敲低APLNR基因对NK细胞杀伤肺腺癌细胞敏感性影响及其机制研究
Study on the Effect and Mechanism of Knockdown of APLNR Gene on the Sensitivity of NK Cells to Kill Lung Adenocarcinoma Cells
DOI: 10.12677/acm.2025.1551679, PDF, HTML, XML,   
作者: 张健康, 纪肖华:青岛大学青岛医学院,山东 青岛;赵 鹏:康复大学青岛中心医院检验科,山东 青岛;张 真*:康复大学青岛中心医院(青岛市中心医院)肿瘤放射治疗一科,山东 青岛
关键词: 肺腺癌APLNR免疫治疗NK细胞肿瘤侵袭与迁移Lung Adenocarcinoma APLNR Immunotherapy NK Cells Tumor Invasion and Migration
摘要: 目的:本研究旨在探究敲低肺腺癌细胞的APLNR基因对自然杀伤(NK)细胞杀伤肺腺癌细胞敏感性的影响及其分子机制,评估APLNR在肺腺癌进展及免疫微环境重塑中的临床意义。通过细胞体外共培养实验,明确敲低APLNR基因后,NK细胞对肺腺癌细胞生物学行为的影响,揭示APLNR敲低调控NK细胞敏感性的信号通路,为开发靶向APLNR联合免疫治疗策略提供实验依据,推动肺腺癌个体化治疗的发展。方法:慢病毒转染敲低人肺腺癌A549细胞和NCI-H1299细胞APLNR基因表达,同时设置转染NC组为对照组,使用含有嘌呤霉素的培养基筛选获得稳定敲低APLNR基因的细胞株。通过Western Blot实验检测APLNR的蛋白表达水平,确保敲低效果。采用CCK-8方法检测不同效靶比NK-92MI细胞与肺腺癌A549细胞和NCI-H1299细胞共培养后NK-92MI细胞对肺腺癌A549细胞和NCI-H1299细胞杀伤力的变化;利用Transwell小室侵袭实验检测敲低APLNR基因后NK-92MI细胞对肺腺癌A549细胞和NCI-H1299细胞侵袭迁移能力的影响;KEGG差异基因富集分析得到敲低APLNR基因与p53信号通路相关;Western Blot法进一步检测敲低APLNR基因对p53信号通路相关蛋白表达水平的影响。结果:CCK-8结果显示,按照不同效靶比将NK-92MI细胞和A549细胞及H1299细胞共培养4小时后,其杀伤力随效靶比的增加明显提高。且在NK细胞与肺腺癌细胞效靶比为5:1与10:1时差异具有统计学意义(P < 0.05)。Transwell小室侵袭实验结果显示,共培养24小时后,敲低组肺腺癌A549细胞和H1299细胞穿过小室的细胞数显著减少(P < 0.01),表明敲低APLNR基因后,肺腺癌细胞侵袭迁移能力明显降低。KEGG差异基因富集分析显示,APLNR基因在p53信号通路中显著富集(P < 0.001),Western Blot实验进一步表明敲低APLNR基因后,p53、Bax蛋白表达量明显升高(P < 0.001),Bcl-2蛋白表达量降低(P < 0.001)。结论:本研究表明,敲低肺腺癌细胞中APLNR基因可显著增强NK92-MI细胞对肺腺癌A549细胞和H1299细胞的杀伤作用,并显著降低肺腺癌细胞的侵袭能力,且增强NK细胞对肺腺癌A549细胞和H1299细胞侵袭迁移的抑制作用。同时通过p53信号通路增强NK细胞介导的细胞毒性作用。APLNR或可作为肺腺癌联合免疫治疗的新靶点,靶向抑制APLNR联合NK细胞过继免疫疗法可能成为改善肺腺癌患者预后的潜在策略。
Abstract: Objective: This study investigates the effects of APLNR gene knockdown in lung adenocarcinoma cells on NK cell-mediated cytotoxicity and its molecular mechanisms, while evaluating the clinical relevance of APLNR in tumor progression and immune microenvironment remodeling. Through in vitro co-culture experiments, we elucidate the effects of APLNR depletion on NK cell-regulated biological processes in cancer cells and identify the associated signaling pathways. These findings provide crucial experimental support for developing novel combination therapies targeting APLNR and immunotherapy, ultimately contributing to the advancement of personalized treatment strategies for lung adenocarcinoma. Methods: Lentivirus transfection was used to knock down the expression of the APLNR gene in human lung adenocarcinoma A549 cells and NCI-H1299 cells. Meanwhile, the transfected NC group was also set as a control group. Stable APLNR-knockdown cell lines were obtained by selection with puromycin-containing culture medium. The protein expression level of APLNR was detected by Western Blot to ensure the knockdown effect. The cytotoxicity of NK-92MI cells against A549 and NCI-H1299 cells was assessed by co-culturing NK-92MI cells with A549 and NCI-H1299 cells at different effector-to-target ratios using the CCK-8 method. The impact of APLNR knockdown on the invasive and migratory abilities of NK-92MI cells against A549 and NCI-H1299 cells was evaluated by Transwell invasion assays. KEGG differential gene enrichment analysis revealed that APLNR knockdown was associated with the p53 signaling pathway. Western Blot was further employed to detect the effects of APLNR knockdown on the expression levels of proteins related to the p53 signaling pathway Results: The results of the CCK-8 assay showed that after co-culturing NK-92MI cells with A549 and H1299 cells for 4 hours at different effector-to-target (E:T) ratios, the cytotoxicity of NK-92MI cells significantly increased with the increase of the E:T ratio. Moreover, statistically significant differences were observed when the E:T ratios were 5:1 and 10:1 (P < 0.05). The Transwell invasion assay results indicated that after 24 hours of co-culture, the number of A549 and H1299 cells that migrated through the chamber in the knockdown group was significantly reduced (P < 0.01), suggesting that the invasive and migratory abilities of lung adenocarcinoma cells were markedly decreased after APLNR gene knockdown. KEGG differential gene enrichment analysis revealed that the APLNR gene was significantly enriched in the p53 signaling pathway (P < 0.001). Western Blot analysis further demonstrated that after APLNR gene knockdown, the expression levels of p53 and Bax proteins were significantly increased (P < 0.001), while the expression level of Bcl-2 protein was decreased (P < 0.001). Conclusion: This study demonstrates that knocking down the APLNR gene in lung adenocarcinoma cells significantly enhances the cytotoxic effect of NK-92MI cells against A549 and H1299 cells, and markedly reduces the invasive capacity of lung adenocarcinoma cells. Additionally, it significantly enhances the inhibitory effect of NK cells on the invasion and migration of A549 and H1299 cells. This effect is achieved by enhancing NK cell-mediated cytotoxicity through the p53 signaling pathway. APLNR may serve as a novel target for combined immunotherapy in lung adenocarcinoma, and targeting APLNR in combination with NK cell adoptive immunotherapy could potentially be a promising strategy to improve the prognosis of patients with lung adenocarcinoma.
文章引用:张健康, 纪肖华, 赵鹏, 张真. 敲低APLNR基因对NK细胞杀伤肺腺癌细胞敏感性影响及其机制研究[J]. 临床医学进展, 2025, 15(5): 2787-2799. https://doi.org/10.12677/acm.2025.1551679

1. 引言

肺癌是全球癌症死亡的最主要原因之一,全球发病率高居所有癌种的第二位[1]。肺腺癌作为非小细胞肺癌(NSCLC)最主要的组织学亚型,约占全球肺癌新发病例的40%~50% [2]。尽管近年来靶向治疗(EGFR/ALK抑制剂等)和免疫检查点抑制剂(如PD-1/PD-L1抑制剂)的应用显著改善了部分患者的预后,但受限于肿瘤异质性和耐药机制,总体疗效仍不理想,尤其是晚期患者的五年生存率不足20% [3]。近年来,对于驱动基因阴性患者,免疫治疗因其持久的抗肿瘤效应备受关注,但临床响应率仍不足40%,这提示需深入解析免疫逃逸机制并探索新型联合治疗策略从而改善肺腺癌患者预后。

自然杀伤(NK)细胞作为先天免疫系统的核心效应细胞,因其非MHC限制性杀伤机制(无需预先抗原致敏)和快速免疫监察能力,成为肿瘤免疫治疗的研究热点[4]。例如在晚期肝癌和结直肠癌中,NK细胞联合治疗显著缩小肿瘤体积并改善患者生存质量[5]。NK细胞通过识别肿瘤细胞表面配体(如MICA/B、ULBP1-5)直接发挥杀伤作用,同时分泌细胞因子(如IFN-γ)激活适应性免疫应答[6]。另外,与T细胞相反,NK细胞不介导移植物抗宿主病,因此,输注NK细胞已被证明是安全的[6]。然而,肿瘤微环境中的免疫抑制机制(如PD-L1表达上调、TGF-β分泌增加)严重限制了NK细胞的功能,导致免疫逃逸[7]。因此,如何逆转肿瘤免疫抑制微环境并增强NK细胞效能,成为免疫治疗的关键研究方向。

APLNR (Apelin Receptor)基因作为G蛋白偶联受体家族成员,近年被发现在多种实体瘤中高表达,且在肿瘤血管生成、细胞增殖及转移中发挥重要作用[8]。研究表明,APLNR通过激活PI3K/AKT和MAPK信号通路促进肺腺癌进展,并与患者不良预后显著相关[9]。然而,APLNR在肿瘤免疫微环境中的调控作用尚未完全阐明。近期研究发现,APLNR可能通过调控肿瘤细胞表面NK细胞激活配体(如MICA/B、ULBP1-5)的表达影响免疫逃逸[10]。单细胞测序数据显示,APLNR高表达与肿瘤微环境中免疫抑制性细胞(如LAMP3 + 树突状细胞)的富集呈正相关,后者通过分泌TGF-β抑制NK细胞功能[11]。此外,APLNR可能通过表观遗传调控(如染色质重塑、miRNA网络)间接影响肿瘤细胞的免疫原性。

基于上述背景,本研究旨在解析APLNR在肺腺癌中的免疫调控作用及其对NK细胞功能的影响。通过基因敲低模型及细胞表型实验,我们发现APLNR可能通过抑制p53信号通路影响NK细胞免疫活性。进一步实验表明,APLNR敲低可显著增强NK细胞对肺腺癌细胞的杀伤活性,并增强NK细胞对肺腺癌细胞迁移与侵袭的抑制作用。这些发现不仅拓展了APLNR对肿瘤细胞的生物学功能认知,还为开发基于靶向APLNR联合NK细胞过继免疫疗法提供了理论依据,有望为肺腺癌患者提供更精准的治疗选择。

2. 材料与方法

2.1. 主要试剂

胎牛血清购自于武汉普诺赛生命科技有限公司,无菌RPMI-1640基础培养基购自于大连美仑生物技术有限公司,一抗及二抗羊抗兔购自于美国Abcom公司,Cell Counting Kit-8 (CCK-8)试剂、增强化学发光液购自于大连美仑生物技术有限公司,慢病毒购自于汉恒生物科技有限公司。人肺腺癌A549、H1299细胞系购自于武汉普诺赛生命科技有限公司,并在含有10%胎牛血清和1%青霉素–链霉素的RPMI-1640培养基中培养,培养环境37℃ (含5% CO2)。当细胞生长密度达80%以上时,用0.25%的胰酶消化、传代,取对数生长期细胞用于实验。

2.2. 慢病毒转染敲低APLNR基因

将处于对数生长期的A549细胞和H1299细胞以每孔5 × 103个接种于24孔板,第二天,将含有慢病毒的培养基加入肺腺癌细胞,加入Polybrene (8 μg/mL)增强感染效率。继续培养24小时,用新鲜培养基替换含有病毒的培养基,37℃继续培养,转染48小时后可见明显荧光表达。使用含有嘌呤霉素(2 μg/mL)的培养基筛选获得稳定敲低APLNR的细胞株。通过Western blot检测APLNR的蛋白表达水平,确保敲低效果。

2.3. CCK-8实验检测细胞杀伤

将处于对数生长期的对照组(NC)和APLNR敲低组(sh)细胞以每孔5 × 103个细胞接种于96孔板,每组设5个复孔。接种后放入培养箱中预培养24小时,按照1:1/3:1/5:1/10:1的效靶比与NK92-MI细胞混合后继续置于37℃,5% CO2培养箱中共培养4小时。移除旧培养基,每孔加入20 μl CCK8溶液。将平板再次放入培养箱中,继续孵育2小时。使用酶标仪在450 nm波长下测量吸光度值,以评估细胞杀伤。NK杀伤率(%) = [1 − (效靶细胞孔OD值 − 效应细胞孔OD值)/靶细胞孔OD值] × 100%。

2.4. Transwell实验检测细胞迁移和侵袭

首先从−20℃转移至4℃过夜解冻,实验时置于冰上保持低温状态;分别选取肺腺癌H1299细胞株与A549细胞株,经胰酶消化及离心分离后,用完全培养基调整细胞密度至5 × 105个/mL,采用血球计数板进行双盲计数验证;上室接种100 μL肿瘤细胞悬液,下室灌注600 μL含20%胎牛血清的NK92MI细胞培养基,注意沿管壁缓慢加样避免气泡产生,设置三重复孔后置于37℃、5% CO2恒温培养箱孵育;24小时后移除上室培养基,经预冷PBS三重漂洗,转移至含800 μL 4%多聚甲醛的24孔板中室温浸润固定15分钟;固定后样本经PBS冲洗三次,置于0.1%结晶紫染液中室温避光染色20分钟,随后进行梯度脱色处理;使用无菌棉签机械清除上室膜表面残留细胞,于倒置显微镜下随机选取三个视野进行图像采集,采用Image J软件进行迁移细胞定量分析。

2.5. Western Blot法检测相关蛋白表达

细胞密度为1 × 105个/ml,每孔2 ml接种于6孔板中培养过夜。分组及处理方法同1.3。收集细胞,在4℃条件下提取蛋白,25,000 r/min离心5 min,BCA法测定蛋白浓度并加热使蛋白变性。配制10%的上层分离胶及下层浓缩胶,电泳分离蛋白,进行湿转把蛋白转至聚偏氟乙烯膜上,洗膜后用5% BSA室温封闭1 h。将一抗APLNR (稀释比例为1:1000),p53、Bax、Bcl-2、GAPDH (稀释比例为1:5000)稀释后4℃孵育过夜,次日用HRP标记的山羊抗兔IgG (1:5000)室温摇床孵育2 h,化学发光试剂显色后,采用Image J软件进行灰度分析。实验重复3次。

2.6. 统计学分析

采用SPSS 22.0版软件进行处理。计量资料以均数 ± 标准差(X ± S)表示,两组间比较采用t检验,多组间比较采用单因素方差分析。P < 0.05为差异具有统计学意义。

3. 结果

3.1. 构建慢病毒转染敲低APLNR的肺腺癌细胞模型

使用慢病毒转染敲低肺腺癌A549和H1299细胞中的APLNR基因,通过Western Blot实验验证敲低效率,结果表明,敲低组中APLNR蛋白表达明显减少,具有统计学意义(P < 0.001) (见图1)。证明已获得稳定的APLNR敲低细胞系,以用于后续细胞实验。

(A) (B)

Figure 1. (A) Image of APLNR and internal reference GAPDH development; (B) Effect of knocking down APLNR protein expression (P < 0.001)

1. (A) APLNR及内参GAPDH显影图像;(B) 敲低APLNR蛋白表达的影响(P < 0.001)

3.2. 敲低APLNR后NK细胞对肺腺癌细胞杀伤力增加

将NK92-MI细胞作为效应细胞,敲低组及对照组的肺腺癌A549和H1299细胞作为靶细胞,效靶比设置为1:1、3:1、5:1、10:1,NK细胞与肺腺癌细胞共培养4 h,应用CCK-8检测OD值并计算杀伤率。结果显示,与空白对照组(sh-NC)相比,敲低APLNR基因,NK-92MI细胞与肺腺癌A549细胞和H1299细胞共培养4小时后,NK细胞杀伤力均显著提升,且在5:1、10:1效靶比时,NK细胞杀伤力提升具有统计学意义(P < 0.05) (见图2图3)。表明敲低APLNR基因增强了NK细胞的杀伤活性。

3.3. 敲低APLNR肺腺癌细胞迁移受到抑制

通过Transwell小室侵袭实验,将敲低APLNR基因的肺腺癌A549细胞和H1299细胞分别与NK92-MI细胞共培养后,对肺腺癌细胞的迁移能力展开研究,结果表明,在敲低APLNR基因后,与对照组相比穿过小室的A549和H1299细胞数量均显著减少(见下图),差异存在统计学意义(P < 0.05) (见图4~7)。这表明APLNR基因在肺腺癌细胞迁移中起到促进作用,另外,敲低APLNR增强了NK细胞对肺腺癌A549和H1299细胞迁移的抑制作用,NK细胞与敲低APLNR基因具有协同抑制肺腺癌细胞侵袭迁移的作用。

Figure 2. Changes in NK cell cytotoxicity against H1299 cells (Note: *P < 0.05, **P < 0.01)

2. NK细胞对H1299细胞杀伤变化 (注:*P < 0.05,**P<0.01)

Figure 3. Changes in NK cell cytotoxicity against A549 cells (Note: *P < 0.05, **P < 0.01)

3. NK细胞对A549细胞杀伤变化(注:*P < 0.05,**P<0.01)

Figure 4. Transwell images of lung adenocarcinoma cells in each group ((A) H1299 cell sh-NC group; (B) Group sh of H1299 cells; (C) SH-NC + NK92MI group of H1299 cells; (D) sh + NK92MI group of H1299 cells)

4. Transwell各组肺腺癌细胞穿膜图((A) H1299细胞sh-NC组;(B) H1299细胞sh组;(C) H1299细胞sh-NC + NK92MI组;(D) H1299细胞sh + NK92MI组)

(A) (B)

(C) (D)

Figure 5. Effect of NK cells on the invasion ability of H1299 cells (Note: *P < 0.05, **P < 0.01)

5. NK细胞对H1299细胞侵袭能力影响(注:*P < 0.05,**P<0.01)

Figure 6. Transwell images of lung adenocarcinoma cells in each group ((A) A549 cell sh-NC group; (B) Group sh of A549 cells; (C) SH-NC + NK92MI group of A549 cells; (D) sh + NK92MI group of A549 cells)

6. Transwell各组肺腺癌细胞穿膜图((A) A549细胞sh-NC组;(B) A549细胞sh组;(C) A549细胞sh-NC + NK92MI组;(D) A549细胞sh + NK92MI组)

(A) (B)

(C) (D)

Figure 7. Effect of NK cells on the invasion ability of A549 cells (Note: *P < 0.05, **P < 0.01)

7. NK细胞对A549细胞侵袭能力影响(注:*P < 0.05,**P<0.01)

3.4. KEGG差异基因富集分析

从GEO数据库检索到一个“敲低APLNR的RNA-seq数据”,链接如下:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE230549.使用R包DESeq2进行差异分析。得到差异倍数大于等于2或小于等于0.5且校正的P值小于0.05的差异基因,使用该数据进行KEGG差异基因富集分析。结果所示:敲低APLNR基因后,差异基因显著富集于p53信号通路(P < 0.001),具有显著统计学意义(见图8)。后续可通过Western Blot实验进一步验证p53信号通路相关蛋白表达。

Figure 8. Enrichment analysis of KEGG differential genes

8. KEGG差异基因富集分析

3.5. 敲低APLNR后p53信号通路相关蛋白变化

Western Blot 法进一步检测敲低APLNR基因后p53信号通路相关蛋白表达水平,可以直观看到p53信号通路相关蛋白在各组中的表达情况。研究结果揭示,与未处理的对照组相比,敲低APLNR基因后A549细胞和H1299细胞的p53、Bax蛋白表达量显著提升(P < 0.001),Bcl-2表达量显著降低(P < 0.001)。这表明APLNR基因影响p53信号通路相关蛋白表达(见图9)。

4. 讨论

肺腺癌(Lung Adenocarcinoma, LUAD)是非小细胞肺癌(NSCLC)的主要亚型,占所有肺癌病例的40%以上,其高发病率和高死亡率对全球公共卫生构成重大威胁[1]。尽管靶向治疗(如EGFR、ALK抑制剂)和免疫检查点抑制剂(如PD-1/PD-L1抗体)的应用显著改善了部分患者的预后,但肿瘤异质性、耐药性及免疫抑制微环境仍是治疗失败的核心原因[12]。因此,探索肺腺癌进展的新型分子机制和免疫调控靶点具有重要临床意义。

(A) (B)

(C) (D)

Figure 9. (A) Imaging images of p53 pathologically related proteins and internal reference GAPDH; (B) Expression of bax protein in lung adenocarcinoma cells of each group; (C) Expression of bcl-2 protein in lung adenocarcinoma cells of each group; (D) Expression of p53 protein in lung adenocarcinoma cells of each group (Note: ***P < 0.001)

9. (A) p53通路相关蛋白及内参GAPDH显影图像;(B) 各组肺腺癌细胞bax蛋白表达;(C) 各组肺腺癌细胞bcl-2蛋白表达;(D) 各组肺腺癌细胞p53蛋白表达(注:***P < 0.001)

近年研究发现,G蛋白偶联受体APLNR (Apelin Receptor)在多种实体瘤中异常高表达,并通过激活PI3K/AKT信号通路促进肿瘤增殖、转移和免疫逃逸[8]。在肺腺癌中,APLNR的表达与患者不良预后显著相关,但其调控肿瘤微环境(TME)的具体机制尚不明确[9]。值得注意的是,APLNR可能通过抑制抑癌基因p53的功能或调控免疫细胞活性参与肿瘤进展,这为靶向APLNR的联合治疗策略提供了理论依据[13]

自然杀伤(NK)细胞作为先天免疫系统的核心效应细胞,通过释放穿孔素/颗粒酶或激活死亡受体通路直接杀伤肿瘤细胞,其功能受肿瘤表面应激分子及免疫抑制因子的动态调控[6]。然而,肺腺癌微环境中NK细胞的功能常因免疫抑制信号而受损。近期研究表明,靶向肿瘤细胞固有信号通路(如p53、NF-κB)可重塑免疫微环境,增强NK细胞的杀伤效率[14]。因此,探索APLNR对p53通路及NK细胞功能的调控作用,可能为肺腺癌免疫治疗提供新方向。

本研究中,CCK-8实验结果显示,APLNR基因敲低显著提升了NK-92MI细胞对肺腺癌A549细胞和H1299细胞的杀伤率(P < 0.05)。这一结果说明敲低APLNR基因可通过调控肿瘤细胞与NK细胞的相互作用增强免疫杀伤功能。既往研究表明,NK细胞的活化依赖于肿瘤细胞表面应激分子(如MICA/B、ULBP)与NKG2D受体的结合[15]。肿瘤细胞中GPCR信号异常(如CXCR4过表达)可通过下调NKG2D配体介导免疫逃逸[16]。本研究表明,APLNR敲低可能逆转这一过程,通过上调MICA/B表达或抑制PD-L1等免疫检查点分子,增强NK细胞识别与杀伤效率[17]。这一发现为APLNR靶向治疗联合NK细胞过继疗法提供了直接实验依据。

Transwell实验结果显示,敲低APLNR基因的两种肺腺癌细胞迁移数量均显著减少,表明APLNR基因的敲低增强了NK细胞对肿瘤细胞迁移的抑制作用。既往已证明APLNR基因可促进肿瘤细胞的增殖侵袭及迁移[18] [19]。APLNR可通过磷酸化PAK 1和cofilin以增加肺腺癌细胞的迁移。肿瘤细胞与免疫细胞的相互作用是肿瘤微环境动态调控的核心环节[20]。而本研究中,我们将敲低APLNR基因的肺腺癌细胞与NK细胞共培养,APLNR敲低可能改变肿瘤细胞分泌的趋化因子(如CXCL10、CXCL12)或免疫抑制因子(如TGF-β、IL-10),从而增强NK细胞的趋化性或细胞毒性功能。细胞间接触依赖性调控APLNR敲低可能通过调节肿瘤细胞黏附分子(如ICAM-1、VCAM-1)的表达,促进NK细胞与肿瘤细胞的直接接触[21],增强NK细胞介导的杀伤效应,间接抑制迁移。APLNR在肿瘤进展中具有双重作用:一方面,其信号可通过促进血管生成和细胞存活支持肿瘤生长[22];另一方面,本研究提示其可能通过抑制免疫细胞功能间接促进肿瘤迁移。

p53信号通路是细胞应对基因毒性应激的核心调控网络,通过诱导细胞周期阻滞、DNA修复、凋亡或衰老维持基因组稳定性[23]。作为“基因组卫士”,p53在约50%的人类癌症中发生突变或功能失活,其功能状态直接影响肿瘤发生、治疗及预后[24]。p53通过转录依赖性和非依赖性机制发挥多重抗肿瘤效应,p53激活p21,抑制CDK4/6-Cyclin D复合物,阻断G1/S期转换,为DNA修复争取时间。p53上调促凋亡蛋白(Bax、PUMA、NOXA),下调抗凋亡蛋白(Bcl-2、Survivin),诱导线粒体外膜通透性(MOMP)及Caspase级联反应[25]。在肺腺癌中,p53突变率约40%~60%,突变型p53 (mut-p53)不仅丧失抑癌功能,还可获得促癌特性(如促进转移、化疗耐药) [26]

通过KEGG差异基因富集分析发现,APLNR敲低后差异表达基因(DEGs)显著富集于p53信号通路(P < 0.001),包括关键基因如P53、Bax、Bcl-2。Western Blot实验进一步验证了APLNR敲低后P53蛋白表达上调、促凋亡蛋白Bax增加,而抗凋亡蛋白Bcl-2显著减少(P < 0.05)。说明APLNR基因敲低可能通过调控P53通路而影响NK细胞的杀伤活性,既往研究发现,p53激活上调肿瘤细胞表面NKG2D配体(如MICA/B),增强NK细胞识别与杀伤效率[27] [28];此外,P53还可以调节NKG2D配体ULBP 1和ULBP2的表达,使得肿瘤细胞对NK细胞介导的细胞毒性更加敏感[29]。另外,野生型p53可通过多途径抑制肿瘤免疫逃逸,WT-p53直接结合MICA/B和ULBP1-2基因启动子,增强其转录活性,促进NK细胞和CD8+ T细胞的识别与杀伤[30] [31]。而我们的研究结果显示,敲低APLNR基因后,肿瘤细胞p53表达显著增加,将进一步促进NK细胞识别并杀伤肺腺癌细胞。这或许为肺腺癌治疗提供新的思路。

本研究表明APLNR通过调控p53-Bcl-2/Bax信号轴驱动肺腺癌进展。与既往研究不同,我们发现APLNR通过抑制p53活性促进免疫逃逸。本研究创新性提出“APLNR抑制剂 + NK细胞过继疗法”的联合策略,相较于单一靶向治疗,该策略通过同时抑制肿瘤自主迁移和增强免疫杀伤实现协同增效,为肺腺癌个体化治疗提供了新思路。

当然该研究不可避免具有一定的局限性,本研究结果主要基于体外细胞实验(如Transwell、CCK-8),缺乏APLNR敲低在肺腺癌小鼠模型中的抗转移效果验证。尽管体外数据显著,但肿瘤微环境的复杂性(如基质细胞互作、免疫细胞浸润)可能影响体内疗效。后续工作可构建肺转移小鼠模型,评估APLNR抑制剂联合NK细胞疗法的疗效。另需要进一步研究APLNR是否通过其他途径影响NK细胞的功能。此外,APLNR基因作为靶向治疗肺腺癌的安全性,仍需进一步研究。

后续工作中我们将对NK细胞的其他功能进行研究,例如分泌细胞因子(IFN-γ,TNF-α等)和调节适应性免疫应答的作用。对NK细胞功能进行进一步评估以明确敲低APLNR基因对NK细胞的整体影响。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Zheng, M. (2016) Classification and Pathology of Lung Cancer. Surgical Oncology Clinics of North America, 25, 447-468.
https://doi.org/10.1016/j.soc.2016.02.003
[3] National Lung Screening Trial Research Team (2019) Lung Cancer Incidence and Mortality with Extended Follow-Up in the National Lung Screening Trial. Journal of Thoracic Oncology, 14, 1732-1742.
[4] Xie, G., Dong, H., Liang, Y., Ham, J.D., Rizwan, R. and Chen, J. (2020) CAR-NK Cells: A Promising Cellular Immunotherapy for Cancer. eBioMedicine, 59, Article ID: 102975.
https://doi.org/10.1016/j.ebiom.2020.102975
[5] Michel, T., Ollert, M. and Zimmer, J. (2022) A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. International Journal of Molecular Sciences, 23, Article 797.
https://doi.org/10.3390/ijms23020797
[6] Vivier, E., Rebuffet, L., Narni-Mancinelli, E., Cornen, S., Igarashi, R.Y. and Fantin, V.R. (2024) Natural Killer Cell Therapies. Nature, 626, 727-736.
https://doi.org/10.1038/s41586-023-06945-1
[7] Liu, S., Galat, V., Galat4, Y., Lee, Y.K.A., Wainwright, D. and Wu, J. (2021) NK Cell-Based Cancer Immunotherapy: From Basic Biology to Clinical Development. Journal of Hematology & Oncology, 14, Article No. 7.
https://doi.org/10.1186/s13045-020-01014-w
[8] Yang, Y., Lv, S., Ye, W. and Zhang, L. (2016) Apelin/APJ System and Cancer. Clinica Chimica Acta, 457, 112-116.
https://doi.org/10.1016/j.cca.2016.04.001
[9] Yan, J., Wang, A., Cao, J. and Chen, L. (2020) Apelin/APJ System: An Emerging Therapeutic Target for Respiratory Diseases. Cellular and Molecular Life Sciences, 77, 2919-2930.
https://doi.org/10.1007/s00018-020-03461-7
[10] Yang, Y., Chen, M., Qiu, Y., Li, X., Huang, Y. and Zhang, W. (2022) The Apelin/APLNR System Modulates Tumor Immune Response by Reshaping the Tumor Microenvironment. Gene, 834, Article ID: 146564.
https://doi.org/10.1016/j.gene.2022.146564
[11] Yang, L., Pang, Y. and Moses, H.L. (2010) TGF-β and Immune Cells: An Important Regulatory Axis in the Tumor Microenvironment and Progression. Trends in Immunology, 31, 220-227.
https://doi.org/10.1016/j.it.2010.04.002
[12] Miller, M. and Hanna, N. (2021) Advances in Systemic Therapy for Non-Small Cell Lung Cancer. BMJ, 375, n2363.
https://doi.org/10.1136/bmj.n2363
[13] Saiki, H., Hayashi, Y., Yoshii, S., Kimura, E., Nakagawa, K., Kato, M., et al. (2023) The Apelin-Apelin Receptor Signaling Pathway in Fibroblasts Is Involved in Tumor Growth via P53 Expression of Cancer Cells. International Journal of Oncology, 63, Article No. 139.
https://doi.org/10.3892/ijo.2023.5587
[14] Ahmed, A. and Tait, S.W.G. (2020) Targeting Immunogenic Cell Death in Cancer. Molecular Oncology, 14, 2994-3006.
https://doi.org/10.1002/1878-0261.12851
[15] Raulet, D.H., Gasser, S., Gowen, B.G., Deng, W. and Jung, H. (2013) Regulation of Ligands for the NKG2D Activating Receptor. Annual Review of Immunology, 31, 413-441.
https://doi.org/10.1146/annurev-immunol-032712-095951
[16] Portale, F., Carriero, R., Iovino, M., Kunderfranco, P., Pandini, M., Marelli, G., et al. (2024) C/EBPβ-Dependent Autophagy Inhibition Hinders NK Cell Function in Cancer. Nature Communications, 15, Article No. 10343.
https://doi.org/10.1038/s41467-024-54355-2
[17] Kidoya, H., Kunii, N., Naito, H., Muramatsu, F., Okamoto, Y., Nakayama, T., et al. (2011) The Apelin/APJ System Induces Maturation of the Tumor Vasculature and Improves the Efficiency of Immune Therapy. Oncogene, 31, 3254-3264.
https://doi.org/10.1038/onc.2011.489
[18] Uribesalgo, I., Hoffmann, D., Zhang, Y., Kavirayani, A., Lazovic, J., Berta, J., et al. (2019) Apelin Inhibition Prevents Resistance and Metastasis Associated with Anti‐Angiogenic Therapy. EMBO Molecular Medicine, 11, e9266.
https://doi.org/10.15252/emmm.201809266
[19] Lv, D., Li, L., Lu, Q., Li, Y., Xie, F., Li, H., et al. (2016) PAK1‐Cofilin Phosphorylation Mediates Human Lung Adenocarcinoma Cells Migration Induced by Apelin‐13. Clinical and Experimental Pharmacology and Physiology, 43, 569-579.
https://doi.org/10.1111/1440-1681.12563
[20] LV, B., Wang, Y., Ma, D., Cheng, W., Liu, J., Yong, T., et al. (2022) Immunotherapy: Reshape the Tumor Immune Microenvironment. Frontiers in Immunology, 13, Article 844142.
https://doi.org/10.3389/fimmu.2022.844142
[21] Becker, P.S.A., Suck, G., Nowakowska, P., Ullrich, E., Seifried, E., Bader, P., et al. (2016) Selection and Expansion of Natural Killer Cells for NK Cell-Based Immunotherapy. Cancer Immunology, Immunotherapy, 65, 477-484.
https://doi.org/10.1007/s00262-016-1792-y
[22] Masoumi, J., Jafarzadeh, A., Khorramdelazad, H., Abbasloui, M., Abdolalizadeh, J. and Jamali, N. (2020) Role of Apelin/APJ Axis in Cancer Development and Progression. Advances in Medical Sciences, 65, 202-213.
https://doi.org/10.1016/j.advms.2020.02.002
[23] Machado-Silva, A., Perrier, S. and Bourdon, J. (2010) P53 Family Members in Cancer Diagnosis and Treatment. Seminars in Cancer Biology, 20, 57-62.
https://doi.org/10.1016/j.semcancer.2010.02.005
[24] Levine, A.J. (2020) P53: 800 Million Years of Evolution and 40 Years of Discovery. Nature Reviews Cancer, 20, 471-480.
https://doi.org/10.1038/s41568-020-0262-1
[25] Hafner, A., Bulyk, M.L., Jambhekar, A. and Lahav, G. (2019) The Multiple Mechanisms That Regulate P53 Activity and Cell Fate. Nature Reviews Molecular Cell Biology, 20, 199-210.
https://doi.org/10.1038/s41580-019-0110-x
[26] Olivier, M., Hollstein, M. and Hainaut, P. (2009) TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harbor Perspectives in Biology, 2, a001008.
https://doi.org/10.1101/cshperspect.a001008
[27] Fuertes, M.B., Domaica, C.I. and Zwirner, N.W. (2021) Leveraging NKG2D Ligands in Immuno-Oncology. Frontiers in Immunology, 12, Article 713158.
https://doi.org/10.3389/fimmu.2021.713158
[28] Blagih, J., Buck, M.D. and Vousden, K.H. (2020) P53, Cancer and the Immune Response. Journal of Cell Science, 133, jcs237453.
https://doi.org/10.1242/jcs.237453
[29] López‐Soto, A., Huergo‐Zapico, L., Acebes‐Huerta, A., Villa‐Alvarez, M. and Gonzalez, S. (2014) NKG2D Signaling in Cancer Immunosurveillance. International Journal of Cancer, 136, 1741-1750.
https://doi.org/10.1002/ijc.28775
[30] Menendez, D., Shatz, M. and Resnick, M.A. (2013) Interactions between the Tumor Suppressor P53 and Immune Responses. Current Opinion in Oncology, 25, 85-92.
https://doi.org/10.1097/cco.0b013e32835b6386
[31] Textor, S., Fiegler, N., Arnold, A., Porgador, A., Hofmann, T.G. and Cerwenka, A. (2011) Human NK Cells Are Alerted to Induction of P53 in Cancer Cells by Upregulation of the NKG2D Ligands ULBP1 and ULBP2. Cancer Research, 71, 5998-6009.
https://doi.org/10.1158/0008-5472.can-10-3211