[1]
|
Guo, F. and Li, J. (2024) Facile Production of Graphene-Based Ternary Composite Coatings on Metallic Bipolar Plates. Applied Surface Science, 669, Article 160360. https://doi.org/10.1016/j.apsusc.2024.160360
|
[2]
|
郭福成, 李静. 石墨烯基聚合物复合涂层及湿法涂覆在金属双极板领域的应用进展[J]. 广州化学, 2024, 49(3): 25-30.
|
[3]
|
Gao, F., Mu, J., Bi, Z., Wang, S. and Li, Z. (2021) Recent Advances of Polyaniline Composites in Anticorrosive Coatings: A Review. Progress in Organic Coatings, 151, Article 106071. https://doi.org/10.1016/j.porgcoat.2020.106071
|
[4]
|
毛韬博, 栾伟玲, 付青青. 聚苯胺基涂层在质子交换膜燃料电池金属双极板上的应用进展[J]. 化工进展, 2021, 40(7): 3826-3836.
|
[5]
|
Bian, H., Li, C., Peng, H., Jiang, L., Ma, Y., Gu, J., et al. (2024) Recent Advances in Conducting Polymer Coatings for Metal Bipolar Plates in PEMFC. Progress in Organic Coatings, 192, Article 108502. https://doi.org/10.1016/j.porgcoat.2024.108502
|
[6]
|
段育连, 李静. 电沉积法制备三种碳材料/导电聚合物复合涂层在金属双极板表面的应用进展[J]. 广州化学, 2024, 49(5): 29-36.
|
[7]
|
Wessling, B. (1997) Scientific and Commercial Breakthrough for Organic Metals. Synthetic Metals, 85, 1313-1318. https://doi.org/10.1016/s0379-6779(97)80254-8
|
[8]
|
Schauer, T., Joos, A., Dulog, L. and Eisenbach, C.D. (1998) Protection of Iron against Corrosion with Polyaniline Primers. Progress in Organic Coatings, 33, 20-27. https://doi.org/10.1016/s0300-9440(97)00123-9
|
[9]
|
Lv, Z., Ren, K., Liu, T., Zhao, Y., Zhang, Z. and Li, G. (2023) Design Polyaniline/α-Zirconium Phosphate Composites for Achieving Self-Healing Anti-Corrosion of Carbon Steel. Nanomaterials, 14, Article 76. https://doi.org/10.3390/nano14010076
|
[10]
|
Bao, B., Wu, J., Liu, H., Xue, M., He, J., Ren, H., et al. (2024) New Type of Tri‐Pyridyl Inhibitor-Loaded Polyaniline Nanospheres for Durable Protection Anticorrosion Coatings. Journal of Applied Polymer Science, 141, e55420. https://doi.org/10.1002/app.55420
|
[11]
|
Jalali, H., Eslami-Farsani, R. and Ramezanzadeh, B. (2023) Molybdate-Doped Sulfonated-Polyaniline (SPni.Mo) Grafted CNT Nano-Particles for Fabrication of a Dual-Functional Epoxy Composite Coating with Durable Corrosion Resistance Function. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 677, Article 132433. https://doi.org/10.1016/j.colsurfa.2023.132433
|
[12]
|
Lei, Y., Qiu, Z., Tan, N., Du, H., Li, D., Liu, J., et al. (2020) Polyaniline/CeO2 Nanocomposites as Corrosion Inhibitors for Improving the Corrosive Performance of Epoxy Coating on Carbon Steel in 3.5% NaCl Solution. Progress in Organic Coatings, 139, Article 105430. https://doi.org/10.1016/j.porgcoat.2019.105430
|
[13]
|
Deshpande, P.P., Jadhav, N.G., Gelling, V.J. and Sazou, D. (2014) Conducting Polymers for Corrosion Protection: A Review. Journal of Coatings Technology and Research, 11, 473-494. https://doi.org/10.1007/s11998-014-9586-7
|
[14]
|
Liu, R., Jia, Q., Zhang, B., Lai, Z. and Chen, L. (2022) Protective Coatings for Metal Bipolar Plates of Fuel Cells: A Review. International Journal of Hydrogen Energy, 47, 22915-22937. https://doi.org/10.1016/j.ijhydene.2022.05.078
|
[15]
|
Yang, Y., Chen, S. and Xu, L. (2011) Enhanced Conductivity of Polyaniline by Conjugated Crosslinking. Macromolecular Rapid Communications, 32, 593-597. https://doi.org/10.1002/marc.201000806
|
[16]
|
Wang, H., Wu, Q., Fu, H., Wu, L. and Feng, X. (2022) Controlled Growth of Organic 2D Layered Material Thin Films via Interfacial Methods. Chemical Communications, 58, 12384-12398. https://doi.org/10.1039/d2cc03941a
|
[17]
|
Ballabio, M., Zhang, T., Chen, C., Zhang, P., Liao, Z., Hambsch, M., et al. (2021) Band‐Like Charge Transport in Phytic Acid-Doped Polyaniline Thin Films. Advanced Functional Materials, 31, Article 2105184. https://doi.org/10.1002/adfm.202105184
|
[18]
|
Kim, C., Oh, W. and Park, J. (2016) Solid/Liquid Interfacial Synthesis of High Conductivity Polyaniline. RSC Advances, 6, 82721-82725. https://doi.org/10.1039/c6ra18045k
|
[19]
|
Zhang, T., Qi, H., Liao, Z., Horev, Y.D., Panes-Ruiz, L.A., Petkov, P.S., et al. (2019) Engineering Crystalline Quasi-Two-Dimensional Polyaniline Thin Film with Enhanced Electrical and Chemiresistive Sensing Performances. Nature Communications, 10, Article No. 4225. https://doi.org/10.1038/s41467-019-11921-3
|
[20]
|
Zhu, C., Dong, X., Guo, C., Huo, L., Gao, S., Zheng, Z., et al. (2022) Template-Free Synthesis of a Wafer-Sized Polyaniline Nanoscale Film with High Electrical Conductivity for Trace Ammonia Gas Sensing. Journal of Materials Chemistry A, 10, 12150-12156. https://doi.org/10.1039/d2ta01825j
|
[21]
|
Chatterjee, K., Dhara, P., Ganguly, S., Kargupta, K. and Banerjee, D. (2013) Morphology Dependent Ammonia Sensing with 5-Sulfosalicylic Acid Doped Nanostructured Polyaniline Synthesized by Several Routes. Sensors and Actuators B: Chemical, 181, 544-550. https://doi.org/10.1016/j.snb.2013.02.042
|
[22]
|
Wang, X., Yu, G., Zhang, J., Yu, M., Ramakrishna, S. and Long, Y. (2021) Conductive Polymer Ultrafine Fibers via Electrospinning: Preparation, Physical Properties and Applications. Progress in Materials Science, 115, Article 100704. https://doi.org/10.1016/j.pmatsci.2020.100704
|
[23]
|
Kim, Y., Nguyen, H. and Kinlen, P. (2021) Secondary Dopants of Electrically Conducting Polyanilines. Polymers, 13, Article 2904. https://doi.org/10.3390/polym13172904
|
[24]
|
Choi, I.Y., Lee, J., Ahn, H., Lee, J., Choi, H.C. and Park, M.J. (2015) High-Conductivity Two-Dimensional Polyaniline Nanosheets Developed on Ice Surfaces. Angewandte Chemie International Edition, 54, 10497-10501. https://doi.org/10.1002/anie.201503332
|
[25]
|
Dominic, J., David, T., Vanaja, A. and Satheesh Kumar, K.K. (2016) Effect of LiCl on Conductivity of Polyaniline Synthesized via In-Situ Chemical Oxidative Method. European Polymer Journal, 85, 236-243. https://doi.org/10.1016/j.eurpolymj.2016.10.028
|
[26]
|
Bednarczyk, K., Matysiak, W., Tański, T., Janeczek, H., Schab-Balcerzak, E. and Libera, M. (2021) Effect of Polyaniline Content and Protonating Dopants on Electroconductive Composites. Scientific Reports, 11, Article No. 7487. https://doi.org/10.1038/s41598-021-86950-4
|
[27]
|
Nazari, H. and Arefinia, R. (2019) An Investigation into the Relationship between the Electrical Conductivity and Particle Size of Polyaniline in Nano Scale. International Journal of Polymer Analysis and Characterization, 24, 178-190. https://doi.org/10.1080/1023666x.2018.1564128
|
[28]
|
Hu, C., Li, T., Yin, H., Hu, L., Tang, J. and Ren, K. (2021) Preparation and Corrosion Protection of Three Different Acids Doped Polyaniline/Epoxy Resin Composite Coatings on Carbon Steel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612, Article 126069. https://doi.org/10.1016/j.colsurfa.2020.126069
|
[29]
|
Bhadra, S., Singha, N.K. and Khastgir, D. (2007) Electrochemical Synthesis of Polyaniline and Its Comparison with Chemically Synthesized Polyaniline. Journal of Applied Polymer Science, 104, 1900-1904. https://doi.org/10.1002/app.25867
|
[30]
|
Le, D.P., Yoo, Y.H., Kim, J.G., Cho, S.M. and Son, Y.K. (2009) Corrosion Characteristics of Polyaniline-Coated 316L Stainless Steel in Sulphuric Acid Containing Fluoride. Corrosion Science, 51, 330-338. https://doi.org/10.1016/j.corsci.2008.10.028
|
[31]
|
Li, P., Ding, X., Yang, Z., Chen, M., Wang, M. and Wang, X. (2018) Electrochemical Synthesis and Characterization of Polyaniline-Coated PEMFC Metal Bipolar Plates with Improved Corrosion Resistance. Ionics, 24, 1129-1137. https://doi.org/10.1007/s11581-017-2274-8
|
[32]
|
Ren, Y.J., Chen, J. and Zeng, C.L. (2010) Corrosion Protection of Type 304 Stainless Steel Bipolar Plates of Proton-Exchange Membrane Fuel Cells by Doped Polyaniline Coating. Journal of Power Sources, 195, 1914-1919. https://doi.org/10.1016/j.jpowsour.2009.10.003
|
[33]
|
Gao, Y., Syed, J.A., Lu, H. and Meng, X. (2016) Anti-Corrosive Performance of Electropolymerized Phosphomolybdic Acid Doped PANI Coating on 304SS. Applied Surface Science, 360, 389-397. https://doi.org/10.1016/j.apsusc.2015.11.029
|
[34]
|
Deyab, M.A. and Mele, G. (2020) Stainless Steel Bipolar Plate Coated with Polyaniline/Zn-Porphyrin Composites Coatings for Proton Exchange Membrane Fuel Cell. Scientific Reports, 10, Article No. 3277. https://doi.org/10.1038/s41598-020-60288-9
|
[35]
|
Zhao, T., Chen, Z., Yi, X., Huang, E. and Wang, Y. (2024) Functionalized Modified Ti4O7 Polyaniline Coating for 316SS Bipolar Plate in Proton-Exchange Membrane Fuel Cells. Polymers, 16, Article 2592. https://doi.org/10.3390/polym16182592
|
[36]
|
Qi, Y., Cui, J., Guo, F. and Li, J. (2024) Graphene/Polyaniline Waterborne Composite Coatings for Metallic Bipolar Plates. Progress in Organic Coatings, 197, Article 108829. https://doi.org/10.1016/j.porgcoat.2024.108829
|
[37]
|
Yu, H., Guo, Q., Wang, C., Cao, G. and Liu, Y. (2023) Preparation and Performance of PANI/CNTs Composite Coating on 316 Stainless Steel Bipolar Plates by Pulsed Electrodeposition. Progress in Organic Coatings, 182, Article 107611. https://doi.org/10.1016/j.porgcoat.2023.107611
|
[38]
|
Deyab, M.A. (2014) Corrosion Protection of Aluminum Bipolar Plates with Polyaniline Coating Containing Carbon Nanotubes in Acidic Medium Inside the Polymer Electrolyte Membrane Fuel Cell. Journal of Power Sources, 268, 50-55. https://doi.org/10.1016/j.jpowsour.2014.06.021
|
[39]
|
Sharma, S., Zhang, K., Gupta, G. and Santamaria, D. (2017) Exploring Pani-Tin Nanoparticle Coatings in a PEFC Environment: Enhancing Corrosion Resistance and Conductivity of Stainless Steel Bipolar Plates. Energies, 10, Article 1152. https://doi.org/10.3390/en10081152
|
[40]
|
Cooper, L. and El‐Kharouf, A. (2020) Titanium Nitride Polyaniline Bilayer Coating for Metallic Bipolar Plates Used in Polymer Electrolyte Fuel Cells. Fuel Cells, 20, 453-460. https://doi.org/10.1002/fuce.201900200
|
[41]
|
Wang, Y., Zhang, S., Wang, P., Lu, Z., Chen, S. and Wang, L. (2019) Synthesis and Corrosion Protection of Nb Doped TiO2 Nanopowders Modified Polyaniline Coating on 316 Stainless Steel Bipolar Plates for Proton-Exchange Membrane Fuel Cells. Progress in Organic Coatings, 137, Article 105327. https://doi.org/10.1016/j.porgcoat.2019.105327
|
[42]
|
Pan, T.J., Zuo, X.W., Wang, T., Hu, J., Chen, Z.D. and Ren, Y.J. (2016) Electrodeposited Conductive Polypyrrole/Polyaniline Composite Film for the Corrosion Protection of Copper Bipolar Plates in Proton Exchange Membrane Fuel Cells. Journal of Power Sources, 302, 180-188. https://doi.org/10.1016/j.jpowsour.2015.10.027
|
[43]
|
Ren, Y.J., Chen, J., Zeng, C.L., Li, C. and He, J.J. (2016) Electrochemical Corrosion Characteristics of Conducting Polypyrrole/Polyaniline Coatings in Simulated Environments of a Proton Exchange Membrane Fuel Cell. International Journal of Hydrogen Energy, 41, 8542-8549. https://doi.org/10.1016/j.ijhydene.2016.03.184
|
[44]
|
Ren, Y.J. and Zeng, C.L. (2008) Effect of Conducting Composite Polypyrrole/Polyaniline Coatings on the Corrosion Resistance of Type 304 Stainless Steel for Bipolar Plates of Proton-Exchange Membrane Fuel Cells. Journal of Power Sources, 182, 524-530. https://doi.org/10.1016/j.jpowsour.2008.04.056
|
[45]
|
Hashempour, M., Sharma, S., Gonzalez, D., Vicenzo, A. and Bestetti, M. (2014) The Effect of Electrodeposited PANI on Corrosion Behavior of 316 Stainless Steel Coated by CVD Grown MWCNTs under PEMFC Bipolar Plate Working Condition. ECS Transactions, 63, 261-276. https://doi.org/10.1149/06301.0261ecst
|
[46]
|
Wang, Y., Zhang, S., Lu, Z., Wang, P., Ji, X. and Li, W. (2018) Preparation and Performance of Electrically Conductive Nb-Doped TiO2/Polyaniline Bilayer Coating for 316L Stainless Steel Bipolar Plates of Proton-Exchange Membrane Fuel Cells. RSC Advances, 8, 19426-19431. https://doi.org/10.1039/c8ra02161a
|
[47]
|
Zhang, K. and Sharma, S. (2016) Site-Selective, Low-Loading, Au Nanoparticle-Polyaniline Hybrid Coatings with Enhanced Corrosion Resistance and Conductivity for Fuel Cells. ACS Sustainable Chemistry & Engineering, 5, 277-286. https://doi.org/10.1021/acssuschemeng.6b01504
|
[48]
|
Nautiyal, A., Cook, J.E. and Zhang, X. (2019) Tunable Electrochemical Performance of Polyaniline Coating via Facile Ion Exchanges. Progress in Organic Coatings, 136, Article 105309. https://doi.org/10.1016/j.porgcoat.2019.105309
|