[1]
|
黑肖飞, 卢绪章. 多发性骨髓瘤微环境介导的免疫逃逸机制研究[J]. 中国临床研究, 2024, 37(6): 950-954.
|
[2]
|
Kumar, S.K., Rajkumar, V., Kyle, R.A., van Duin, M., Sonneveld, P., Mateos, M., et al. (2017) Multiple Myeloma. Nature Reviews Disease Primers, 3, Article No. 17046. https://doi.org/10.1038/nrdp.2017.46
|
[3]
|
Goel, U., Usmani, S. and Kumar, S. (2022) Current Approaches to Management of Newly Diagnosed Multiple Myeloma. American Journal of Hematology, 97, S3-S25. https://doi.org/10.1002/ajh.26512
|
[4]
|
《中国多发性骨髓瘤创新药物可及性研究》编写委员会. 中国多发性骨髓瘤创新药物可及性研究[J]. 药品评价, 2020, 17(0): 1-11, 42.
|
[5]
|
李洪杰, 母润红. 多发性骨髓瘤免疫微环境及治疗[J]. 中国免疫学杂志, 2020, 36(20): 2547-2551, 2557.
|
[6]
|
Zavidij, O., Haradhvala, N.J., Mouhieddine, T.H., Sklavenitis-Pistofidis, R., Cai, S., Reidy, M., et al. (2020) Single-Cell RNA Sequencing Reveals Compromised Immune Microenvironment in Precursor Stages of Multiple Myeloma. Nature Cancer, 1, 493-506. https://doi.org/10.1038/s43018-020-0053-3
|
[7]
|
Granata, V., Crisafulli, L., Nastasi, C., Ficara, F. and Sobacchi, C. (2022) Bone Marrow Niches and Tumour Cells: Lights and Shadows of a Mutual Relationship. Frontiers in Immunology, 13, Article 884024. https://doi.org/10.3389/fimmu.2022.884024
|
[8]
|
Sharma, N.S. and Choudhary, B. (2023) Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules, 13, Article 1629. https://doi.org/10.3390/biom13111629
|
[9]
|
Bhowmick, K., von Suskil, M., Al-Odat, O.S., Elbezanti, W.O., Jonnalagadda, S.C., Budak-Alpdogan, T., et al. (2024) Pathways to Therapy Resistance: The Sheltering Effect of the Bone Marrow Microenvironment to Multiple Myeloma Cells. Heliyon, 10, e33091. https://doi.org/10.1016/j.heliyon.2024.e33091
|
[10]
|
Alipoor, S.D. and Chang, H. (2023) Exosomal miRNAs in the Tumor Microenvironment of Multiple Myeloma. Cells, 12, Article 1030. https://doi.org/10.3390/cells12071030
|
[11]
|
García-Ortiz, A., Rodríguez-García, Y., Encinas, J., Maroto-Martín, E., Castellano, E., Teixidó, J., et al. (2021) The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers, 13, Article 217. https://doi.org/10.3390/cancers13020217
|
[12]
|
Brigle, K. and Rogers, B. (2017) Pathobiology and Diagnosis of Multiple Myeloma. Seminars in Oncology Nursing, 33, 225-236. https://doi.org/10.1016/j.soncn.2017.05.012
|
[13]
|
Desantis, V., Savino, F.D., Scaringella, A., Potenza, M.A., Nacci, C., Frassanito, M.A., et al. (2022) The Leading Role of the Immune Microenvironment in Multiple Myeloma: A New Target with a Great Prognostic and Clinical Value. Journal of Clinical Medicine, 11, Article 2513. https://doi.org/10.3390/jcm11092513
|
[14]
|
Caraccio, C., Krishna, S., Phillips, D.J. and Schürch, C.M. (2020) Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Frontiers in Immunology, 11, Article 501. https://doi.org/10.3389/fimmu.2020.00501
|
[15]
|
Leblay, N., Maity, R., Hasan, F. and Neri, P. (2020) Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights into Mechanisms and Therapeutic Opportunities. Frontiers in Oncology, 10, Article 636. https://doi.org/10.3389/fonc.2020.00636
|
[16]
|
Liu, Y., Xie, Y., Han, X., Li, P., Zhou, J., Hu, X., et al. (2023) Th9/IL‐9 May Participate in the Pathogenesis of Multiple Myeloma. International Journal of Laboratory Hematology, 46, 322-328. https://doi.org/10.1111/ijlh.14210
|
[17]
|
Wang, W., Sung, N., Gilman-Sachs, A. and Kwak-Kim, J. (2020) T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Frontiers in Immunology, 11, Article 2025. https://doi.org/10.3389/fimmu.2020.02025
|
[18]
|
Wang, J., De Veirman, K., De Beule, N., Maes, K., De Bruyne, E., Van Valckenborgh, E., et al. (2015) The Bone Marrow Microenvironment Enhances Multiple Myeloma Progression by Exosome-Mediated Activation of Myeloid-Derived Suppressor Cells. Oncotarget, 6, 43992-44004. https://doi.org/10.18632/oncotarget.6083
|
[19]
|
Nakamura, K., Smyth, M.J. and Martinet, L. (2020) Cancer Immunoediting and Immune Dysregulation in Multiple Myeloma. Blood, 136, 2731-2740. https://doi.org/10.1182/blood.2020006540
|
[20]
|
Lv, J., Sun, H., Gong, L., Wei, X., He, Y., Yu, Z., et al. (2022) Aberrant Metabolic Processes Promote the Immunosuppressive Microenvironment in Multiple Myeloma. Frontiers in Immunology, 13, Article 1077768. https://doi.org/10.3389/fimmu.2022.1077768
|
[21]
|
Ho, M., Xiao, A., Yi, D., Zanwar, S. and Bianchi, G. (2022) Treating Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Current Oncology, 29, 8975-9005. https://doi.org/10.3390/curroncol29110705
|
[22]
|
Kuwahara‐Ota, S., Shimura, Y., Steinebach, C., Isa, R., Yamaguchi, J., Nishiyama, D., et al. (2020) Lenalidomide and Pomalidomide Potently Interfere with Induction of Myeloid‐derived Suppressor Cells in Multiple Myeloma. British Journal of Haematology, 191, 784-795. https://doi.org/10.1111/bjh.16881
|
[23]
|
Feng, X., Zhang, L., Acharya, C., An, G., Wen, K., Qiu, L., et al. (2017) Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma. Clinical Cancer Research, 23, 4290-4300. https://doi.org/10.1158/1078-0432.ccr-16-3192
|
[24]
|
严志民, 刘彦权, 黄走方, 等. T细胞亚群与细胞因子水平变化在多发性骨髓瘤患者临床诊疗及预后评估中的价值[J]. 中国实验血液学杂志, 2022, 30(6): 1791-1796.
|
[25]
|
Kawano, Y., Roccaro, A., Azzi, J. and Ghobrial, I. (2017) Multiple Myeloma and the Immune Microenvironment. Current Cancer Drug Targets, 17, 806-817. https://doi.org/10.2174/1568009617666170214102301
|
[26]
|
Li, Y., Du, Z., Wang, X., Wang, G. and Li, W. (2016) Association of IL-6 Promoter and Receptor Polymorphisms with Multiple Myeloma Risk: A Systematic Review and Meta-Analysis. Genetic Testing and Molecular Biomarkers, 20, 587-596. https://doi.org/10.1089/gtmb.2015.0169
|
[27]
|
Griess, B., Mir, S., Datta, K. and Teoh-Fitzgerald, M. (2020) Scavenging Reactive Oxygen Species Selectively Inhibits M2 Macrophage Polarization and Their Pro-Tumorigenic Function in Part, via Stat3 Suppression. Free Radical Biology and Medicine, 147, 48-60. https://doi.org/10.1016/j.freeradbiomed.2019.12.018
|
[28]
|
De Luca, F., Allegra, A., Di Chio, C., Previti, S., Zappalà, M. and Ettari, R. (2023) Monoclonal Antibodies: The Greatest Resource to Treat Multiple Myeloma. International Journal of Molecular Sciences, 24, Article 3136. https://doi.org/10.3390/ijms24043136
|
[29]
|
Gandhi, A.K., Kang, J., Havens, C.G., Conklin, T., Ning, Y., Wu, L., et al. (2013) Immunomodulatory Agents Lenalidomide and Pomalidomide Co‐Stimulate T Cells by Inducing Degradation of T Cell Repressors Ikaros and Aiolos via Modulation of the E3 Ubiquitin Ligase Complex CRL4CRBN. British Journal of Haematology, 164, 811-821. https://doi.org/10.1111/bjh.12708
|
[30]
|
Sperling, A.S. and Anderson, K.C. (2021) Facts and Hopes in Multiple Myeloma Immunotherapy. Clinical Cancer Research, 27, 4468-4477. https://doi.org/10.1158/1078-0432.ccr-20-3600
|
[31]
|
Devasia, A.J., Chari, A. and Lancman, G. (2024) Bispecific Antibodies in the Treatment of Multiple Myeloma. Blood Cancer Journal, 14, Article No. 158. https://doi.org/10.1038/s41408-024-01139-y
|
[32]
|
Pan, D. and Richter, J. (2023) Teclistamab for Multiple Myeloma: Clinical Insights and Practical Considerations for a First-In-Class Bispecific Antibody. Cancer Management and Research, 15, 741-751. https://doi.org/10.2147/cmar.s372237
|
[33]
|
Richardson, P.G., Sonneveld, P., Schuster, M.W., Irwin, D., Stadtmauer, E.A., Facon, T., et al. (2005) Bortezomib or High-Dose Dexamethasone for Relapsed Multiple Myeloma. New England Journal of Medicine, 352, 2487-2498. https://doi.org/10.1056/nejmoa043445
|
[34]
|
Siegel, D., Martin, T., Nooka, A., Harvey, R.D., Vij, R., Niesvizky, R., et al. (2013) Integrated Safety Profile of Single-Agent Carfilzomib: Experience from 526 Patients Enrolled in 4 Phase II Clinical Studies. Haematologica, 98, 1753-1761. https://doi.org/10.3324/haematol.2013.089334
|
[35]
|
McCarthy, P.L., Holstein, S.A., Petrucci, M.T., Richardson, P.G., Hulin, C., Tosi, P., et al. (2017) Lenalidomide Maintenance after Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis. Journal of Clinical Oncology, 35, 3279-3289. https://doi.org/10.1200/jco.2017.72.6679
|
[36]
|
Mateos, M., Dimopoulos, M.A., Cavo, M., Suzuki, K., Jakubowiak, A., Knop, S., et al. (2018) Daratumumab Plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. New England Journal of Medicine, 378, 518-528. https://doi.org/10.1056/nejmoa1714678
|
[37]
|
Nijhof, I.S., Casneuf, T., van Velzen, J., van Kessel, B., Axel, A.E., Syed, K., et al. (2016) CD38 Expression and Complement Inhibitors Affect Response and Resistance to Daratumumab Therapy in Myeloma. Blood, 128, 959-970. https://doi.org/10.1182/blood-2016-03-703439
|
[38]
|
Berdeja, J.G., Madduri, D., Usmani, S.Z., Jakubowiak, A., Agha, M., Cohen, A.D., et al. (2021) Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. The Lancet, 398, 314-324. https://doi.org/10.1016/s0140-6736(21)00933-8
|
[39]
|
Brudno, J.N. and Kochenderfer, J.N. (2016) Toxicities of Chimeric Antigen Receptor T Cells: Recognition and Management. Blood, 127, 3321-3330. https://doi.org/10.1182/blood-2016-04-703751
|
[40]
|
Lesokhin, A.M., Ansell, S.M., Armand, P., Scott, E.C., Halwani, A., Gutierrez, M., et al. (2016) Nivolumab in Patients with Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. Journal of Clinical Oncology, 34, 2698-2704. https://doi.org/10.1200/jco.2015.65.9789
|