[1]
|
Phillips, C.D. and Bubash, L.A. (2002) The Facial Nerve: Anatomy and Common Pathology. Seminars in Ultrasound, CT and MRI, 23, 202-217. https://doi.org/10.1016/s0887-2171(02)90047-8
|
[2]
|
Barreiro-Torres, J., Diniz-Freitas, M., Lago-Mendez, L., Gude-Sampedro, F., Gandara-Rey, J. and Garcia-Garcia, A. (2010) Evaluation of the Surgical Difficulty in Lower Third Molar Extraction. Medicina Oral Patología Oral y Cirugia Bucal, 2010, e869-e874. https://doi.org/10.4317/medoral.15.e869
|
[3]
|
Juodzbalys, G., Wang, H. and Sabalys, G. (2011) Injury of the Inferior Alveolar Nerve during Implant Placement: A Literature Review. Journal of Oral and Maxillofacial Research, 2, e1. https://doi.org/10.5037/jomr.2011.2101
|
[4]
|
Agbaje, J.O., de Casteele, E.V., Salem, A.S., Anumendem, D., Lambrichts, I. and Politis, C. (2016) Tracking of the Inferior Alveolar Nerve: Its Implication in Surgical Planning. Clinical Oral Investigations, 21, 2213-2220. https://doi.org/10.1007/s00784-016-2014-x
|
[5]
|
Pogrel, M.A. (2007) Damage to the Inferior Alveolar Nerve as the Result of Root Canal Therapy. The Journal of the American Dental Association, 138, 65-69. https://doi.org/10.14219/jada.archive.2007.0022
|
[6]
|
Ziccardi, V.B. and Zuniga, J.R. (2007) Nerve Injuries after Third Molar Removal. Oral and Maxillofacial Surgery Clinics of North America, 19, 105-115. https://doi.org/10.1016/j.coms.2006.11.005
|
[7]
|
Angelopoulos, C., Scarfe, W.C. and Farman, A.G. (2012) A Comparison of Maxillofacial CBCT and Medical CT. Atlas of the Oral and Maxillofacial Surgery Clinics, 20, 1-17. https://doi.org/10.1016/j.cxom.2011.12.008
|
[8]
|
Rueda, S., Gil, J.A., Pichery, R. and Alcañiz, M. (2006) Automatic Segmentation of Jaw Tissues in CT Using Active Appearance Models and Semi-Automatic Landmarking. In: Lecture Notes in Computer Science, Springer, 167-174. https://doi.org/10.1007/11866565_21
|
[9]
|
Kainmueller, D., Lamecker, H., Seim, H., Zinser, M. and Zachow, S. (2009) Automatic Extraction of Mandibular Nerve and Bone from Cone-Beam CT Data. In: Lecture Notes in Computer Science, Springer, 76-83. https://doi.org/10.1007/978-3-642-04271-3_10
|
[10]
|
Kim, G., Lee, J., Lee, H., Seo, J., Koo, Y.-M., Shin, Y.-G., et al. (2011) Automatic Extraction of Inferior Alveolar Nerve Canal Using Feature-Enhancing Panoramic Volume Rendering. IEEE Transactions on Biomedical Engineering, 58, 253-264. https://doi.org/10.1109/tbme.2010.2089053
|
[11]
|
Abdolali, F., Zoroofi, R.A., Abdolali, M., Yokota, F., Otake, Y. and Sato, Y. (2016) Automatic Segmentation of Mandibular Canal in Cone Beam CT Images Using Conditional Statistical Shape Model and Fast Marching. International Journal of Computer Assisted Radiology and Surgery, 12, 581-593. https://doi.org/10.1007/s11548-016-1484-2
|
[12]
|
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Lecture Notes in Computer Science, Springer, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
|
[13]
|
Faradhilla, Y., Suciat, N., et al. (2021) Residual Fully Convolutional Network for Mandibular Canal Segmentation. International Journal of Inventive Engineering and Sciences, 14, 208-219. https://doi.org/10.22266/ijies2021.1231.20
|
[14]
|
Wang, Y. and Feng, H. (2022) Method for Automatic Mandibular Canal Detection on Improved U-Net. 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an, 28-30 October 2022, 206-209. https://doi.org/10.1109/icicml57342.2022.10009837
|
[15]
|
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T. and Ronneberger, O. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Lecture Notes in Computer Science, Springer, 424-432. https://doi.org/10.1007/978-3-319-46723-8_49
|
[16]
|
Kwak, G.H., Kwak, E., Song, J.M., Park, H.R., Jung, Y., Cho, B., et al. (2020) Automatic Mandibular Canal Detection Using a Deep Convolutional Neural Network. Scientific Reports, 10, Article No. 5711. https://doi.org/10.1038/s41598-020-62586-8
|
[17]
|
Jaskari, J., Sahlsten, J., Järnstedt, J., Mehtonen, H., Karhu, K., Sundqvist, O., et al. (2020) Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes. Scientific Reports, 10, Article No. 5842. https://doi.org/10.1038/s41598-020-62321-3
|
[18]
|
Dhar, M.K. and Yu, Z. (2021) Automatic Tracing of Mandibular Canal Pathways Using Deep Learning. arXiv: 2111.15111. https://doi.org/10.48550/arXiv.2111.15111
|
[19]
|
Järnstedt, J., Sahlsten, J., Jaskari, J., Kaski, K., Mehtonen, H., Lin, Z., et al. (2022) Comparison of Deep Learning Segmentation and Multigrader-Annotated Mandibular Canals of Multicenter CBCT Scans. Scientific Reports, 12, Article No. 18598. https://doi.org/10.1038/s41598-022-20605-w
|
[20]
|
Oliveira-Santos, N., Jacobs, R., Picoli, F.F., Lahoud, P., Niclaes, L. and Groppo, F.C. (2023) Automated Segmentation of the Mandibular Canal and Its Anterior Loop by Deep Learning. Scientific Reports, 13, Article No. 10819. https://doi.org/10.1038/s41598-023-37798-3
|
[21]
|
Du, G., Tian, X. and Song, Y. (2022) Mandibular Canal Segmentation from CBCT Image Using 3D Convolutional Neural Network with ScSe Attention. IEEE Access, 10, 111272-111283. https://doi.org/10.1109/access.2022.3213839
|
[22]
|
Jeoun, B., Yang, S., Lee, S., Kim, T., Kim, J., Kim, J., et al. (2022) Canal-net for Automatic and Robust 3D Segmentation of Mandibular Canals in CBCT Images Using a Continuity-Aware Contextual Network. Scientific Reports, 12, Article No. 13460. https://doi.org/10.1038/s41598-022-17341-6
|
[23]
|
Zhao, H., Chen, J., Yun, Z., Feng, Q., Zhong, L. and Yang, W. (2023) Whole Mandibular Canal Segmentation Using Transformed Dental CBCT Volume in Frenet Frame. Heliyon, 9, e17651. https://doi.org/10.1016/j.heliyon.2023.e17651
|
[24]
|
Lahoud, P., Diels, S., Niclaes, L., Van Aelst, S., Willems, H., Van Gerven, A., et al. (2022) Development and Validation of a Novel Artificial Intelligence Driven Tool for Accurate Mandibular Canal Segmentation on CBCT. Journal of Dentistry, 116, Article ID: 103891. https://doi.org/10.1016/j.jdent.2021.103891
|
[25]
|
Usman, M., Rehman, A., Saleem, A.M., Jawaid, R., Byon, S., Kim, S., et al. (2022) Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans. Sensors, 22, Article 9877. https://doi.org/10.3390/s22249877
|
[26]
|
Lin, X., Xin, W., Huang, J., Jing, Y., Liu, P., Han, J., et al. (2023) Accurate Mandibular Canal Segmentation of Dental CBCT Using a Two-Stage 3D-UNet Based Segmentation Framework. BMC Oral Health, 23, Article No. 551. https://doi.org/10.1186/s12903-023-03279-2.
|
[27]
|
Ni, F., Xu, Z., Liu, M., Zhang, M., Li, S., Bai, H., et al. (2024) Towards Clinically Applicable Automated Mandibular Canal Segmentation on CBCT. Journal of Dentistry, 144, Article ID: 104931. https://doi.org/10.1016/j.jdent.2024.104931
|
[28]
|
Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., et al. (2022) UNETR: Transformers for 3D Medical Image Segmentation. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, 3-8 January 2022, 1748-1758. https://doi.org/10.1109/wacv51458.2022.00181
|
[29]
|
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R. and Xu, D. (2022) Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. In: Lecture Notes in Computer Science, Springer, 272-284. https://doi.org/10.1007/978-3-031-08999-2_22
|
[30]
|
Lv, J., Zhang, L., Xu, J., Li, W., Li, G. and Zhou, H. (2023) Automatic Segmentation of Mandibular Canal Using Transformer Based Neural Networks. Frontiers in Bioengineering and Biotechnology, 11, Article 1302524. https://doi.org/10.3389/fbioe.2023.1302524
|
[31]
|
Lim, H., Jung, S., Kim, S., Cho, Y. and Song, I. (2021) Deep Semi-Supervised Learning for Automatic Segmentation of Inferior Alveolar Nerve Using a Convolutional Neural Network. BMC Oral Health, 21, Article No. 630. https://doi.org/10.1186/s12903-021-01983-5
|
[32]
|
Cipriano, M., Allegretti, S., Bolelli, F., Pollastri, F. and Grana, C. (2022) Improving Segmentation of the Inferior Alveolar Nerve through Deep Label Propagation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 21105-21114. https://doi.org/10.1109/cvpr52688.2022.02046
|
[33]
|
Cipriano, M., Allegretti, S., Bolelli, F., Di Bartolomeo, M., Pollastri, F., Pellacani, A., et al. (2022) Deep Segmentation of the Mandibular Canal: A New 3D Annotated Dataset of CBCT Volumes. IEEE Access, 10, 11500-11510. https://doi.org/10.1109/access.2022.3144840
|