12, 11652-11658. https://doi.org/10.1021/acs.jpclett.1c03452
|
[27]
|
Medford, A.J., Vojvodic, A., Hummelshøj, J.S., Voss, J., Abild-Pedersen, F., Studt, F., et al. (2015) From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis. Journal of Catalysis, 328, 36-42. https://doi.org/10.1016/j.jcat.2014.12.033
|
[28]
|
Kosar, N., Mahmood, T., et al. (2025) Exploration of Hydrogen Evolution Reaction (HER) by Using First Row Transition Metals Doped B6 Complexes as Support Materials. Inorganic Chemistry Communications, 172, Article ID: 113672. https://doi.org/10.1016/j.inoche.2024.113672
|
[29]
|
Noerskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., et al. (2005) Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society, 152, J23-J26. https://doi.org/10.1149/1.1856988
|
[30]
|
Fang, C., Wang, X., Zhang, Q., Zhang, X., Shi, C., Xu, J., et al. (2023) Coordination Environments Build up and Tune a Superior Synergistic “Genome” toward Novel Trifunctional (TM-NxO4-x)@g-C16N3-H3: High-Throughput Inspection of Ultra-High Activity for Water Splitting and Oxygen Reduction Reactions. Nano Research, 17, 2337-2351. https://doi.org/10.1007/s12274-023-6057-4
|
[31]
|
Bak, J., Heo, Y., Yun, T.G. and Chung, S. (2020) Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 14, 14323-14354. https://doi.org/10.1021/acsnano.0c06411
|
[32]
|
Shan, P., Bai, X., Jiang, Q., Chen, Y., Lu, S., Song, P., et al. (2023) Bilayer MN4-O-MN4 by Bridge-Bonded Oxygen Ligands: Machine Learning to Accelerate the Design of Bifunctional Electrocatalysts. Renewable Energy, 203, 445-454. https://doi.org/10.1016/j.renene.2022.12.059
|
[33]
|
Baran, J.D., Grönbeck, H. and Hellman, A. (2014) Analysis of Porphyrines as Catalysts for Electrochemical Reduction of O2 and Oxidation of H2O. Journal of the American Chemical Society, 136, 1320-1326. https://doi.org/10.1021/ja4060299
|
[34]
|
Beom Cho, S., He, C., Sankarasubramanian, S., Singh Thind, A., Parrondo, J., Hachtel, J.A., et al. (2021) Metal‐Nitrogen‐Carbon Cluster‐Decorated Titanium Carbide Is a Durable and Inexpensive Oxygen Reduction Reaction Electrocatalyst. ChemSusChem, 14, 4680-4689. https://doi.org/10.1002/cssc.202101341
|
[35]
|
Ma, N., Wang, Y., Zhang, Y., Liang, B., Zhao, J. and Fan, J. (2022) First-Principles Screening of Pt Doped Ti2CNL (N=O, S and Se, L=F, Cl, Br and I) as High-Performance Catalysts for ORR/OER. Applied Surface Science, 596, Article 153574. https://doi.org/10.1016/j.apsusc.2022.153574
|