MicroRNA-145与妇科恶性肿瘤关系的研究进展
Research Progress of MicroRNA-145 in Gynecological Malignancies
DOI: 10.12677/jcpm.2025.43323, PDF, HTML, XML,    科研立项经费支持
作者: 王樱霓, 段霄霄:延安大学医学院,陕西 延安;武 磊, 李冰琳:西安市中心医院妇产科,陕西 西安;李亚萍*:西安市中心医院质控科,陕西 西安
关键词: miR-145子宫颈癌卵巢癌子宫内膜癌靶基因miR-145 Cervical Cancer Ovarian Cancer Endometrial Cancer Target Gene
摘要: 微小RNA-145(microRNA-145,miR-145)作为表观遗传调控的重要分子,由宿主基因转录而来,其主要在转录后水平对基因表达进行调控。近年来,肿瘤分子生物学的相关研究揭示了微小RNA(microRNA,miRNA)在癌症进展中的关键作用,其中,miR-145在多数肿瘤中呈现表达下调趋势。作为抑癌基因,它参与调控了包括乳腺癌、前列腺癌、胃癌、结直肠癌及卵巢癌等多种肿瘤的侵袭及转移等恶性生物学行为。妇科三大恶性肿瘤,包括子宫颈癌、卵巢癌及子宫内膜癌,目前尚无有效的筛查方法,确诊时大多已至晚期,严重威胁广大女性的生命健康及生活质量,其高发病率和高死亡率使得预防、早期诊断和有效治疗成为亟待解决的关键问题。研究表明,miR-145在这三类肿瘤中均表达下调,可能参与这些癌症的发生和发展,并对癌细胞的侵袭和转移具有负性调控作用。深入研究miR-145或可推动妇科肿瘤精准医疗的发展。现对miR-145在妇科恶性肿瘤的研究进展进行综述。
Abstract: MicroRNA-145 (miR-145), an important epigenetic regulatory molecule, is transcribed from the host gene and primarily regulates gene expression at the post-transcriptional level. Recent cancer molecular biology research has demonstrated the crucial role of microRNAs (miRNAs) in cancer progression. Notably, miR-145 is downregulated in most tumors. As a tumor suppressor gene, miR-145 is involved in regulating the malignant biological behaviors of various cancers, including breast, prostate, stomach, colorectal, and ovarian cancers. The three major gynecological malignancies, including cervical, ovarian, and endometrial cancers, currently have no effective screening methods, and most patients are diagnosed at an advanced stage, posing a significant threat to women’s health and quality of life. Their high incidence and mortality rates highlight the urgent need for effective prevention, early diagnosis, and treatment. Studies have shown that miR-145 is downregulated in these three types of cancer, suggesting its potential role in cancer development and metastasis. Further research on miR-145 could advance the development of precision medicine for gynecological tumors. This review summarizes the research progress of miR-145 in gynecological malignancies.
文章引用:王樱霓, 段霄霄, 武磊, 李冰琳, 李亚萍. MicroRNA-145与妇科恶性肿瘤关系的研究进展[J]. 临床个性化医学, 2025, 4(3): 118-127. https://doi.org/10.12677/jcpm.2025.43323

1. 引言

子宫颈癌、卵巢癌及子宫内膜癌是严重威胁女性生命健康的常见妇科恶性肿瘤。虽然近年来针对妇科恶性肿瘤的基础研究和临床分析已经取得了显著的进展,但2020年统计数据表明,其发病率和死亡率未见明显改善,是一项亟需攻克的难题[1]。随着分子生物学领域的飞速发展,靶向抗癌策略逐渐成为现代肿瘤治疗的核心方向,可以通过识别肿瘤细胞特有的分子靶标,从而选择性地杀死肿瘤细胞或抑制其生长。有研究表明,miR-145作为重要的表观遗传调控因子,在多种恶性肿瘤细胞中的表达水平显著下调,通过结合多种靶基因,介入相应的信号转导路径,进而调控癌细胞的生长、增殖、侵袭及凋亡[2] [3]。现以miR-145为切入点,综述近年来miR-145与子宫颈癌、卵巢癌及子宫内膜癌关系的研究进展,为其诊断、治疗和预后评估提供新的思路和方法。

2. miR-145的基本特性

2.1. miR-145的分子特性

微小RNA,是非编码小分子RNA,长度通常约为22个核苷酸[4]。这些miRNA分子是由DNA转录而来,但最终产物并不具备蛋白质翻译功能,而是与其靶基因的3'-非翻译区(3'-UTR)发生碱基互补配对,作为调节性RNA在转录后水平动态调控基因或蛋白的表达[5]。miR-145属于miRNA家族中的一员,定位于染色体5q32-33,序列长度为4.08 kb,该序列在进化过程中保持了高度保守性[3]。在基因转录过程中,由于读取DNA模板链的方向不同,miR-145可以产生两种不同的转录产物,即miR-145-3p和miR-145-5p [3]

2.2. miR-145在肿瘤中的作用

MicroRNA在动物和植物中发挥重要调控作用,也参与多种人类癌细胞的发生发展,并调控多种靶基因及信号通路,在细胞分化、增殖、代谢以及疾病发生等过程中都发挥着重要作用[6]。关于miR-145的绝大多数研究倾向于认为它在多种肿瘤中主要发挥抑癌基因的作用,包括前列腺癌[7]、胃癌[8]、结直肠癌[9]及卵巢癌[10]等。本文总结了最近的相关研究,这些研究深入探讨了miR-145在调控妇科恶性肿瘤进展中的作用机制,对于开发新的肿瘤诊断标志物和治疗策略具有重要意义,推动了妇科肿瘤精准医疗的发展。

3. miR-145在妇科恶性肿瘤中的研究

3.1. 子宫颈癌

3.1.1. 流行病学特征

子宫颈癌是指发生于女性子宫颈部的恶性肿瘤,位列女性癌症发病和死亡原因的第四位,2020数据显示全球新发病例数约60.4万例,死亡病例数约34.2万例[1]。子宫颈癌发病高峰年龄段集中在50~54岁,对女性健康构成了严重威胁,已成为一个亟待关注的公共卫生问题[11]。目前临床常用的筛查方法包括人乳头瘤病毒(Human papillomavirus, HPV)检测及细胞学检查,然而,现有筛查手段存在假阳性率高的问题,仍需开发新型分子标志物。

3.1.2. miR-145的分子机制

miRNA在子宫颈癌进展过程中的不同阶段的表达谱不一,作用于多种靶基因和信号通路[12]。Yu等[13]收集了144例确诊、疑似子宫颈癌及宫颈炎患者的宫颈组织标本,用荧光实时定量聚合酶链式反应(Fluorescent real-time quantitative polymerase chain reaction, qRT-PCR)测定出miR-145在子宫颈癌患者中低表达,并得出其表达水平与HPV感染和宫颈肿瘤恶性程度相关。然而,该研究样本量有限,且miR-145作为抑癌基因的具体作用机制尚未明确,因此仍需深入研究以增强结论的可靠性。Ma等[14]得出肌动蛋白结合蛋白1 (Fascin Actin-bundling Protein 1, FSCN1)是miR-145的直接靶标,miR-145可以直接靶向FSCN1抑制子宫颈癌细胞增殖。这表明未来可以通过开发针对miR-145/FSCN1这一通路的药物来抑制子宫颈癌的进展,并通过检测其表达水平来预测子宫颈癌的预后和治疗效果。除此之外,Zhang等[15]指出miR-145/RCAN家族成员3 (RCAN family member 3 Gene, RCAN3)轴在人子宫颈癌细胞中发挥抑癌作用。Torres等[16]指出miR-145靶向肌球蛋白磷酸酶靶亚基1 (myosin phosphatase target subunit 1, MYPT1)抑制子宫颈癌细胞的增殖、迁移和侵袭。Li等[17]证明了miR-145通过靶向Wnt家族成员2B (Wnt Family Member 2B, WNT2B)抑制Wnt/β-catenin通路从而抑制子宫颈癌细胞的增殖、迁移和侵袭。以上三项研究成果均揭示了子宫颈癌进展的潜在分子调控机制,可能作为调节子宫颈癌进展的新型治疗靶点。尽管体外实验表明miR-145能够抑制子宫颈癌细胞的生长,但其在生物体内的有效性和安全性仍需通过体内动物模型的进一步验证。Hu等[18]首次通过体内实验验证了miR-145抑制小鼠宫颈恶性肿瘤的生长,延长小鼠的生存时间,体外实验进一步证实,miR-145通过靶向MYC,抑制肿瘤细胞的增殖、转移及有氧糖酵解过程。该研究为子宫颈癌的治疗提供了潜在靶点,但由于糖代谢过程受到多种复杂调控机制的共同作用,关于miR-145如何抑制有氧糖酵解的具体机制还需要进一步研究。

3.1.3. miR-145的调控网络

近年研究指出,长链非编码RNA (long noncoding RNAs, lncRNA)通过调控miR-145在子宫颈癌的发生发展中具有关键作用。Lv等[19]通过对52例临床样本的体外实验发现,长链非编码RNA铁蛋白重链1假基因3 (long noncoding RNAs ferritin heavy chain1 pseudogene 3, lncRNA FTH1P3)通过靶向miR-145在子宫颈癌中发挥促癌作用。然而该样本量可能无法涵盖子宫颈癌患者中不同种族、年龄、疾病阶段等的多样性,降低研究的统计效力,使得研究结果在统计学上不够显著,难以发现潜在的生物学差异。Wei等[20]揭示了长链非编码RNA尿路上皮癌抗原1 (long noncoding RNAs urothelial carcinoma antigen 1, lncRNA UCA1)通过靶向miR-145促进子宫颈癌细胞的增殖、迁移和侵袭。Hu等[21]证实Kruppel样因子5 (Krüppel-like factor 5, KLF5)诱导长链非编码RNA-抗分化非编码RNA (long noncoding RNAs differentiation Antagonizing Non-Protein Coding RNA, lncRNA DANCR)过表达,通过抑制miR-145-3p靶向E盒结合锌指蛋白1驱动子宫颈癌进展。这些发现共同构建了以miR-145为核心的调控网络,为靶向治疗提供了新方向。然而,虽然上述研究揭示了lncRNA通过调控miR-145影响某些特定信号通路,但这些通路与其他相关通路之间的协同或拮抗作用尚未得到充分研究。同时,目前的研究多局限于体外实验,缺乏体内实验的验证,体外实验虽然可以提供一些初步的机制研究结果,但无法完全模拟体内复杂的生理和病理环境。未来研究需通过多中心大样本队列验证临床相关性,并构建体内动物模型进一步阐明调控机制,以进一步验证结论。

3.1.4. miR-145的治疗潜力

Tong等[22]证实丹参酮ⅡA能够通过上调miR-145促进子宫颈癌细胞凋亡并抑制细胞的增殖。但当前研究局限于体外实验,未来需开展体内动物模型及临床试验,验证丹参酮ⅡA在子宫颈癌治疗中的疗效和安全性。Sikander等[23]首次证实一种雪胆甲素类似物(葫芦素D)可以在体内和体外上调miR-145从而抑制HPV16阳性的子宫颈癌细胞增殖,然而其发挥作用的具体机制还需进一步研究和探索,同时,对于其实际应用还需制定出合理的用药方案。

3.2. 卵巢癌

3.2.1. 流行病学特征

在全球范围内,卵巢癌是女性第八大常见癌症,2020数据显示全球卵巢癌新发病例数约31.4万例,死亡病例数约20.7万例[1]。卵巢癌的发病与多种因素有关。数据显示,卵巢癌的5年生存率约为47 %,其低生存率主要由复发和化疗耐药所致[24]。卵巢癌严重威胁女性健康,但目前尚无有效的筛查方法,许多患者确诊时已至晚期。因此深入研究卵巢癌的发病机制,探寻高特异性和敏感性的生物标志物至关重要,这将有助于卵巢癌的早期发现、诊断及治疗。

3.2.2. miR-145的分子机制

研究表明,miR-145在卵巢癌细胞中呈现显著表达下调,其通过多靶点调控网络抑制肿瘤细胞增殖、迁移及侵袭[25] [26]。在遗传学层面,一项荟萃分析表明,miR-145簇内的rs4705342对癌症具有保护作用[27]。Zhao等[28]通过研究证实rs4705342可能通过调控miR-145的表达影响卵巢癌发生发展及患者预后。在功能机制层面,Hua等[29]利用体外实验得出过表达miR-145能够显著抑制卵巢癌细胞的增殖、迁移和侵袭能力,通过双荧光素酶报告实验结果显示细胞周期蛋白D2 (Cyclin D2, CCND2)和E2F转录因子3 (E2F transcription factor 3 Gene, E2F3)为miR-145的靶基因,证实miR-145靶向CCND2和E2F3诱导卵巢癌细胞周期阻滞。Zhou等[30]通过体外实验证实miR-145-5p靶向SMAD家族成员4 (SMAD family member 4 Gene, SMAD4)抑制卵巢癌细胞的增殖和侵袭,并促进细胞死亡。Wu等[31]通过体外实验证实miR-145-5p直接靶向NUAK家族激酶1 (NUAK family kinase 1 Gene, ARK5)抑制卵巢癌进展。Li等[32]的体外研究表明,miR-145与YTHDF2蛋白之间存在负反馈环路,miR-145靶向YTHDF2蛋白进而影响6-甲基腺嘌呤(m6A) mRNA水平,抑制卵巢癌细胞的侵袭及转移能力。Zhao等[33]通过体内实验和体外实验首次发现miR-145直接靶向ADP核糖基化因子样GTPase 5B (ADP ribosylation factor like GTPase 5B Gene, ARL5B)抑制卵巢癌细胞的线粒体功能。Wang等[34]利用体内实验证实miR-145通过调控Mmp-2/Mmp-9的表达发挥抗肿瘤作用。上述研究指出了miR-145的8个直接靶点,但其上游调控机制及转录因子网络仍不明确,现有的研究多局限于单一信号通路,而忽略了肿瘤发生发展中涉及的多种复杂信号通路的相互作用。且当前研究多依赖于二维细胞模型,未来仍需构建体内动物模型验证结论的准确性,并通过构建器官模型模拟肿瘤微环境揭示肿瘤异质性对miR-145功能的影响。卵巢肿瘤的种类繁多,不同卵巢癌亚型中miR-145的功能差异尚未明确指出,未来需结合单细胞测序技术深入研究,为了解卵巢癌的分子病理提供了更充分的理论依据,有利于开发RNA靶向治疗。

3.2.3. miR-145的调控网络

相关研究表明环状RNA (circular RNAs, circRNA)和LncRNA通过“分子海绵”效应动态调控miR-145活性,参与调控肿瘤细胞生物学行为,其作用机制大致分为促癌网络及抑癌网络两部分。Zong等[35]用qRT-PCR法检测出环状Wolf-Hirschhorn综合征候选基因1 (circular RNAs Wolf-Hirschhorn syndrome candidate gene 1, circ-WHSC1)在卵巢癌细胞中高表达,进一步证实circ-WHSC1可以靶向miR-145/MUC1蛋白轴促进卵巢癌细胞的增殖和侵袭,并建立了小鼠模型验证该结果的准确性。Pan等[36]选取卵巢癌组织样本进行研究,首次证明了circ_0015756通过吸附miR-145-5p上调磷酸丝氨酸氨基转移酶1 (phosphoserine aminotransferase 1 Gene, PSAT1)的表达从而促进卵巢癌进展。Li等[37]研究发现hsa_circ_0009910可以负调控miR-145,从而诱导卵巢癌细胞增殖,但其相互作用机制仍有待研究。长链非编码ROR [38] (Regulator Of Reprogramming, LncRNA ROR)、LncRNA DANCR [39]及长链非编码小核仁RNA宿主基因1 [40] (The small nucleolar RNA host gene 1, LncRNA SNHG1)在卵巢癌细胞和组织中表达上调,可作为一种“海绵体”吸附miR-145,促进卵巢癌细胞增殖、分化及凋亡等过程。除此之外,Hu等[41]研究证实环状RNA瘙痒E3泛素连接酶(Circular RNA itchy E3 ubiquitin protein ligase, circ-ITCH)可靶向miR-145/RAS p21蛋白激活因子1 (RAS p21 protein activator 1 Gene, RASA1)轴在体内外抑制卵巢癌细胞的恶性进展。这些发现填补了circRNA及LncRNA在卵巢癌发病机制中的知识空白,但其抑癌作用在体内是否同样存在以及如何发挥作用仍需进一步验证,为卵巢癌患者的诊断及靶向治疗提供更可靠的分子理论依据。

3.2.4. miR-145的治疗潜力

针对miR-145作用机制的探索,目前临床上已出现多种药物。Lu等[42]研究发现常用的麻醉药物丙泊酚通过抑制circVPS13C上调卵巢癌细胞中miR-145的表达,且丙泊酚下调卵巢癌细胞MEK和ERK的磷酸化水平,揭示了丙泊酚通过circVPS13C/miR-145/MEK/ERK通路在体外抑制卵巢癌进展。该研究为丙泊酚在抗肿瘤方面的应用提供了新的视角,预示着丙泊酚可能成为卵巢癌的一种潜在替代或辅助治疗手段。然而,该信号通路在卵巢癌肿瘤生长中的具体体内作用机制仍需进一步深入研究。黄连素(小檗碱)通过靶向miR-145/MMP16轴[43]或miR-145/己糖激酶2 (Hexokinases 2, HK2)轴[44]抑制卵巢癌进展。Li等[45]研究发现人参皂苷Rg3通过DNA甲基转移酶3α (DNA methyltransferase 3 alpha Gene, DNMT3A)/miR-145/肌成束蛋白肌动蛋白结合蛋白1 (fascin actin-bundling protein 1 Gene, FSCN1)轴抑制卵巢癌进展。该研究为黄连素及人参皂苷Rg3成为临床治疗卵巢癌的候选药物奠定了理论基础,但目前其应用仍处于临床前研究阶段,尚未大规模进入临床使用。同时相关研究表明[46] [47],二甲双胍能够促进卵巢癌细胞中miR-145表达上调,意味着二甲双胍可能是卵巢癌的一种补充疗法,但该研究结果仍需要进一步证实并积极探索二甲双胍在卵巢癌治疗中的最佳用药方案和作用机制。顺铂作为卵巢癌常用的化疗药物,研究表明[48] [49],上调miR-145能够抑制卵巢癌细胞对顺铂耐药,揭示miR-145可能作为卵巢癌化疗的辅助治疗靶点,但是具体机制仍有待深入探讨。随着分子生物技术的进步,Salas-Huenuleo等[50]设计并合成了一种携带miR-145的金纳米平台,能够显著抑制卵巢癌细胞的活力和迁移,其为使用纳米颗粒作为有效载体开发基于miRNA的疗法提供了重要依据,可以通过精确调控miRNA的递送和释放,实现对卵巢癌的有效治疗。

3.3. 子宫内膜癌

3.3.1. 流行病学特征

子宫内膜癌是发生于子宫内膜的一组上皮性恶性肿瘤,近年来发病率在世界范围内呈上升趋势[51]。在全球范围内,子宫内膜癌是女性第六大常见癌症,2020数据显示全球子宫内膜癌新发病例数约41.7万例,死亡病例数约9.7万例[1]。对于早期病变,主要的治疗方法是手术治疗,又根据疾病的分期和其他危险因素,进行术后辅助放化疗;晚期疾病目前无法治愈,可采取化疗、靶向治疗及内分泌治疗等多种手段[52]。尽管采取了上述治疗,但数据显示子宫内膜癌的预后仍有待改善[53]

3.3.2. miR-145的诊断潜力及种族异质性

潘等[54]选择了84 例子宫内膜癌患者为研究组及51例子宫肌瘤患者为对照组,采用qRT-PCR技术发现子宫内膜癌患者血清中miR-145表达水平低于子宫肌瘤患者组,通过统计学分析,进一步证实了miR-145在子宫内膜癌患者血清中的表达下调趋势,且这种下调与子宫内膜癌的病情进展密切相关,这表明miR-145在子宫内膜癌的早期诊断及病情预测方面有一定的潜在价值。然而,关于miR-145在子宫内膜癌中的具体作用机制,仍有待进一步深入研究。Wang等[55]进一步揭示了miR-145表达具有民族特异性,检测维吾尔族与汉族女性子宫内膜癌中miR-145的表达,发现在维吾尔族与汉族女性子宫内膜癌中miR-145的表达特点相反,在维吾尔族表达升高,在汉族显著降低(差异具有统计学意义),但两者均通过不同机制发挥抑癌作用,提示遗传背景对miRNA功能的调控需纳入临床解读体系。然而,上述研究临床样本量较小,且miR-145的种族差异机制尚未阐明,未来仍需开展大样本下多民族队列研究验证诊断效能。例如:在数据收集过程中,要确保所有中心遵循统一的实验和数据采集标准,不仅要关注遗传因素,还要考虑外在因素(如环境、气候、文化等)对研究结果可能产生的影响,最后将不同种族的样本作为亚组进行单独分析,确保分析结果的肯定性。

3.3.3. miR-145的分子机制

门等[56]利用qRT-PCR法检测子宫内膜癌细胞及过表达miR-145-5p的细胞中双特异性磷酸酶6 (dual specificity phosphatase 6 Gene, DUSP6)的表达水平,在过表达miR-145-5p的组中,DUSP6表达水平显著升高。进一步通过一系列体外研究证实,过表达miR-145-5p能够有效抑制子宫内膜癌细胞的增殖、迁移及侵袭能力,并促进癌细胞的凋亡。本研究首次证明了过表达miR-145-5p能够抑制DUSP6的表达,且两者之间呈现显著的负向相关关系,这一发现进一步表明,miR-145通过直接靶向DUSP6来抑制子宫内膜癌细胞的增殖、迁移及侵袭,并促进癌细胞凋亡过程。Lei等[57]通过体外研究得出miR-145通过靶向抑制SRY-Box转录因子11 (SRY-box transcription factor 11 Gene, SOX11)抑制子宫内膜癌细胞的增殖和转移,该项研究结果表明miR-145和SOX11可能作为EC的新的治疗药物。然而,上述研究多局限于单基因层面,且仅考虑了体外实验的数据,未来仍需要通过构建器官模型解析靶基因的下游信号通路。

3.3.4. miR-145的调控网络

CircRNA和LncRNA也可以参与子宫内膜癌的发生进展。Sun等[58]用qRT-PCR法检测出在顺铂耐药的子宫内膜癌组织和细胞中,circ_0005667和胰岛素样生长因子2mRNA结合蛋白1 (insulin like growth factor 2 mRNA binding protein 1 Gene, IGF2BP1)水平显著升高,而miR-145-5p表达水平下调,敲低circ_0005667可以促进顺铂敏感性和细胞凋亡,预测出circ_0005667含有miR-145-5p的互补区域,通过双荧光素酶报告基因实验证实IGF2BP1是miR-145-5p的靶基因,表明circ_0005667通过吸附miR-145-5p上调IGF2BP1增强子宫内膜癌对顺铂的耐药性,并通过体内实验得出沉默circ_0005667可提高体内肿瘤对顺铂的敏感性。circ_0005667/miR-145-5p/IGF2BP1的调控通路的提出为子宫内膜癌的顺铂耐药提供了一种新的治疗策略,然而,该研究选取的子宫内膜癌细胞系较少,需研究更多的细胞系增强结果的准确性。Ying等[59]揭示LINC00958在子宫内膜癌中表达水平显著上调,敲低之后可抑制体外及体内癌细胞增殖和转移,其与miR-145-3p之间存在潜在的结合位点,且miR-145-3p可以靶向调控转录因子4 (transcription factor 4 Gene, TCF4),表明LINC00958通过调控miR-145-3p/TCF4轴促进子宫内膜癌细胞增殖和转移。该通路的发现有助于揭示子宫内膜癌的发生发展机制,并为其提供了一种有前途的治疗策略。

3.3.5. miR-145的激素调控

Yuan等[60]先前的研究发现miR-145可以直接受孕激素的调控参与对子宫内膜上皮细胞的抗增殖作用。为了进一步研究其作用机制,Yuan等[61]进一步得出孕激素可以通过作用于孕激素受体A亚型诱导子宫内膜上皮细胞中miR-145的表达,并通过双荧光素酶报告基因实验验证CCND2是miR-145的靶基因,得出孕激素靶向miR-145/CCND2抑制子宫内膜上皮细胞增殖,这一过程涉及多个分子的相互作用,为内分泌治疗联合RNA靶向干预提供了理论依据。

4. 总结与展望

近年来,miR-145在妇科恶性肿瘤的调控作用逐渐成为研究热点。众多研究证实,miR-145作为一种关键的表观遗传调控因子,在子宫颈癌、卵巢癌和子宫内膜癌中呈现表达沉默状态,它能通过靶向多种与肿瘤相关生物因子,有效抑制肿瘤细胞的恶性表型,并具备逆转肿瘤细胞耐药性的潜力,进而实现肿瘤治疗的目的。同时miR-145还可与非编码RNA (如circRNA、lncRNA)相互作用,进一步揭示了其在肿瘤微环境中的复杂调控机制,有助于我们更全面地理解肿瘤的发生和发展过程,为肿瘤的多靶点联合干预提供了理论依据。然而,目前的研究仍存在局限性:1) miR-145的靶基因在不同肿瘤中具有异质性,且其上游及下游调控机制仍未完全得到验证。未来需要结合转录组学、蛋白质组学和代谢组学等多组学技术,全面解析miR-145在不同肿瘤中的靶基因网络,并对预测的靶基因进行功能验证,明确其在肿瘤发生发展中的具体作用;2) 目前的研究多局限于体外研究,缺乏体内实验及临床数据支持。未来需要加大建立肿瘤动物模型验证miR-145在妇科肿瘤中的作用,并通过开展基于miR-145的临床试验,探索其作为治疗靶点的可行性。3) miR-145在宫颈癌及卵巢癌中是否存在种族差异性尚未有研究指出。未来需要开展不同种族人群的多中心研究,并进一步研究不同种族中miR-145的表观遗传调控机制。随着分子生物技术的蓬勃发展,目前针对miR-145的研究正从基础机制向临床转化迈进,例如通过纳米递送系统(如金纳米颗粒)或天然化合物(如葫芦素D、黄连素)等恢复或增miR-145的表达水平,可以抑制肿瘤的进展。通过以上策略,可以有效突破当前miR-145研究的局限性,推动其从基础研究向临床应用的转化。综上所述,通过深入研究miR-145特有的分子靶标及作用通路,有助于我们进一步了解妇科恶性肿瘤的病理机制,有望为肿瘤的精准治疗开辟新路径,体现了个体化治疗与分子靶向技术深度融合的医学发展趋势。

基金项目

西安市卫生健康委员会科研项目(编号:2023yb03);西安市中心医院科研基金资助计划项目(编号:2024-YB05)。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Kadkhoda, S. and Ghafouri-Fard, S. (2022) Function of miRNA-145-5p in the Pathogenesis of Human Disorders. PathologyResearch and Practice, 231, Article ID: 153780.
https://doi.org/10.1016/j.prp.2022.153780
[3] Ye, D., Shen, Z. and Zhou, S. (2019) Function of MicroRNA-145 and Mechanisms Underlying Its Role in Malignant Tumor Diagnosis and Treatment. Cancer Management and Research, 11, 969-979.
https://doi.org/10.2147/cmar.s191696
[4] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/s0092-8674(04)00045-5
[5] Sy, Y., Dc, C. and Sl, L. (2018) The MicroRNA. Methods in Molecular Biology, 2018, 1733.
[6] Hill, M. and Tran, N. (2021) Mirna Interplay: Mechanisms and Consequences in Cancer. Disease Models & Mechanisms, 14, dmm047662.
https://doi.org/10.1242/dmm.047662
[7] Sun, J., Deng, L. and Gong, Y. (2021) miR-145-5p Inhibits the Invasion of Prostate Cancer and Induces Apoptosis by Inhibiting Wip1. Journal of Oncology, 2021, Article ID: 4412705.
https://doi.org/10.1155/2021/4412705
[8] 彭伟辉, 黄江生, 段伦喜, 等. MiRNA-145调控靶基因c-myc抑制胃癌增殖、侵袭[J]. 医学研究杂志, 2018, 47(5): 60-64.
[9] Sheng, N., Tan, G., You, W., Chen, H., Gong, J., Chen, D., et al. (2017) miR‐145 Inhibits Human Colorectal Cancer Cell Migration and Invasion via Pak4‐Dependent Pathway. Cancer Medicine, 6, 1331-1340.
https://doi.org/10.1002/cam4.1029
[10] Zhao, L., Liang, X., Wang, L. and Zhang, X. (2022) The Role of miRNA in Ovarian Cancer: An Overview. Reproductive Sciences, 29, 2760-2767.
https://doi.org/10.1007/s43032-021-00717-w
[11] Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay, J., et al. (2020) Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis. The Lancet Global Health, 8, e191-e203.
https://doi.org/10.1016/s2214-109x(19)30482-6
[12] Shen, S., Zhang, S., Liu, P., Wang, J. and Du, H. (2020) Potential Role of MicroRNAs in the Treatment and Diagnosis of Cervical Cancer. Cancer Genetics, 248, 25-30.
https://doi.org/10.1016/j.cancergen.2020.09.003
[13] Yu, F., Liu, J., Dong, W., et al. (2021) The Diagnostic Value of miR-145 and miR-205 in Patients with Cervical Cancer. American Journal of Translational Research, 13, 1825-1832.
[14] Ma, L. and Li, L. (2019) miR-145 Contributes to the Progression of Cervical Carcinoma by Directly Regulating FSCN1. Cell Transplantation, 28, 1299-1305.
https://doi.org/10.1177/0963689719861063
[15] Zhang, X., Ma, H., Li, J., Lu, X., Li, J., Yuan, N., et al. (2020) Functional Implications of miR-145/RCAN3 Axis in the Progression of Cervical Cancer. Reproductive Biology, 20, 140-146.
https://doi.org/10.1016/j.repbio.2020.04.001
[16] González-Torres, A., Bañuelos-Villegas, E.G., Martínez-Acuña, N., Sulpice, E., Gidrol, X. and Alvarez-Salas, L.M. (2018) MYPT1 Is Targeted by miR-145 Inhibiting Viability, Migration and Invasion in 2D and 3D Hela Cultures. Biochemical and Biophysical Research Communications, 507, 348-354.
https://doi.org/10.1016/j.bbrc.2018.11.039
[17] Li, Q., Yu, X. and Yang, L. (2019) miR-145 Inhibits Cervical Cancer Progression and Metastasis by Targeting wnt2b by wnt/β-Catenin Pathway. International Journal of Clinical and Experimental Pathology, 12, 3740-3751.
[18] Hu, C., Liu, T., Zhang, W., Sun, Y., Jiang, D., Zhang, X., et al. (2023) miR‐145 Inhibits Aerobic Glycolysis and Cell Proliferation of Cervical Cancer by Acting on MYC. The FASEB Journal, 37, e22839.
https://doi.org/10.1096/fj.202201189rr
[19] Lv, R. and Zhang, Q. (2019) The Long Noncoding RNA FTH1P3 Promotes the Proliferation and Metastasis of Cervical Cancer through MicroRNA-145. Oncology Reports, 43, 31-40.
https://doi.org/10.3892/or.2019.7413
[20] Wei, H., Qiu, Y.Q., Zeng, Q.S., et al. (2020) LncRNA UCA1 Regulates Proliferation, Migration and Invasion of Cervical Cancer Cells by Targeting miR-145. European Review for Medical and Pharmacological Sciences, 24, 3555-3564.
[21] Hu, C., Han, Y., Zhu, G., Li, G. and Wu, X. (2021) Krüppel-Like Factor 5-Induced Overexpression of Long Non-Coding RNA DANCR Promotes the Progression of Cervical Cancer via Repressing MicroRNA-145-3p to Target ZEB1. Cell Cycle, 20, 1441-1454.
https://doi.org/10.1080/15384101.2021.1941625
[22] Tong, W., Guo, J. and Yang, C. (2020) Tanshinone II a Enhances Pyroptosis and Represses Cell Proliferation of HeLa Cells by Regulating miR-145/GSDMD Signaling Pathway. Bioscience Reports, 40, BSR20200259.
https://doi.org/10.1042/bsr20200259
[23] Sikander, M., Hafeez, B.B., Malik, S., Alsayari, A., Halaweish, F.T., Yallapu, M.M., et al. (2016) Cucurbitacin D Exhibits Potent Anti-Cancer Activity in Cervical Cancer. Scientific Reports, 6, Article No. 13594.
https://doi.org/10.1038/srep36594
[24] Torre, L.A., Trabert, B., DeSantis, C.E., Miller, K.D., Samimi, G., Runowicz, C.D., et al. (2018) Ovarian Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 284-296.
https://doi.org/10.3322/caac.21456
[25] Zuberi, M. (2020) The Promising Signatures of Circulating MicroRNA-145 in Epithelial Ovarian Cancer Patients. MicroRNA, 9, 49-57.
https://doi.org/10.2174/22115374oty4amzkntcvy
[26] González-Cantó, E., Monteiro, M., Aghababyan, C., Ferrero-Micó, A., Navarro-Serna, S., Mellado-López, M., et al. (2024) Reduced Levels of miR-145-3p Drive Cell Cycle Progression in Advanced High-Grade Serous Ovarian Cancer. Cells, 13, Article 1904.
https://doi.org/10.3390/cells13221904
[27] Harati-Sadegh, M., Sargazi, S., Saravani, M., Sheervalilou, R., Mirinejad, S. and Saravani, R. (2021) Relationship between miR-143/145 Cluster Variations and Cancer Risk: Proof from a Meta-Analysis. Nucleosides, Nucleotides & Nucleic Acids, 40, 578-591.
https://doi.org/10.1080/15257770.2021.1916030
[28] Zhao, J., Zuo, W., Zhang, Y., He, C., Zhao, W. and Meng, T. (2023) The Polymorphism Rs4705342 in the Promoter of miR-143/145 Is Related to the Risk of Epithelial Ovarian Cancer and Patient Prognosis. Frontiers in Oncology, 13, Article 1122284.
https://doi.org/10.3389/fonc.2023.1122284
[29] Hua, M., Qin, Y., Sheng, M., Cui, X., Chen, W., Zhong, J., et al. (2019) miR-145 Suppresses Ovarian Cancer Progression via Modulation of Cell Growth and Invasion by Targeting CCND2 and E2F3. Molecular Medicine Reports, 19, 3575-3583.
https://doi.org/10.3892/mmr.2019.10004
[30] Zhou, J., Zhang, X., Li, W. and Chen, Y. (2020) MicroRNA-145-5p Regulates the Proliferation of Epithelial Ovarian Cancer Cells via Targeting SMAD4. Journal of Ovarian Research, 13, Article No. 54.
https://doi.org/10.1186/s13048-020-00656-1
[31] Wu, L., Zhou, W.Q., Yuan, L.N., et al. (2021) [Role of miR-145-5p Targeting ARK5 in Regulating the Proliferation and Apoptosis of Human Epithelial Ovarian Cancer Cells]. Acta Academiae Medicinae Sinicae, 43, 669-676.
[32] Li, J., Wu, L., Pei, M. and Zhang, Y. (2020) YTHDF2, a Protein Repressed by miR-145, Regulates Proliferation, Apoptosis, and Migration in Ovarian Cancer Cells. Journal of Ovarian Research, 13, Article No. 111.
https://doi.org/10.1186/s13048-020-00717-5
[33] Zhao, S., Zhang, Y., Pei, M., Wu, L. and Li, J. (2021) miR-145 Inhibits Mitochondrial Function of Ovarian Cancer by Targeting ARL5B. Journal of Ovarian Research, 14, Article No. 8.
https://doi.org/10.1186/s13048-020-00762-0
[34] Wang, M. and Zhang, S. (2022) miR-145 on the Proliferation of Ovarian Cancer Cells by Regulating the Expression of MMP-2/MMP-9. Cellular and Molecular Biology, 67, 141-148.
https://doi.org/10.14715/cmb/2021.67.6.19
[35] Zong, Z., Du, Y., Guan, X., Chen, S. and Zhao, Y. (2019) CircWHSC1 Promotes Ovarian Cancer Progression by Regulating MUC1 and hTERT through Sponging miR-145 and miR-1182. Journal of Experimental & Clinical Cancer Research, 38, Article No. 437.
https://doi.org/10.1186/s13046-019-1437-z
[36] Pan, Y., Huang, Q., Peng, X., Yu, S. and Liu, N. (2022) Circ_0015756 Promotes Ovarian Cancer Progression via the miR-145-5p/PSAT1 Axis. Reproductive Biology, 22, Article ID: 100702.
https://doi.org/10.1016/j.repbio.2022.100702
[37] Li, Y., Lin, S. and An, N. (2020) Hsa_circ_0009910: Oncogenic Circular RNA Targets microRNA-145 in Ovarian Cancer Cells. Cell Cycle, 19, 1857-1868.
https://doi.org/10.1080/15384101.2020.1731650
[38] Zhang, Lei, J.L.S. and Pei, M. (2019) Interaction between LncRNA-ROR and miR-145 Contributes to Epithelial-Mesenchymal Transition of Ovarian Cancer Cells. General physiology and biophysics, 38, 461-471.
https://doi.org/10.4149/gpb_2019028
[39] Lin, X., Yang, F., Qi, X., Li, Q., Wang, D., Yi, T., et al. (2019) LncRNA DANCR Promotes Tumor Growth and Angiogenesis in Ovarian Cancer through Direct Targeting of miR‐145. Molecular Carcinogenesis, 58, 2286-2296.
https://doi.org/10.1002/mc.23117
[40] Gong, R.L. (2020) LncRNA SNHG1 Acts as an Oncogene through Regulating miR-145-5p in Ovarian Cancer. Journal of Biological Regulators and Homeostatic Agents, 34, 1077-1083.
https://doi.org/10.23812/20-179-l-3
[41] Hu, J., Wang, L., Chen, J., Gao, H., Zhao, W., Huang, Y., et al. (2018) The Circular RNA Circ-Itch Suppresses Ovarian Carcinoma Progression through Targeting miR-145/RASA1 Signaling. Biochemical and Biophysical Research Communications, 505, 222-228.
https://doi.org/10.1016/j.bbrc.2018.09.060
[42] Lu, H., Zheng, G., Gao, X., Chen, C., Zhou, M. and Zhang, L. (2021) Propofol Suppresses Cell Viability, Cell Cycle Progression and Motility and Induces Cell Apoptosis of Ovarian Cancer Cells through Suppressing MEK/ERK Signaling via Targeting circVPS13C/miR-145 Axis. Journal of Ovarian Research, 14, Article No. 30.
https://doi.org/10.1186/s13048-021-00775-3
[43] Li, J., Zhang, S., Wu, L., Pei, M. and Jiang, Y. (2021) Berberine Inhibited Metastasis through miR-145/MMP16 Axis in Vitro. Journal of Ovarian Research, 14, Article No. 30.
https://doi.org/10.1186/s13048-020-00752-2
[44] Li, J., Zou, Y., Pei, M., Zhang, Y. and Jiang, Y. (2021) Berberine Inhibits the Warburg Effect through TET3/miR-145/HK2 Pathways in Ovarian Cancer Cells. Journal of Cancer, 12, 207-216.
https://doi.org/10.7150/jca.48896
[45] Li, J., Lu, J., Ye, Z., Han, X., Zheng, X., Hou, H., et al. (2017) 20(s)-Rg3 Blocked Epithelial-Mesenchymal Transition through DNMT3A/miR-145/FSCN1 in Ovarian Cancer. Oncotarget, 8, 53375-53386.
https://doi.org/10.18632/oncotarget.18482
[46] Garrido, M.P., Torres, I., Avila, A., Chnaiderman, J., Valenzuela-Valderrama, M., Aramburo, J., et al. (2020) NGF/TRKA Decrease miR-145-5p Levels in Epithelial Ovarian Cancer Cells. International Journal of Molecular Sciences, 21, Article 7657.
https://doi.org/10.3390/ijms21207657
[47] Garrido, M.P., Salvatierra, R., Valenzuela-Valderrama, M., Vallejos, C., Bruneau, N., Hernández, A., et al. (2020) Metformin Reduces NGF-Induced Tumour Promoter Effects in Epithelial Ovarian Cancer Cells. Pharmaceuticals, 13, Article 315.
https://doi.org/10.3390/ph13100315
[48] Sheng, Q., Zhang, Y., Wang, Z., Ding, J., Song, Y. and Zhao, W. (2019) Cisplatin-Mediated Down-Regulation of Mir-145 Contributes to Up-Regulation of PD-L1 via the C-MYC Transcription Factor in Cisplatin-Resistant Ovarian Carcinoma Cells. Clinical and Experimental Immunology, 200, 45-52.
https://doi.org/10.1111/cei.13406
[49] 丁照黎, 谷见法, 张飞翔. MiRNA-145过表达增强卵巢癌顺铂化疗敏感性的机制分析[J]. 癌症进展, 2020, 18(9): 907-912.
[50] Salas-Huenuleo, E., Hernández, A., Lobos-González, L., Polakovičová, I., Morales-Zavala, F., Araya, E., et al. (2022) Peptide Targeted Gold Nanoplatform Carrying miR-145 Induces Antitumoral Effects in Ovarian Cancer Cells. Pharmaceutics, 14, Article 958.
https://doi.org/10.3390/pharmaceutics14050958
[51] Henley, S.J., Ward, E.M., Scott, S., Ma, J., Anderson, R.N., Firth, A.U., et al. (2020) Annual Report to the Nation on the Status of Cancer, Part I: National Cancer Statistics. Cancer, 126, 2225-2249.
https://doi.org/10.1002/cncr.32802
[52] Brooks, R.A., Fleming, G.F., Lastra, R.R., Lee, N.K., Moroney, J.W., Son, C.H., et al. (2019) Current Recommendations and Recent Progress in Endometrial Cancer. CA: A Cancer Journal for Clinicians, 69, 258-279.
https://doi.org/10.3322/caac.21561
[53] Svanvik, T., Sundfeldt, K., Strömberg, U., Holmberg, E. and Marcickiewicz, J. (2017) Population‐Based Cohort Study of the Effect of Endometrial Cancer Classification and Treatment Criteria on Long‐Term Survival. International Journal of Gynecology & Obstetrics, 138, 183-189.
https://doi.org/10.1002/ijgo.12214
[54] 潘淑敏, 王艳虹, 姚志芹, 等. 子宫内膜癌患者血清miR-145、mir-200a及mir-181c表达水平及其临床意义[J]. 实用癌症杂志, 2024, 39(5): 749-752.
[55] Wang, X., He, D., Li, W.T., et al. (2020) [Characteristic and Clinical Significance of microRNA Expression between 144 Uygur and Han Women with Endometrial Carcinoma]. Journal of Peking University. Health Sciences, 52, 570-577.
[56] 门颖超, 张蕾, 艾浩. MiR-145-5p靶向双特异性磷酸酶6对人子宫内膜癌增殖、迁移、侵袭与凋亡的影响[J]. 南方医科大学学报, 2020, 40(1): 61-66.
[57] Chang, L., Yuan, Z., Shi, H., et al. (2017) miR-145 Targets the Sox11 3’utr to Suppress Endometrial Cancer Growth. American Journal of Cancer Research, 7, 2305-2317.
[58] Sun, G., Tian, J., Xiao, Y. and Zeng, Y. (2022) Circular RNA Circ_0005667 Promotes Cisplatin Resistance of Endometrial Carcinoma Cells by Regulating IGF2BP1 through miR-145-5p. Anti-Cancer Drugs, 34, 816-826.
https://doi.org/10.1097/cad.0000000000001479
[59] Jiang, Y., Qiao, Z., Jiang, J. and Zhang, J. (2021) LINC00958 Promotes Endometrial Cancer Cell Proliferation and Metastasis by Regulating the miR‐145‐3p/TCF4 Axis. The Journal of Gene Medicine, 23, e3345.
https://doi.org/10.1002/jgm.3345
[60] Yuan, D., Yu, L., Qu, T., Zhang, S., Zhao, Y., Pan, J., et al. (2015) Identification and Characterization of Progesterone-and Estrogen-Regulated MicroRNAs in Mouse Endometrial Epithelial Cells. Reproductive Sciences, 22, 223-234.
https://doi.org/10.1177/1933719114537714
[61] Yuan, D., Lei, Y., Zhao, D., Pan, J., Zhao, Y., Nie, L., et al. (2019) Progesterone-Induced miR-145/miR-143 Inhibits the Proliferation of Endometrial Epithelial Cells. Reproductive Sciences, 26, 233-243.
https://doi.org/10.1177/1933719118768687