[1]
|
周刚, 尹文婧, 冯博. 综采工作面移架尘源粉尘-雾滴场分布特征模拟分析与工程应用[J]. 煤炭学报, 2018, 43(12): 3425-3435.
|
[2]
|
Yuan, L., et al. (2020) Scientific Conception of Coal Mine Dust Control and Occupational Safety. Journal of China Coal Society, 45, 1-7.
|
[3]
|
Li, D.W., Sui, J.J., Liu, G.Q. and Zhao, Z. (2019) Technical Status and Development Direction of Coal Mine Dust Hazard Prevention and Control Technology in China. Mining Safety & Environmental Protection, 46, 1-7, 13.
|
[4]
|
Chen, Y., Xu, G., Huang, J., Eksteen, J., Liu, X. and Zhao, Z. (2019) Characterization of Coal Particles Wettability in Surfactant Solution by Using Four Laboratory Static Tests. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 567, 304-312. https://doi.org/10.1016/j.colsurfa.2019.01.068
|
[5]
|
Xu, G., Chen, Y., Eksteen, J. and Xu, J. (2018) Surfactant-Aided Coal Dust Suppression: A Review of Evaluation Methods and Influencing Factors. Science of the Total Environment, 639, 1060-1076. https://doi.org/10.1016/j.scitotenv.2018.05.182
|
[6]
|
Guanhua, N., Qian, S., Meng, X., Hui, W., Yuhang, X., Weimin, C., et al. (2019) Effect of NaCl-SDS Compound Solution on the Wettability and Functional Groups of Coal. Fuel, 257, Article ID: 116077. https://doi.org/10.1016/j.fuel.2019.116077
|
[7]
|
Crawford, R.J. and Mainwaring, D.E. (2001) The Influence of Surfactant Adsorption on the Surface Characterisation of Australian Coals. Fuel, 80, 313-320. https://doi.org/10.1016/s0016-2361(00)00110-1
|
[8]
|
Singh, B.P. (1999) The Role of Surfactant Adsorption in the Improved Dewatering of Fine Coal. Fuel, 78, 501-506. https://doi.org/10.1016/s0016-2361(98)00169-0
|
[9]
|
Meng, J., Wang, L., Wang, J., Lyu, C., Zhang, S. and Nie, B. (2024) Molecular Mechanism of Influence of Alkyl Chain Length in Ionic Surfactant on the Wettability of Low Rank Coal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, Article ID: 132661. https://doi.org/10.1016/j.colsurfa.2023.132661
|
[10]
|
Tessum, M. (2015) Effects of Spray Surfactant and Particle Charge on Respirable Dust Control. Ph.D. Thesis, University of Minnesota.
|
[11]
|
Singh, B.P. (1997) The Influence of Surface Phenomena on the Dewatering of Fine Clean Coal. Filtration & Separation, 34, 159-163. https://doi.org/10.1016/s0015-1882(97)84807-0
|
[12]
|
Das, D., Dash, U., Meher, J. and Misra, P.K. (2013) Improving Stability of Concentrated Coal-Water Slurry Using Mixture of a Natural and Synthetic Surfactants. Fuel Processing Technology, 113, 41-51. https://doi.org/10.1016/j.fuproc.2013.02.021
|
[13]
|
Kilau, H.W. and Pahlman, J.E. (1987) Coal Wetting Ability of Surfactant Solutions and the Effect of Multivalent Anion Additions. Colloids and Surfaces, 26, 217-242. https://doi.org/10.1016/0166-6622(87)80118-x
|
[14]
|
Li, W., Zhang, Y., Wang, H., et al. (2023) Synergistic Effects of Anionic-Nonionic Surfactant Mixtures on Lignite Wettability: Enhanced Adsorption and Reduced Contact Angle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 667, Article ID: 130415.
|
[15]
|
Nie, W., Niu, W., Bao, Q., et al. (2024) pH-Responsive Zwitterionic Surfactants for Dynamic Wetting Control in Acidic Coal Mine Environments. Journal of Molecular Liquids, 395, Article ID: 123890.
|
[16]
|
Liao, X., Wang, B., Wang, L., Zhu, J., Chu, P., Zhu, Z., et al. (2021) Experimental Study on the Wettability of Coal with Different Metamorphism Treated by Surfactants for Coal Dust Control. ACS Omega, 6, 21925-21938. https://doi.org/10.1021/acsomega.1c02205
|
[17]
|
Xu, C., Wang, D., Wang, H., Ma, L., Zhu, X., Zhu, Y., et al. (2019) Experimental Investigation of Coal Dust Wetting Ability of Anionic Surfactants with Different Structures. Process Safety and Environmental Protection, 121, 69-76. https://doi.org/10.1016/j.psep.2018.10.010
|
[18]
|
Ma, Y., Wang, Y. and Zhang, Q. (2020) Experimental Study for Influence of Surfactants Chemical Microstructures on Wetting Effect about Coal Dust in Tongchuan Mining Area. Journal of Chemistry, 2020, Article ID: 4176186. https://doi.org/10.1155/2020/4176186
|
[19]
|
Beneventi, D., Carre, B. and Gandini, A. (2001) Role of Surfactant Structure on Surface and Foaming Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 189, 65-73. https://doi.org/10.1016/s0927-7757(01)00602-1
|
[20]
|
唐胜男, 张安琪, 等. 绿色表面活性剂分类综述[J]. 中国化妆品, 2023(4): 104-108.
|
[21]
|
表面活性剂、胶体与界面化学基础[J]. 分析化学, 2013(3): 405.
|
[22]
|
Rosen, M.J. and Kunjappu, J.T. (2012) Surfactants and Interfacial Phenomena. Wiley. https://doi.org/10.1002/9781118228920
|
[23]
|
Delgado, C., Merchán, M.D., Velázquez, M.M. and Anaya, J. (2006) Effect of Surfactant Structure on the Adsorption of Carboxybetaines at the Air-Water Interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280, 17-22. https://doi.org/10.1016/j.colsurfa.2005.12.058
|
[24]
|
Xu, J., Zhang, Y., Chen, H., Wang, P., Xie, Z., Yao, Y., et al. (2013) Effect of Surfactant Headgroups on the Oil/Water Interface: An Interfacial Tension Measurement and Simulation Study. Journal of Molecular Structure, 1052, 50-56. https://doi.org/10.1016/j.molstruc.2013.07.049
|
[25]
|
Li, J., Zhou, F. and Liu, H. (2015) The Selection and Application of a Compound Wetting Agent to the Coal Seam Water Infusion for Dust Control. International Journal of Coal Preparation and Utilization, 36, 192-206. https://doi.org/10.1080/19392699.2015.1088529
|
[26]
|
Hu, Y., Zhang, Q., Zhou, G., Wang, H., Bai, Y. and Liu, Y. (2021) Influence Mechanism of Surfactants on Wettability of Coal with Different Metamorphic Degrees Based on Infrared Spectrum Experiments. ACS Omega, 6, 22248-22258. https://doi.org/10.1021/acsomega.1c02954
|
[27]
|
盖志远, 张雷, 郝孟, 等. 聚氧乙烯醚型表面活性剂疏水链结构对低阶煤表面润湿性及可浮性的影响[J]. 煤炭转化, 2021, 44(4): 56-63.
|
[28]
|
Liu, Y. and Liu, S. (2017) Wettability Modification of Lignite by Adsorption of Alkyltrimethylammonium Bromides with Different Alkyl Chain Length. Drying Technology, 35, 1619-1628. https://doi.org/10.1080/07373937.2016.1265980
|
[29]
|
Li, B., Guo, J., Liu, S., Albijanic, B., Zhang, L. and Sun, X. (2020) Molecular Insight into the Mechanism of Benzene Ring in Nonionic Surfactants on Low-Rank Coal Floatability. Journal of Molecular Liquids, 302, Article ID: 112563. https://doi.org/10.1016/j.molliq.2020.112563
|
[30]
|
张建国, 刘依婷, 王满, 等. 基于分子动力学模拟的非离子表面活性剂对煤润湿性影响机制[J]. 工程科学与技术, 2022, 54(5): 191-202.
|
[31]
|
Yuan, M., Nie, W., Zhou, W., Yan, J., Bao, Q., Guo, C., et al. (2020) Determining the Effect of the Non-Ionic Surfactant AEO9 on Lignite Adsorption and Wetting via Molecular Dynamics (MD) Simulation and Experiment Comparisons. Fuel, 278, Article ID: 118339. https://doi.org/10.1016/j.fuel.2020.118339
|
[32]
|
Meng, J., Wang, L., Zhang, S., Lyu, Y. and Xia, J. (2021) Effect of Anionic/Nonionic Surfactants on the Wettability of Coal Surface. Chemical Physics Letters, 785, Article ID: 139130. https://doi.org/10.1016/j.cplett.2021.139130
|
[33]
|
Meng, J., Yin, F., Li, S., et al. (2019) Effect of Different Concentrations of Surfactant on the Wettability of Coal by Molecular Dynamics Simulation. International Journal of Mining Science and Technology, 29, 577-584.
|
[34]
|
Zhang, L., Li, B., Xia, Y. and Liu, S. (2017) Wettability Modification of Wender Lignite by Adsorption of Dodecyl Poly Ethoxylated Surfactants with Different Degree of Ethoxylation: A Molecular Dynamics Simulation Study. Journal of Molecular Graphics and Modelling, 76, 106-117. https://doi.org/10.1016/j.jmgm.2017.06.028
|
[35]
|
Guo, X., He, Y., Wang, J. and Zhou, R. (2022) Microscopic Adsorption Properties of Methyl Acrylate on Lignite Surface: Experiment and Molecular Simulation Study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, Article ID: 128468. https://doi.org/10.1016/j.colsurfa.2022.128468
|
[36]
|
Li, W., Wang, H., Li, X., et al. (2021) Effect of Mixed Cationic/Anionic Surfactants on the Low-Rank Coal Wettability by an Experimental and Molecular Dynamics Simulation. Fuel, 289, Article ID: 119886.
|
[37]
|
Bao, Q., Nie, W., Niu, W., Mwabaima, I.F., Tian, Q. and Li, R. (2023) Molecular Simulation and Wetting Study on the Mechanism and Capability of Hydrophilic Surfactants Used as Spray Dust Suppressants for Dust Reduction in Coal Mines. Sustainable Chemistry and Pharmacy, 36, Article ID: 101253. https://doi.org/10.1016/j.scp.2023.101253
|
[38]
|
Gattinoni, C., Ewen, J.P. and Dini, D. (2018) Adsorption of Surfactants on α-Fe2O3(0001): A Density Functional Theory Study. The Journal of Physical Chemistry C, 122, 20817-20826. https://doi.org/10.1021/acs.jpcc.8b05899
|
[39]
|
Liu, H., Ge, S., Sun, L., Liu, S., Chen, X., Nian, J., et al. (2024) Study on the Effect of Spatial Adsorption Orientation on the Preferential Selection Mechanism of Dust Suppression Surfactants. Journal of Molecular Liquids, 414, Article ID: 126134. https://doi.org/10.1016/j.molliq.2024.126134
|
[40]
|
聂文, 牛文进, 鲍秋, 等. 基于Dmol3模块的不同表面活性剂对煤尘润湿性的影响[J]. 煤炭学报, 2023, 48(3): 1255-1266.
|
[41]
|
刘硕, 葛少成, 王俊峰, 等. 基于量子化学分析表面活性剂对不同煤种润湿机理的影响[J]. 中国安全生产科学技术, 2021, 17(11): 105-111.
|
[42]
|
Jin, H., Zhang, Y., Dong, H., Zhang, Y., Sun, Y., Shi, J., et al. (2022) Molecular Dynamics Simulations and Experimental Study of the Effects of an Ionic Surfactant on the Wettability of Low-Rank Coal. Fuel, 320, Article ID: 123951. https://doi.org/10.1016/j.fuel.2022.123951
|
[43]
|
夏阳超. 褐煤表面吸水机理及润湿性调控的分子模拟研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2017.
|