[1]
|
杨正华, 刘嘉炘. 峡山水库大坝渗流安全评价[J]. 水利水电科技进展, 2007, 27(2): 40-44.
|
[2]
|
安景峰, 刘礼威, 郭赵元, 等. 钢混组合钢板梁桥混凝土开裂影响因素及裂缝控制措施[J]. 南京工业大学学报(自然科学版), 2020, 42(3): 389-398.
|
[3]
|
Zhao, S., Kang, F. and Li, J. (2024) Intelligent Segmentation Method for Blurred Cracks and 3D Mapping of Width Nephograms in Concrete Dams Using UAV Photogrammetry. Automation in Construction, 157, Article 105145. https://doi.org/10.1016/j.autcon.2023.105145
|
[4]
|
Zhou, Z., Zhang, J. and Gong, C. (2023) Hybrid Semantic Segmentation for Tunnel Lining Cracks Based on Swin Transformer and Convolutional Neural Network. Computer-Aided Civil and Infrastructure Engineering, 38, 2491-2510. https://doi.org/10.1111/mice.13003
|
[5]
|
Liang, K. and Su, R.K.L. (2024) Seismic Behavior of Non-Seismically Designed Shear Walls with Moderate Shear Span under High Axial Loads. Engineering Structures, 300, Article 117223. https://doi.org/10.1016/j.engstruct.2023.117223
|
[6]
|
赵卫平, 王磊, 项荣军, 等. ECC-混凝土叠合梁弯曲试验及裂缝发展的分形表征[J]. 桥梁建设, 2024, 54(4): 37-45.
|
[7]
|
唐文涵, 何淅淅. 工程水泥基复合材料叠合层对梁受弯性能的影响[J]. 建筑结构, 2022, 52(6): 76-80+43.
|
[8]
|
Gamage, N., Patrisia, Y., Gunasekara, C., Law, D.W., Houshyar, S. and Setunge, S. (2024) Shrinkage Induced Crack Control of Concrete Integrating Synthetic Textile and Natural Cellulosic Fibres: Comparative Review Analysis. Construction and Building Materials, 427, Article 136275. https://doi.org/10.1016/j.conbuildmat.2024.136275
|
[9]
|
张建云, 王国庆. 气候变化与水库大坝安全[J]. 中国水利, 2008(20): 17-19+9.
|
[10]
|
张建云, 王国庆, 刘九夫, 等. 国内外关于气候变化对水的影响的研究进展[J]. 人民长江, 2009, 40(8): 39-41.
|
[11]
|
叶伟, 马福恒, 胡江, 等. 压实黏土干缩裂缝扩展规律试验研究[J]. 河海大学学报(自然科学版), 2022, 50(1): 102-109.
|
[12]
|
曾浩, 唐朝生, 刘昌黎, 等. 膨胀土干燥过程中收缩应力的测试与分析[J]. 岩土工程学报, 2019, 41(4): 717-725.
|
[13]
|
Hu, L.B., Péron, H., Hueckel, T. and Laloui, L. (2012) Desiccation Shrinkage of Non‐Clayey Soils: Multiphysics Mechanisms and a Microstructural Model. International Journal for Numerical and Analytical Methods in Geomechanics, 37, 1761-1781. https://doi.org/10.1002/nag.2108
|
[14]
|
Peng, X. and Horn, R. (2005) Modeling Soil Shrinkage Curve across a Wide Range of Soil Types. Soil Science Society of America Journal, 69, 584-592. https://doi.org/10.2136/sssaj2004.0146
|
[15]
|
Alonso, E.E., Romero, E., Hoffmann, C. and García-Escudero, E. (2005) Expansive Bentonite-Sand Mixtures in Cyclic Controlled-Suction Drying and Wetting. Engineering Geology, 81, 213-226. https://doi.org/10.1016/j.enggeo.2005.06.009
|
[16]
|
Braudeau, E., Costantini, J.M., Bellier, G. and Colleuille, H. (1999) New Device and Method for Soil Shrinkage Curve Measurement and Characterization. Soil Science Society of America Journal, 63, 525-535. https://doi.org/10.2136/sssaj1999.03615995006300030015x
|
[17]
|
Tripathy, S. and Subba Rao, K.S. (2009) Cyclic Swell-Shrink Behaviour of a Compacted Expansive Soil. Geotechnical and Geological Engineering, 27, 89-103. https://doi.org/10.1007/s10706-008-9214-3
|
[18]
|
Abou Najm, M., Mohtar, R.H., Weiss, J. and Braudeau, E. (2009) Assessing Internal Stress Evolution in Unsaturated Soils. Water Resources Research, 45,1-18. https://doi.org/10.1029/2007wr006484
|
[19]
|
唐朝生, 崔玉军, Anh-Minh Tang, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279.
|
[20]
|
李凌旭, 王帅宝, 马明昌, 等. 大体积混凝土的特点及其温度裂缝产生机理[J]. 施工技术, 2017, 46(S2): 567-569.
|
[21]
|
岳岭, 刘建友, 田园, 等. 明挖隧道回填荷载裂缝特征及其控制技术[J]. 水利水电技术(中英文), 2024, 55(S1): 122-128.
|
[22]
|
Grazzini, A., Accornero, F., Lacidogna, G. and Valente, S. (2020) Acoustic Emission and Numerical Analysis of the Delamination Process in Repair Plasters Applied to Historical Walls. Construction and Building Materials, 236, Article 117798. https://doi.org/10.1016/j.conbuildmat.2019.117798
|
[23]
|
Wang, J., Hu, W., Wang, X. and Liang, Y. (2021) Experimental Investigation of Crack Initiation and Propagation in the Unreinforced Masonry Specimen Subjected to Vertical Settlement. Advances in Materials Science and Engineering, 2021, Article 6672037. https://doi.org/10.1155/2021/6672037
|
[24]
|
孙林远, 黄昊, 陈康, 等. 细观尺度下表面波法检测混凝土表面裂缝深度研究[J]. 水利学报, 2024, 55(8): 942-954.
|
[25]
|
Vy, V., Lee, Y., Bak, J., Park, S., Park, S. and Yoon, H. (2023) Damage Localization Using Acoustic Emission Sensors via Convolutional Neural Network and Continuous Wavelet Transform. Mechanical Systems and Signal Processing, 204, Article 110831. https://doi.org/10.1016/j.ymssp.2023.110831
|
[26]
|
Chen, L., Lu, X., Deng, D., Kouhdarag, M. and Mao, Y. (2023) Optimized Wavelet and Wavelet Packet Transform Techniques for Assessing Crack Behavior in Curved Segments of Arched Beam Bridges Spanning Rivers. Water, 15, Article 3977. https://doi.org/10.3390/w15223977
|
[27]
|
蒋宇静, 吴法博, 张学朋, 等. 基于激光多普勒测振的混凝土损伤量化评价研究[J]. 中国矿业大学学报, 2023, 52(5): 889-903.
|
[28]
|
陈江, 熊杰, 李宇驰, 等. 基于热效应的涉水混凝土工程裂缝监测方法[J]. 工程科学与技术, 2023, 55(1): 296-303.
|
[29]
|
Sun, W., Du, J., Qiao, P., Qi, B., Yan, S. and Tan, H. (2023) Smart Piezoelectric Module-Based Wave Energy Measurement for Crack Damage Evaluation of Concrete Beams. Measurement, 221, Article 113463. https://doi.org/10.1016/j.measurement.2023.113463
|
[30]
|
谢明志, 樊丁萌, 蒋志鹏, 等. 基于计算机视觉的混凝土结构裂缝检测研究现状与展望[J/OL]. 西南交通大学学报, 1-20. http://kns.cnki.net/kcms/detail/51.1277.u.20240913.1853.002.html, 2024-11-06.
|
[31]
|
钟新谷, 彭雄, 沈明燕. 基于无人飞机成像的桥梁裂缝宽度识别可行性研究[J]. 土木工程学报, 2019, 52(4): 52-61.
|
[32]
|
Sanchez-Cuevas, P.J., Ramon-Soria, P., Arrue, B., Ollero, A. and Heredia, G. (2019) Robotic System for Inspection by Contact of Bridge Beams Using UAVs. Sensors, 19, Article 305. https://doi.org/10.3390/s19020305
|
[33]
|
Liu, Y., Nie, X., Fan, J. and Liu, X. (2019) Image‐Based Crack Assessment of Bridge Piers Using Unmanned Aerial Vehicles and Three‐Dimensional Scene Reconstruction. Computer-Aided Civil and Infrastructure Engineering, 35, 511-529. https://doi.org/10.1111/mice.12501
|
[34]
|
秦海伟, 陆从飞, 蒋永生, 等. 轨道式攀爬机器人系统设计与图像处理[J]. 中国安全科学学报, 2019, 29(7): 117-122.
|
[35]
|
周颖, 刘彤. 基于计算机视觉的混凝土裂缝识别[J]. 同济大学学报(自然科学版), 2019, 47(9): 1277-1285.
|
[36]
|
黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
|
[37]
|
刘联海, 黎汇业, 毛冬晖. 基于图像凸包特征的CBAM-CNN网络入侵检测方法[J]. 信息网络安全, 2024, 24(9): 1422-1431.
|
[38]
|
Li, G., Fang, Z., Mohammed, A.M., Liu, T. and Deng, Z. (2023) Automated Bridge Crack Detection Based on Improving Encoder-Decoder Network and Strip Pooling. Journal of Infrastructure Systems, 29. https://doi.org/10.1061/jitse4.iseng-2218
|
[39]
|
孙晓贺, 施成华, 刘凌晖, 等. 基于改进的种子填充算法的混凝土裂缝图像识别系统[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 127-136+146.
|
[40]
|
Meng, Q., Hu, L., Wan, D., Li, M., Wu, H., Qi, X., et al. (2023) Image-Based Concrete Cracks Identification under Complex Background with Lightweight Convolutional Neural Network. KSCE Journal of Civil Engineering, 27, 5231-5242. https://doi.org/10.1007/s12205-023-0923-1
|
[41]
|
Bae, H. and An, Y. (2023) Computer Vision-Based Statistical Crack Quantification for Concrete Structures. Measurement, 211, Article 112632. https://doi.org/10.1016/j.measurement.2023.112632
|
[42]
|
Xu, G., Yue, Q. and Liu, X. (2023) Deep Learning Algorithm for Real-Time Automatic Crack Detection, Segmentation, Qualification. Engineering Applications of Artificial Intelligence, 126, Article 107085. https://doi.org/10.1016/j.engappai.2023.107085
|
[43]
|
刘珂铖, 谢群, 李雁军. 基于深度学习YOLOX算法的混凝土构件裂缝智能化检测方法[J]. 济南大学学报(自然科学版), 2024, 38(3): 341-349.
|