肺炎支原体感染在成人斯蒂尔病发病中的作用
The Role of Mycoplasma pneumoniae Infection in the Pathogenesis of Adult-Onset Still’s Disease
DOI: 10.12677/acm.2025.1561695, PDF, HTML, XML,    科研立项经费支持
作者: 王澳华, 段玉婷, 廖桢宇:青岛大学附属医院老年医学科,山东 青岛;青岛大学青岛医学院,山东 青岛;胡 松, 毛拥军*:青岛大学附属医院老年医学科,山东 青岛
关键词: 成人斯蒂尔病(AOSD)肺炎支原体炎症免疫学诊断Adult-Onset Still’s Disease (AOSD) Mycoplasma pneumoniae Inflammation Immunology Diagnosis
摘要: 成人斯蒂尔病(Adult-onset Still’s Disease, AOSD)是一种罕见的全身性的自身炎症性疾病,常累及全身多器官系统,表现出非特异性的症状和体征。AOSD非特异性的临床表现使其诊断往往面临着重大挑战。感染是AOSD的主要诱因,并且与其临床特征高度重叠,比如发热、白细胞和炎症因子的升高等,因而易导致AOSD的误诊或漏诊。许多病原体均可诱发AOSD起病,但目前关于肺炎支原体感染继而发生AOSD的病例报告较为罕见。我们报告了一例最初诊断为单纯肺炎支原体相关上呼吸道感染的AOSD病例。一名21岁的年轻女性,主要表现为反复高热,同时伴有关节疼痛、皮疹及浅表淋巴结肿大,在排除了感染性疾病、恶性肿瘤及其他自身免疫性疾病后,根据Yamaguchi标准最终确诊为AOSD。应用激素治疗后,患者的病情明显好转,随访记录显示病情控制稳定。此外,我们就AOSD的临床特征及诊疗原则进行了详细的讨论及文献综述,重点阐明了肺炎支原体感染与AOSD发病之间的内在联系,并进一步揭示了两者在发病机制中的密切关联。
Abstract: Adult-onset Still’s Disease (AOSD) is a rare systemic inflammatory disease, which often accumulates multiple organ systems and shows nonspecific symptoms and signs. The nonspecific clinical manifestations of AOSD make its diagnosis often face great challenges. Infection is the main inducement of AOSD, and it highly overlaps with its clinical features, such as fever, increase of white blood cells and inflammatory factors, which easily leads to misdiagnosis or missed diagnosis of AOSD. Many pathogens can induce the onset of AOSD, but at present, there are few cases of AOSD caused by Mycoplasma pneumoniae infection. We report a case of AOSD initially diagnosed as simple Mycoplasma pneumoniae associated with upper respiratory tract infection. A 21-year-old young woman with recurrent high fever, joint pain, rash and superficial lymphadenopathy was finally diagnosed as AOSD according to Yamaguchi criteria after excluding infectious diseases, malignant tumors and other autoimmune diseases. After hormone therapy, the patient’s condition improved obviously, and the follow-up records showed that the condition was stable. In addition, we discussed the clinical characteristics and principles of diagnosis and treatment of AOSD in detail and reviewed the literature, focusing on the internal relationship between Mycoplasma pneumoniae infection and the pathogenesis of AOSD, and further revealed the close relationship between them in the pathogenesis.
文章引用:王澳华, 胡松, 段玉婷, 廖桢宇, 毛拥军. 肺炎支原体感染在成人斯蒂尔病发病中的作用[J]. 临床医学进展, 2025, 15(6): 29-38. https://doi.org/10.12677/acm.2025.1561695

1. 引言

成人斯蒂尔病(Adult-onset Still’s Disease, AOSD)是一种罕见的自身炎症性疾病,往往在排除其他相似疾病后结合其非特异性的临床特征确诊[1] [2]。感染作为AOSD的主要诱发因素,在临床表现上又与AOSD极为相似,因此AOSD患者发病初期容易被误诊为单纯的感染性疾病,进而延误其系统性治疗并显著增加严重并发症的发生风险,如巨噬细胞活化综合征(macrophage activation syndrome, MAS) [3]。研究表明,肺炎支原体感染引发的炎症和免疫反应与AOSD的现有发病机制之间在多个维度存在交叉[4] [5]。然而,截至目前,肺炎支原体感染患者合并AOSD发病的报道很少。肺炎支原体作为AOSD的触发因素参与其发病的具体机制尚未完全明确。

在此报告中,我们介绍了一例合并肺炎支原体感染的AOSD患者,入院时根据其临床表现及检验结果,考虑诊断为肺炎支原体相关的上呼吸道感染,期间经历了无效的抗感染治疗并进一步完善了全面的辅助检查,结合淋巴结活检结果及血清学炎症指标变化,最终诊断为AOSD。此病例中肺炎支原体感染与AOSD起病之间密切的时间关系以及炎症指标趋势的演变揭示了肺炎支原体在AOSD发病中的重要作用,同时该病例也对临床医生诊断不明原因的发热起到一定的警醒作用。

2. 病例报道

患者女,21岁,因“反复发热1月余”于2023年9月28日入院。1月余前,患者无明显诱因出现发热,体温最高达40.0℃,伴干咳、咽痛,自觉全身多关节、肌肉疼痛,自服“阿奇霉素”数天后上述症状无明显改善,于当地医院就诊,辅助检查结果提示全血白细胞和C反应蛋白(C-reactive protein, CRP)升高,肺炎支原体IgM抗体阳性,且全身多个浅表淋巴结明显肿大,当地医院考虑肺炎支原体感染,予以静脉应用抗生素治疗(具体药物不详),治疗3天后患者仍反复高热,遂至我院。患者否认传染病和遗传病史,近期有美国和加拿大旅居史。查体:颈部、腋窝和腹股沟区可触及肿大的浅表淋巴结,最大的淋巴结有花生米大小,质地坚硬,无压痛及粘连,活动度差,全身皮肤未见皮疹、瘀点、瘀斑,肝、脾肋下未及。其余各系统体检无明显阳性体征。

入院后,患者立即完成了血常规、生化指标和病原学检查,结果如表1所示。结合症状及辅助检查结果,诊断为肺炎支原体感染,先后予以莫西沙星注射液、米诺环素片及阿奇霉素注射液抗感染治疗,积极抗感染9天后患者体温降至正常,复查炎性指标CRP、降钙素原(Procalcitonin, PCT)显著下降。在预备出院时,患者再次高热,且其颈部和前胸部新发红褐色斑块状皮疹,质地粗糙,伴局部皮肤增厚及瘙痒。此时复查的病原学检查无提示意义。反复高热、淋巴结肿大以及无效的抗感染治疗,这些特征提示感染可能并非患者发热的根本原因,我们不得不把目光转向自身免疫性疾病及恶性肿瘤上。随后,患者完善了PET-CT,结果提示淋巴瘤或坏死性淋巴炎等增殖性淋巴结疾病可能性大,核医学科医生建议选取肿大淋巴结进行活检。后续查房过程中,通过再次追问患者既往病史,我们捕捉到一个关键信息——患者近年来查体时发现血清铁蛋白不明原因显著升高。随后,进一步的化验结果提示患者血液中白细胞介素6 (interleukin 6, IL-6)及铁蛋白水平明显升高,铁蛋白水平甚至达到了正常上限的40倍左右。此外,腋窝淋巴结活检结果提示AOSD可能性大。根据Yamaguchi标准,患者确诊为AOSD,开始静脉应用米乐松20 mg,2次/天。自激素治疗的第二天起,患者未再发热,且皮疹完全消散,治疗6天后,复查的IL-6及铁蛋白水平较前明显下降,疗效显著。结合风湿免疫科的会诊意见,患者出院后继续口服甲泼尼龙片20 mg,2次/天。患者最新的随访记录显示病情控制理想,各项炎性指标均正常。患者住院及随访期间体温及铁蛋白的变化如图1所示。

Table 1. Important laboratory results of patients after admission

1. 患者入院后的重要化验结果

项目

结果

参考范围

白细胞

12.44*109/L

(3.5~9.5)*109/L

中性粒细胞百分率

81.8%

40%~75%

淋巴细胞百分率

12.5%

20%~50%

单核细胞百分率

4.9%

3%~10%

血红蛋白

118 g/L

(115~150) g/L

CRP

81.21 mg/L

(0~5) mg/L

降钙素原

0.143 ng/ml

<0.05 ng/ml

乙肝表面抗原定量

0 IU/ml

<0.05 IU/ml

丙肝抗体IgG

0.11 S/CO

<1.00 S/CO

梅毒螺旋体抗体

0.09 S/CO

<1.0 S/CO

艾滋病毒抗体1/2型

0.07 S/CO

<1 S/CO

白蛋白

33.4 g/L

(40.0~55.0) g/L

谷丙转氨酶

19 U/L

(7~40) U/L

谷草转氨酶

19 U/L

(13~35) U/L

G试验

阴性

阴性

GM试验

阴性

阴性

免疫球蛋白A

4.32 g/L

(1.0~4.2) g/L

免疫球蛋白G

14.70 g/L

(8.6~17.4) g/L

免疫球蛋白M

1.91 g/L

(0.5~2.8) g/L

抗环瓜氨酸肽抗体

<8.00 U/ml

(0~17) U/ml

免疫球蛋白E

768 IU/ml

(0~100) IU/ml

抗O

298 IU/ml

(0~200) IU/ml

类风湿因子

<9.13 IU/ml

(0~15.9) IU/ml

抗核抗体及其滴度

弱阳性

阴性

红细胞沉降率

83 mm/h

(0~20) mm/h

肺炎支原体抗体(IgM)

阳性(1:80)

阴性

呼吸道合胞病毒抗体

阴性

阴性

腺病毒抗体

阴性

阴性

副流感病毒1、2和3型抗体

阴性

阴性

嗜肺军团菌血清1型抗体

阴性

阴性

肺炎衣原体抗体

阴性

阴性

甲型流感病毒抗体

阴性

阴性

乙型流感病毒抗体

阴性

阴性

Q热立克次体抗体

阴性

阴性

结核感染T细胞检测

阴性

阴性

新型冠状病毒核酸检测

阴性

阴性

EB病毒DNA

阴性

阴性

巨细胞病毒DNA

阴性

阴性

Figure 1. Changes in patient temperature and ferritin, and evolution of main therapeutic drugs

1. 患者体温和铁蛋白变化及主要治疗药物演变

3. 方法

我们对合并支原体感染的AOSD患者的病例报告进行了综述。我们随机选取了两位研究者应用以下检索式:((Still’s Disease, Adult-Onset) OR (Still’s Disease, Adult Onset) OR (Still’s Disease, Adult Onset) OR (Adult-Onset Still Disease) OR (Adult Onset Still Disease) OR (Adult-Onset Still’s Disease) OR (Adult Onset Still’s Disease) OR (Adult-Onset Stills Disease) OR (Still Disease, Adult-Onset) OR (Still Disease, Adult Onset)) AND (Mycoplasma),在PubMed进行检索并筛选。最终,我们纳入了3篇符合主题的文献,见表2

Table 2. Clinical characteristics of AOSD patients with combined Mycoplasma pneumoniae infection

2. 合并肺炎支原体感染的AOSD患者的临床特征

例数

性别

AOSD发病 年龄(岁)

高热

关节疼痛或关节炎

皮疹

肺部 体征

淋巴结肿大

肝或脾肿大

肝功能异常

全血白细胞计数升高

中性粒细胞百分率 升高

肺炎支原体 抗体(IgM)

肺炎支原体 抗体(IgG)

白细胞介素6

铁蛋白升高

肺部影像学 改变

淋巴结或皮肤活检

巨噬细胞活化综合征

针对肺炎支原体的抗感染治疗

激素类

DMARDs

生物制剂

Egambaram [6]

18

肝大、脾大

阳性

阳性

未知

未知

左肺下叶实变、少量胸腔积液

未知

头孢曲松、阿奇霉素

泼尼松

甲氨蝶呤

Carlos [7]

17

湿啰音

肝大、脾大

阳性(1:640)

阳性

未知

左肺下叶浸润影

淋巴结活检

红霉素

泼尼松

Abhishek [8]

28

湿啰音

未知

未知

未知

未知

阳性

阳性

未知

未知

双肺浸润影

皮肤活检

阿奇霉素

甲强龙

环孢素

阿那白滞素

4. 讨论

AOSD是一种较为罕见的全身性自身炎症性疾病,其主要临床特征可表现为高热、典型皮疹、关节炎或关节痛、咽痛、肝脾及淋巴结肿大。在检索到的3例合并肺炎支原体感染的AOSD病例中,均伴随肝功能损伤,而本例患者肝功能正常。此外,上述3例患者的胸部影像学结果均显示肺部受累,如肺叶浸润性改变、胸腔积液等,也是AOSD累及肺脏的并发症表现[6]-[8]。本例AOSD患者虽然同时合并肺炎支原体感染,但CT和PET-CT均无肺部受累表现,考虑可能与其积极的抗感染治疗和及时的病因治疗有关。AOSD主要发生于20~40岁人群,最新研究指出女性发病率略高于男性。AOSD临床表现的多样性及非特异性对临床医师及时正确的诊断造成了巨大挑战。Abhishek等人报告的病例以皮疹为初始症状,起初被误诊为过敏性疾病,应用抗组胺药治疗无效[8]。另外两例患者从首发症状到确诊AOSD并行靶向治疗至少经历了2周的时间[6] [7]。幸运地是,他们均未发展至AOSD严重并发症阶段。基于诊断原则的前提条件——排除性诊断,确诊AOSD的过程必然漫长且复杂。目前国际上尚无AOSD特异性诊断标准。临床上最常用的是Yamaguchi标准[9] (表3)。

Table 3. Diagnostic criteria for AOSD—Yamaguchi criteria

3. AOSD的诊断标准——Yamaguchi标准

主要标准

发热 ≥ 39℃并持续1周及以上

关节痛或关节炎持续2周及以上

典型皮疹

白细胞计数 ≥ 10*109/L且中性粒细胞百分率 > 80%

次要标准

咽痛或咽炎

淋巴结和/或脾肿大

肝功能异常

类风湿因子和抗核抗体阴性

排除标准

感染性疾病

恶性肿瘤(尤其是淋巴瘤)

其他自身免疫性疾病

诊断条件

否定排除标准中的疾病后,符合上述标准中的5条及以上,

其中至少2条为主要标准,即可诊断为AOSD

除了临床表现及常见的实验室指标以外,PET-CT在确诊AOSD的过程中也具有重大参考价值。Xian Li等人通过评估18F-FDG的代谢参数与实验室指标等临床数据的相关性发现18F-FDG有望用于AOSD疾病活动性的评估,并且脾脏18F-FDG摄取情况未来可能应用于预测AOSD患者的预后[10]

在过去的几十年里,全球报告了多例合并各种病原体感染的AOSD病例[11]-[14]。对于存在感染指征的患者而言,AOSD的诊断过程更加困难。肺炎支原体感染的临床表现及实验室检查指标的变化与AOSD患者有许多共同特征,比如发热、咽痛及铁蛋白水平升高[15]。然而,AOSD患者循环中铁蛋白的升高往往更为显著,常高于其他的自身炎症性疾病及感染性疾病[16] [17]。本例患者的血清铁蛋白水平在急性期时高达正常上限的40倍。我们检索到的3例患者中仅一例提供了铁蛋白升高的临床资料[7]。Fautre等人开展的一项回顾性研究揭示了循环中铁蛋白和糖化铁蛋白水平在AOSD鉴别诊断中的重要价值[18]。近年来,一项关于AOSD患者与重症COVID-19患者循环细胞因子和铁蛋白水平的荟萃分析发现活动性AOSD患者体内铁蛋白水平显著高于重症COVID-19患者[19]。对于持续高热且针对性抗感染治疗无效的患者,临床医生应当考虑到AOSD的可能性,关注皮疹、淋巴结肿大等体征变化,尽快完善实验室及影像学检查全面排查与之鉴别诊断的各类疾病。值得注意的是,即便已经确诊AOSD,患者仍需规律随访,以防减药不当、合并潜在感染或是恶性肿瘤等情况导致病情恶化。

目前,AOSD的确切病因及发病机制尚未完全阐明。已经明确的是AOSD是一种自身炎症性疾病,免疫细胞以及某些促炎因子的过度表达很可能是AOSD的核心发病机制[20] [21]。AOSD的诱发因素主要包括基因易感性、感染及免疫失衡,已经发现的与AOSD发病相关的病原体有小肠结肠炎耶尔森菌、细小病毒B19、EB病毒、支原体等,但它们在AOSD发病机制中的具体作用尚未明确[1]。此外,对于感染与AOSD的确切关系仍有争论,感染只是巧合还是AOSD的诱发因素又或是其病因众说纷纭。研究表明肺炎支原体感染患者的自身免疫性疾病发病率有所升高[22] [23]。我们检索到的3例AOSD患者均表现出肺炎支原体感染与AOSD发病之间密切的时间关系。机体在感染肺炎支原体后,其免疫系统和细胞因子网络会被随之而来的先天及后天免疫反应打破平衡,机体也同样会经历过失控的、过度的系统性炎症反应,这一点与AOSD极其相似[24] [25]。以上这些证据均指向——肺炎支原体与AOSD发病之间存在密切关联。

人们认为先天免疫和适应性免疫共同导致了AOSD的炎症反应[26]。中性粒细胞和巨噬细胞在初始免疫中占据主导地位[27]。研究发现AOSD患者体内的中性粒细胞活化标志物CD64水平明显上调[28]。近年来一项临床研究通过对比35名AOSD患者与20位健康对照人群血清的中性粒细胞胞外杀菌网络(neutrophil extracellular traps, NETs)残留水平提出未来NETs可能应用于检测AOSD的疾病活动性[29]。此外,活化后的巨噬细胞可刺激铁蛋白过度释放,导致铁负荷增加、铁代谢紊乱,参与炎症反应调节[30]-[32]。研究发现,肺炎支原体包含了50多种不同的脂蛋白,称之为脂质相关膜蛋白(Lipid-associated membrane proteins, LAMPs),肺炎支原体感染后机体内的一系列炎症反应的启动主要依赖于LAMPs [33] [34]。LAMPs可以插入到包括巨噬细胞在内的各种细胞的脂质双分子层中,从而被Toll样受体(Toll like receptors, TLRs) (TLR1, TLR2, TLR6)所识别,进而引发先天免疫反应并激活下游的炎症通路,特别是核因子κB (NF-κB)信号通路[35] [36]。肺炎支原体进入人体后附着于上皮细胞上,不仅从宿主细胞中汲取营养,而且还会产生各种毒性物质,例如过氧化物阴离子、社区获得性呼吸窘迫综合征(community acquired respiratory distress syndrome, CARDS)毒素,从而导致细胞毒性损伤及凋亡[37]。CARDS毒素可激活NOD样受体热蛋白结构域相关蛋白3 (NOD-like receptor thermal protein domain associated protein 3, NLRP3)炎症小体,进而促使促炎性因子以剂量依赖和活性依赖的方式表达,如肿瘤坏死因子α (tumor necrosis factor-α, TNF-α)、白细胞介素1β (interleukin 1β, IL-1β) [38]-[40]

继先天免疫反应之后,适应性免疫登上舞台并参与到AOSD的发生发展过程,AOSD患者的淋巴结活检结果显示T细胞增殖明显,尤其是辅助性T细胞(helper T cell, Th细胞) [21] [41]。D.Y. Chen等人发现相较于健康对照组,AOSD患者的外周血及病理组织中Th1细胞居多[42]。Th1细胞通过释放γ-干扰素(Interferon-γ, IFN-γ)、TNF-α介导巨噬细胞及NK细胞活化,参与AOSD的系统炎症反应[42] [43]。细胞免疫在肺炎支原体感染的发病机制中发挥至关重要的作用。研究已经证实肺炎支原体感染患者体内存在Th1/Th2比例失衡,但具体哪种细胞类型占据主导地位目前仍有较大争议[44] [45]。研究表明,AOSD患者循环内CD4+ CD25调节性T细胞(Regulatory T cells, Tregs)水平与其疾病活动性呈负相关[46]。不同病程类型的AOSD患者体内Tregs水平存在较大差异,与单病程及慢性关节炎性病程等病程相对简单的AOSD患者相比,多病程患者循环中Tregs水平往往更高[47]。AOSD患者体内先天性和适应性免疫的失调导致包括IL-1β、TNF-α、IL-6在内的诸多促炎因子过度释放。失衡的炎性反应引发的细胞因子风暴可能是AOSD发生严重并发症的关键原因[1] [48]。因此,AOSD治疗的首要目标即为控制过度的炎性反应,以期缓解全身症状、防止严重并发症。AOSD治疗药物主要分为四大类:非甾体类抗炎药(Nonsteroidal Anti-inflammatory Drugs, NSAIDs)、激素、改善病情的抗风湿药(disease-modifying anti-rheumatic drugs, DMARDs)以及生物制剂[49]。其中激素是一线治疗选择,然而少数对激素治疗无效或是产生依赖的AOSD患者,建议选择二线治疗药物——DMARDs。对上述治疗反应性差的难治性AOSD患者推荐考虑生物制剂。截止目前,已有多项临床研究验证了IL-6及IL-1β抑制剂在AOSD患者中表现出良好的疗效及治疗安全性[50]-[52]。基于现有研究结果,约四分之一到三分之一的AOSD患者对激素类和DMARDs效果较差[53]-[55]。在我们检索到的3例肺炎支原体感染合并AOSD患者中,2例患者应用激素或DMARDs治疗后病情得到基本控制[6] [7],仅1例合并严重并发症MAS的患者尝试生物制剂治疗后病情得以明显缓解[8]

5. 结论

我们提供了一例合并肺炎支原体感染的AOSD患者的发病史、诊疗过程以及随访结果的详细报告。尽管肺炎支原体已被纳为AOSD的诱发因素,但目前肺炎支原体感染后AOSD发病的病例报道十分罕见,二者的临床表现极为相似而治疗原则却大相径庭。本病例在确诊AOSD之前经历了很长一段时间的鉴别诊断过程及非针对性治疗,延误诊断可能导致严重的并发症甚至危及患者性命。基于此,我们希望此病例可警示临床医生面对不明原因发热患者时谨慎诊断。同时,我们也呼吁能有越来越多的体内及体外研究聚焦于AOSD和肺炎支原体感染在免疫学分子机制中的深层关系,进而为AOSD的早期诊断和治疗提供更多的理论依据。

基金项目

本研究获得青岛大学附属医院医学伦理委员会批准(审批号:QYFY WZLL 29999)。

NOTES

*通讯作者。

参考文献

[1] Bindoli, S., Baggio, C., Doria, A. and Sfriso, P. (2024) Adult-Onset Still’s Disease (AOSD): Advances in Understanding Pathophysiology, Genetics and Emerging Treatment Options. Drugs, 84, 257-274.
https://doi.org/10.1007/s40265-024-01993-x
[2] Efthimiou, P., Kontzias, A., Hur, P., Rodha, K., Ramakrishna, G.S. and Nakasato, P. (2021) Adult-Onset Still’s Disease in Focus: Clinical Manifestations, Diagnosis, Treatment, and Unmet Needs in the Era of Targeted Therapies. Seminars in Arthritis and Rheumatism, 51, 858-874.
https://doi.org/10.1016/j.semarthrit.2021.06.004
[3] Maria, A.T.J., Le Quellec, A., Jorgensen, C., Touitou, I., Rivière, S. and Guilpain, P. (2014) Adult Onset Still’s Disease (AOSD) in the Era of Biologic Therapies: Dichotomous View for Cytokine and Clinical Expressions. Autoimmunity Reviews, 13, 1149-1159.
https://doi.org/10.1016/j.autrev.2014.08.032
[4] Rao, S., Tsang, L.S., Zhao, M., Shi, W. and Lu, Q. (2022) Adult-Onset Still’s Disease: A Disease at the Crossroad of Innate Immunity and Autoimmunity. Frontiers in Medicine, 9, Article 881431.
https://doi.org/10.3389/fmed.2022.881431
[5] Hu, J., Ye, Y., Chen, X., Xiong, L., Xie, W. and Liu, P. (2022) Insight into the Pathogenic Mechanism of Mycoplasma pneumoniae. Current Microbiology, 80, Article No. 14.
https://doi.org/10.1007/s00284-022-03103-0
[6] Senthilvel, E., Papadakis, A., McNamara, M. and Adebambo, I. (2010) Adult-Onset Still Disease (AOSD). The Journal of the American Board of Family Medicine, 23, 418-422.
https://doi.org/10.3122/jabfm.2010.03.090157
[7] Perez, C. and Artola, V. (2001) Adult Still’s Disease Associated with Mycoplasma pneumoniae Infection. Clinical Infectious Diseases, 32, e105-e106.
https://doi.org/10.1086/319342
[8] Agnihotri, A., Ruff, A., Gotterer, L., Walker, A., McKenney, A.H. and Brateanu, A. (2016) Adult Onset Still’s Disease Associated with Mycoplasma pneumoniae Infection and Hemophagocytic Lymphohistiocytosis. Case Reports in Medicine, 2016, Article ID: 2071815.
https://doi.org/10.1155/2016/2071815
[9] Yamaguchi, M., Ohta, A., Tsunematsu, T., et al. (1992) Preliminary Criteria for Classification of Adult Still’s Disease. The Journal of Rheumatology, 19, 424-430.
[10] Li, X., Dong, C., Ma, X., et al. (2021) 18F-FDG PET/CT Associates with Disease Activity and Clinical Recurrence of AOSD Patients. Frontiers in Medicine, 8, Article 668323.
[11] Wouters, J.M., van der Veen, J., van de Putte, L.B. and de Rooij, D.J. (1988) Adult Onset Still’s Disease and Viral Infections. Annals of the Rheumatic Diseases, 47, 764-767.
https://doi.org/10.1136/ard.47.9.764
[12] Jia, J., Shi, H., Liu, M., Liu, T., Gu, J., Wan, L., et al. (2019) Cytomegalovirus Infection May Trigger Adult-Onset Still’s Disease Onset or Relapses. Frontiers in Immunology, 10, Article 898.
https://doi.org/10.3389/fimmu.2019.00898
[13] Ukoha, N., Olaosebikan, K., Berchie, P., Ansari, F.A. and Nlandu, Z. (2024) Not All Fevers Equal Infection: A Challenging Case of Adult-Onset Still’s Disease. Cureus, 16, e59968.
https://doi.org/10.7759/cureus.59968
[14] Qudsiya, Z. and Baker, D.L. (2023) The Great Still-Usion: Unmasking Adult-Onset Still’s Disease Masquerading as Upper Respiratory Tract Infection. Cureus, 15, e35880.
https://doi.org/10.7759/cureus.35880
[15] Wang, M., Jia, J., Yang, C. and Hu, Q. (2019) Pathogenesis, Disease Course, and Prognosis of Adult-Onset Still’s Disease: An Update and Review. Chinese Medical Journal, 132, 2856-2864.
https://doi.org/10.1097/cm9.0000000000000538
[16] Ota, T., Higashi, S., Suzuki, H. and Eto, S. (1987) Increased Serum Ferritin Levels in Adult Still’s Disease. The Lancet, 329, 562-563.
https://doi.org/10.1016/s0140-6736(87)90204-2
[17] Zhang, W., Yang, T., Zhang, H., Xu, Y., Yang, Q., Liu, Q., et al. (2021) Biomarker Screening and Validation for the Differentiation of Bloodstream Infection from Adult-Onset Still’s Disease: A Prospective Cohort Study. Cytokine, 146, Article ID: 155642.
https://doi.org/10.1016/j.cyto.2021.155642
[18] Fautrel, B., Le Moël, G., Saint-Marcoux, B., et al. (2001) Diagnostic Value of Ferritin and Glycosylated Ferritin in Adult Onset Still’s Disease. The Journal of Rheumatology, 28, 322-329.
[19] Meng, J., Ma, Y., Jia, J., Wang, M., Teng, J., Shi, H., et al. (2021) Cytokine Storm in Coronavirus Disease 2019 and Adult-Onset Still’s Disease: Similarities and Differences. Frontiers in Immunology, 11, Article 603389.
https://doi.org/10.3389/fimmu.2020.603389
[20] Feist, E., Mitrovic, S. and Fautrel, B. (2018) Mechanisms, Biomarkers and Targets for Adult-Onset Still’s Disease. Nature Reviews Rheumatology, 14, 603-618.
https://doi.org/10.1038/s41584-018-0081-x
[21] Li, S., Zheng, S., Tang, S., Pan, Y., Zhang, S., Fang, H., et al. (2019) Autoinflammatory Pathogenesis and Targeted Therapy for Adult-Onset Still’s Disease. Clinical Reviews in Allergy & Immunology, 58, 71-81.
https://doi.org/10.1007/s12016-019-08747-8
[22] Chu, K., Ou, T., Hung, W., Sung, J., Chen, W., Lin, C., et al. (2022) Mycoplasma Pneumonia Infection Is Associated with an Increased Risk of Systemic Lupus Erythematosus: A Nationwide, Retrospective Cohort Study. Frontiers in Microbiology, 13, Article 815136.
https://doi.org/10.3389/fmicb.2022.815136
[23] Ha, E.K., Kim, J.H., Cha, H.R., Han, B.E., Shin, Y.H., Baek, H., et al. (2023) Investigating the Occurrence of Autoimmune Diseases among Children and Adolescents Hospitalized for Mycoplasma pneumoniae Infections. Frontiers in Immunology, 14, Article 1165586.
https://doi.org/10.3389/fimmu.2023.1165586
[24] Atkinson, T.P., Balish, M.F. and Waites, K.B. (2008) Epidemiology, Clinical Manifestations, Pathogenesis and Laboratory Detection of Mycoplasma pneumoniae Infections. FEMS Microbiology Reviews, 32, 956-973.
https://doi.org/10.1111/j.1574-6976.2008.00129.x
[25] Benedetti, F., Curreli, S. and Zella, D. (2020) Mycoplasmas-Host Interaction: Mechanisms of Inflammation and Association with Cellular Transformation. Microorganisms, 8, Article 1351.
https://doi.org/10.3390/microorganisms8091351
[26] Chi, H., Hong, X., Dai, N., Chen, L., Zhang, H., Liu, H., et al. (2023) The Landscape of Innate and Adaptive Immune Cell Subsets in Patients with Adult-Onset Still’s Disease. Rheumatology, 63, 1987-1997.
https://doi.org/10.1093/rheumatology/kead507
[27] Tsuboi, H., Segawa, S., Yagishita, M., Toko, H., Honda, F., Kitada, A., et al. (2022) Activation Mechanisms of Monocytes/Macrophages in Adult-Onset Still Disease. Frontiers in Immunology, 13, Article 953730.
https://doi.org/10.3389/fimmu.2022.953730
[28] Komiya, A., Matsui, T., Nogi, S., Iwata, K., Futami, H., Takaoka, H., et al. (2012) Neutrophil CD64 Is Upregulated in Patients with Active Adult-Onset Still’s Disease. Scandinavian Journal of Rheumatology, 41, 156-158.
https://doi.org/10.3109/03009742.2011.644325
[29] Ahn, M., Han, J.H., Chwae, Y., Jung, J., Suh, C., Kwon, J.E., et al. (2019) Neutrophil Extracellular Traps May Contribute to the Pathogenesis in Adult-Onset Still Disease. The Journal of Rheumatology, 46, 1560-1569.
https://doi.org/10.3899/jrheum.181058
[30] Jia, J., Wang, M., Meng, J., Ma, Y., Wang, Y., Miao, N., et al. (2022) Ferritin Triggers Neutrophil Extracellular Trap-Mediated Cytokine Storm through Msr1 Contributing to Adult-Onset Still’s Disease Pathogenesis. Nature Communications, 13, Article No. 6804.
https://doi.org/10.1038/s41467-022-34560-7
[31] Kernan, K.F. and Carcillo, J.A. (2017) Hyperferritinemia and Inflammation. International Immunology, 29, 401-409.
https://doi.org/10.1093/intimm/dxx031
[32] Giemza-Stokłosa, J., Islam, M.A. and Kotyla, P.J. (2019) Hyperferritinaemia: An Iron Sword of Autoimmunity. Current Pharmaceutical Design, 25, 2909-2918.
https://doi.org/10.2174/1381612825666190709202804
[33] Into, T., et al. (2007) Synthesis and Characterization of a Dipalmitoylated Lipopeptide Derived from Paralogous Lipoproteins of Mycoplasma pneumoniae. Infection and Immunity, 75, 2253-2259.
[34] Shimizu, T. (2016) Inflammation-Inducing Factors of Mycoplasma pneumoniae. Frontiers in Microbiology, 7, Article 414.
https://doi.org/10.3389/fmicb.2016.00414
[35] Hu, Q., Zhao, Y., Wang, Z., Hou, Y., Bi, D., Sun, J., et al. (2016) Chicken Gga-miR-19a Targets ZMYND11 and Plays an Important Role in Host Defense against Mycoplasma Gallisepticum (HS Strain) Infection. Frontiers in Cellular and Infection Microbiology, 6, Article 102.
https://doi.org/10.3389/fcimb.2016.00102
[36] Into, T., Kiura, K., Yasuda, M., Kataoka, H., Inoue, N., Hasebe, A., et al. (2004) Stimulation of Human Toll-Like Receptor (TLR) 2 and TLR6 with Membrane Lipoproteins of Mycoplasma fermentans Induces Apoptotic Cell Death after NF-κB Activation. Cellular Microbiology, 6, 187-199.
https://doi.org/10.1046/j.1462-5822.2003.00356.x
[37] Su, X., You, X., Luo, H., Liang, K., Chen, L., Tian, W., et al. (2021) Community-Acquired Respiratory Distress Syndrome Toxin: Unique Exotoxin for M. pneumoniae. Frontiers in Microbiology, 12, Article 766591.
https://doi.org/10.3389/fmicb.2021.766591
[38] Bose, S., Segovia, J.A., Somarajan, S.R., Chang, T., Kannan, T.R. and Baseman, J.B. (2014) ADP-Ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS Toxin Regulates Inflammasome Activity. mBio, 5, e02186-14.
https://doi.org/10.1128/mbio.02186-14
[39] Yin, H., Guo, Q., Li, X., Tang, T., Li, C., Wang, H., et al. (2018) Curcumin Suppresses Il-1β Secretion and Prevents Inflammation through Inhibition of the NLRP3 Inflammasome. The Journal of Immunology, 200, 2835-2846.
https://doi.org/10.4049/jimmunol.1701495
[40] Saber, S., Ghanim, A.M.H., El-Ahwany, E. and El-Kader, E.M.A. (2020) Novel Complementary Antitumour Effects of Celastrol and Metformin by Targeting IκBκB, Apoptosis and NLRP3 Inflammasome Activation in Diethylnitrosamine-Induced Murine Hepatocarcinogenesis. Cancer Chemotherapy and Pharmacology, 85, 331-343.
https://doi.org/10.1007/s00280-020-04033-z
[41] Reichert, L.J.M., Keuning, J.J., van Beek, M. and van Rijthoven, A.W.A.M. (1992) Lymph Node Histology Simulating T-Cell Lymphoma in Adult-Onset Still’s Disease. Annals of Hematology, 65, 53-54.
https://doi.org/10.1007/bf01715128
[42] Chen, D.Y., Lan, J.L., Lin, F.J., Hsieh, T.Y. and Wen, M.C. (2004) Predominance of Th1 Cytokine in Peripheral Blood and Pathological Tissues of Patients with Active Untreated Adult Onset Still’s Disease. Annals of the Rheumatic Diseases, 63, 1300-1306.
https://doi.org/10.1136/ard.2003.013680
[43] Sfriso, P., Bindoli, S. and Galozzi, P. (2018) Adult-Onset Still’s Disease: Molecular Pathophysiology and Therapeutic Advances. Drugs, 78, 1187-1195.
https://doi.org/10.1007/s40265-018-0956-9
[44] Woolard, M.D., Hodge, L.M., Jones, H.P., Schoeb, T.R. and Simecka, J.W. (2004) The Upper and Lower Respiratory Tracts Differ in Their Requirement of IFN-γ and IL-4 in Controlling Respiratory Mycoplasma Infection and Disease. The Journal of Immunology, 172, 6875-6883.
https://doi.org/10.4049/jimmunol.172.11.6875
[45] Bodhankar, S., Sun, X., Woolard, M.D. and Simecka, J.W. (2010) Interferon Γ and Interleukin 4 Have Contrasting Effects on Immunopathology and the Development of Protective Adaptive Immunity against Mycoplasma Respiratory Disease. The Journal of Infectious Diseases, 202, 39-51.
https://doi.org/10.1086/653121
[46] Shimojima, Y., Ichikawa, T., Kishida, D., Takamatsu, R. and Sekijima, Y. (2021) Circulating Regulatory T Cells in Adult-Onset Still’s Disease: Focusing on Their Plasticity and Stability. Clinical and Experimental Immunology, 206, 184-195.
https://doi.org/10.1111/cei.13648
[47] Chen, D., Chen, Y., Chen, H., Hsieh, C., Lin, C. and Lan, J. (2010) The Associations of Circulating CD4+CD25high Regulatory T Cells and TGF-β with Disease Activity and Clinical Course in Patients with Adult-Onset Still’s Disease. Connective Tissue Research, 51, 370-377.
https://doi.org/10.3109/03008200903461462
[48] Arlet, J., Le Thi Huong, D., Marinho, A., Amoura, Z., Wechsler, B., Papo, T., et al. (2006) Reactive Haemophagocytic Syndrome in Adult-Onset Still’s Disease: A Report of Six Patients and a Review of the Literature. Annals of the Rheumatic Diseases, 65, 1596-1601.
https://doi.org/10.1136/ard.2005.046904
[49] Galozzi, P., Bindoli, S., Doria, A. and Sfriso, P. (2022) Progress in Biological Therapies for Adult-Onset Still’s Disease. Biologics: Targets and Therapy, 16, 21-34.
https://doi.org/10.2147/btt.s290329
[50] Ruscitti, P., Ursini, F., Cipriani, P., De Sarro, G. and Giacomelli, R. (2017) Biologic Drugs in Adult Onset Still’s Disease: A Systematic Review and Meta-Analysis of Observational Studies. Expert Review of Clinical Immunology, 13, 1089-1097.
https://doi.org/10.1080/1744666x.2017.1375853
[51] Kedor, C., Listing, J., Zernicke, J., Weiß, A., Behrens, F., Blank, N., et al. (2020) Canakinumab for Treatment of Adult-Onset Still’s Disease to Achieve Reduction of Arthritic Manifestation (CONSIDER): Phase II, Randomised, Double-Blind, Placebo-Controlled, Multicentre, Investigator-Initiated Trial. Annals of the Rheumatic Diseases, 79, 1090-1097.
https://doi.org/10.1136/annrheumdis-2020-217155
[52] Kır, S., Özgen, M. and Zontul, S. (2020) Adult‐Onset Still’s Disease and Treatment Results with Tocilizumab. International Journal of Clinical Practice, 75, e13936.
https://doi.org/10.1111/ijcp.13936
[53] Liu, Z., Lv, X. and Tang, G. (2015) Clinical Features and Prognosis of Adult-Onset Still’s Disease: 75 Cases from China. International Journal of Clinical and Experimental Medicine, 8, 16634-16639.
[54] Sfriso, P., Priori, R., Valesini, G., et al. (2016) Adult-Onset Still’s Disease: An Italian Multicentre Retrospective Observational Study of Manifestations and Treatments in 245 Patients. Clinical Rheumatology, 35, 1683-1689.
[55] Kalyoncu, U., Solmaz, D., Emmungil, H., Yazici, A., Kasifoglu, T., Kimyon, G., et al. (2016) Response Rate of Initial Conventional Treatments, Disease Course, and Related Factors of Patients with Adult-Onset Still’s Disease: Data from a Large Multicenter Cohort. Journal of Autoimmunity, 69, 59-63.
https://doi.org/10.1016/j.jaut.2016.02.010