充血性心力衰竭生物标志物研究进展
Advancements in Biomarkers for Congestive Heart Failure
DOI: 10.12677/jcpm.2025.43325, PDF, HTML, XML,   
作者: 孙 娜:济宁医学院临床医学院,山东 济宁;尉希清*:济宁医学院附属医院心内科,山东 济宁
关键词: 充血心力衰竭生物标志物诊断预后Congestion Heart Failure Biomarkers Diagnosis Prognosis
摘要: 心力衰竭是由心肌损伤、心脏前后负荷增大、炎性反应以及神经内分泌系统失调等多种原因导致的心脏结构或功能异常,是许多心血管疾病发展的终末阶段。尽管随着医疗水平的不断进步,心血管疾病的治疗策略得到巨大改进,但心力衰竭在世界范围内的发病率和死亡率仍然居高不下,对其进行早期诊断对治疗及改善预后至关重要。反映心力衰竭发生发展过程的病理生理途径中产生了一系列的循环生物标志物,这些生物标志物可以作为心力衰竭的诊断指标,并为后续治疗和评估预后提供指导依据。此文就心力衰竭生物标志物的研究进展进行综述。
Abstract: Heart failure is a manifestation of cardiac structural or functional abnormalities resulting from various etiologies, including myocardial injury, increased cardiac workload, inflammatory response, and neuroendocrine system disorders. It represents the advanced stage of numerous cardiovascular diseases. Despite significant advancements in treatment strategies for cardiovascular diseases, heart failure continues to exhibit high global morbidity and mortality rates. Therefore, early diagnosis plays a crucial role in guiding treatment interventions and improving prognosis. Pathophysiological pathways give rise to a series of circulating biomarkers that reflect the onset and progression of heart failure. These biomarkers serve as diagnostic indicators for heart failure and offer valuable insights for subsequent treatment decisions and prognostic assessments. This article provides an overview of recent research progress on heart failure biomarkers.
文章引用:孙娜, 尉希清. 充血性心力衰竭生物标志物研究进展[J]. 临床个性化医学, 2025, 4(3): 137-144. https://doi.org/10.12677/jcpm.2025.43325

1. 引言

心力衰竭(Heart failure, HF)是一组以心脏不能泵出足够的血液和氧气来支持其他器官代谢需求为特征的心血管综合征,伴随着功能能力、生活质量的下降和大量的医疗保健支出[1]。心力衰竭主要表现为急性心衰和慢性心衰,急性心衰突然出现,伴有心力衰竭的体征和症状;慢性心衰进展缓慢,典型症状包括呼吸困难、疲劳和脚踝肿胀[2] [3]。充血是心力衰竭患者出现症状和住院的主要驱动因素[4],在以左心衰为主的患者中,肺充血占据主导地位;然而在涉及右心衰和肺动脉高压的情况下,系统性充血成为主要表现[5]。根据世界卫生组织(WHO)的数据,心血管疾病(CVD)是全球头号死亡原因,致死人数占所有死亡人数的45%,在这些心血管疾病中,心力衰竭是最常被研究的疾病之一[6] [7]。流行病学资料表明:全球有超过6400万心衰患者,由于人口老龄化、心衰合并症和危险因素负担的增加以及心梗后生存期的延长,心衰表现出高患病率、高死亡率的特点,而且,人口老龄化和发展中国家新出现的心血管疾病的大流行预示着心衰全球发病率和患病率将上升,已逐渐成为全球公共卫生问题[8] [9]。心力衰竭生物标志物从传统神经激素类扩展到心肌重构、炎症等相关分子,其联合使用有助于心力衰竭的早期发现、早期诊断,现就充血性心力衰竭的生物标志物临床应用研究进展进行综述。

2. 生物标志物

生物标志物是可以在体内或其产物中测量并影响或预测结果或疾病发生率的任何物质、结构或过程,一般来说,生物标志物是通用的,不仅用于疾病筛查和诊断, 还用于疾病监测和确定预后以及个体化治疗反应[10]。理想的生物标志物应包括成本低、易测量、易评估、对生物体的创伤小、灵敏度高、具有一定的特异性且受其他疾病影响小等特征[5] [11]

3. 心脏负荷标志物BNP/NT-proBNP

B型利钠肽(B-type natriuretic peptide, BNP)和N末端B型利钠肽原(N terminal pro-B type natriuretic peptide, NT-proBNP)是反映心脏负荷/室壁张力的主要生物标志物。BNP和NT-proBNP由NPPB(NP前体B)基因编码合成[11],主要作为内源性神经激素由心室肌细胞分泌,左心室(LV)壁应力是钠尿肽释放的最有力的触发因素,在心脏血容量和/或压力负荷超负荷时导致室壁张力增加,心肌细胞受到牵张时,以及其他如缺氧、缺血等因素均可刺激心肌的BNP基因表达增加,初始产物为pre-proBNP1-134,其被快速处理以释放26个氨基酸的前肽,从而产生proBNP1-108,在正常心脏中,proBNP1-108的产生相对较低,但在HF的情况下,这种肽的产生要高得多。随后被蛋白水解酶分解为等摩尔的两部分:一部分为生物惰性的含76个氨基酸的NT-proBNP 1-76,另一部分为生物活性的含32个氨基酸的BNP1-32 [12]。经过这一过程后,BNP和NT-proBNP在合成后几分钟内释放,两者均可通过免疫测定在血液中测量,使其可以作为循环标志物。

BNP和NT-proBNP是目前临床上常规的检查项目,在心衰所有生物标志物中推荐类别最高,可用于确定HF的存在和严重程度[13]。多项研究表明BNP和NT-proBNP是心力衰竭(HF)患者死亡率和心血管(CV)事件的有力独立预测因子[14] [15]。在一项以发生第一次重大事件(心力衰竭住院或死亡)的时间为主要终点、纳入了563例稳定型心衰患者的研究中,结果表明心衰患者出院时的BNP和NT-proBNP值是全因死亡和心衰再住院的同样有力和独立的预测因素[16]

目前,BNP和NT-pro BNP是HF诊断和预后的金标准,《心力衰竭生物标志物临床应用中国专家共识》将BNP和NT-proBNP列为急性心衰诊断和预后以及慢性心衰危险分层和预后的Ⅰ级推荐(A类证据),并推荐检测BNP和NT-pro BNP筛查心衰高危人群,以预防或延缓左心室功能障碍及新发心衰[17]。但其作为传统生物标志物易受年龄、肾功能及肥胖等因素影响,需联合其他生物标志物提高准确性。

4. 炎症与氧化应激生物标志物

4.1. 髓过氧化物酶(myeloperoxidase, MPO)

MPO是一种来源于白细胞的血红素过氧化物酶,主要由中性粒细胞表达,属于先天免疫反应的一部分[18]。高循环水平的MPO与炎症、氧化应激增加、预后差和心血管疾病相关死亡率高相关[19]。研究表明在轻中度慢性肾脏病患者中,MPO水平与发生心力衰竭、全因死亡率和复合心血管结局的风险独立相关[20]。双样本孟德尔随机化(MR)研究发现高血浆MPO水平可能与缺血性卒中、CES (心脏栓塞性卒中)、HF和AF (心房颤动)的风险增加相关,这也表明MPO在心血管疾病的发展中起着重要的作用[21]。根据Tang等人的研究,在慢性HF患者中,MPO血浆水平是不良临床结果的预测因子,也与HF的严重程度相关[22]。研究发现与健康对照相比,慢性HF患者的MPO浓度升高,并且MPO浓度与纽约心脏协会心功能分级直接相关,较高的MPO水平表明临床上更严重的HF [23]。对于心衰患者的预后评估,MPO浓度可能与其他标志物(如BNP)一起被用于预测长期临床结果[24]

4.2. 生长分化因子-15 (GDF-15)

GDF-15是一种应激反应蛋白,在缺氧、炎症、氧化应激组织损伤时释放增加,主要在心脏压力过载和心室功能减退时由心肌细胞表达发挥逆转心肌肥大和细胞凋亡的生物学作用,但也由巨噬细胞、脂肪细胞、血管平滑肌等在心脏外产生[10] [25]。研究表明循环脑利钠肽酶(cNEP)活性和GDF-15提供了比临床变量和NT-proBNP更多的诊断信息,并可能有助于诊断透析患者的心力衰竭[26]。最近的一项前瞻性的单中心调查研究发现急性心力衰竭患者(AHF)入院时较高水平的GDF-15与30天全因死亡率的风险增加相关,较低的出院GDF-15水平、从入院到出院的GDF-15减少与30天再次住院的风险降低有关,这也突出了其在AHF患者群体中的预后价值[27]。GDF-15作为一种新的生物标志物可以在当代HF生物标志物的基础上提供增量预后信息,可能有助于HF的诊断和提供HF发病率和死亡率的预后信息,为改善HF结果提供有希望的价值[10]

5. 心肌损伤标志物肌钙蛋白

心肌肌钙蛋白(Cardiac troponin, cTn)表达为三种相似的亚型(分别是I、C和T),是诊断心肌坏死的首选生物标志物[7]。它可以通过多种机制释放到血液中,包括细胞更新、心肌细胞凋亡、坏死和可逆性损伤、细胞膜通透性增加以及心肌肌钙蛋白变性产物的释放等[28] [29]。肌钙蛋白的测量最初被应用于诊断疑似急性冠脉综合征患者的心肌梗死,具有很强的预后信息,尤其是使用高灵敏度测定法可以测量大多数心力衰竭和射血分数降低(HFrEF)患者的循环肌钙蛋白,其浓度主要与死亡率或早期和/或恶化的心力衰竭有关[28] [30]。肌钙蛋白升高在慢性心衰中很常见,在急性失代偿性心衰患者中几乎普遍存在;通常,心衰患者肌钙蛋白的升高代表了较差的预后[31]。目前的指南推荐对住院HF患者测量心肌肌钙蛋白进行风险分层以提供更好的治疗措施[31]。同时,肌钙蛋白在心力衰竭的早期筛查也有一定的作用,18年的一项荟萃分析结果表明高敏肌钙蛋白值可预警无症状人群的HF进展风险[32]。也有越来越多的证据表明心肌肌钙蛋白可以用来评估糖尿病患者心力衰竭的风险及衡量治疗干预措施[33]。高敏心肌肌钙蛋白(Hs-TnI)水平是心肌损伤的主要生物标志物,可用于检测急性HF患者的低级别心肌细胞损伤,并反映出HF人群中进行性心室重塑和死亡的风险增加[10] [34]

6. 心脏基质重构相关生物标志物sST2

肿瘤发生抑制蛋白2 (suppression of tumorigenicity-2, ST2)是由2号染色体上的IL1RL1基因编码[35]的白细胞介素1受体家族的成员,主要由心脏成纤维细胞和心肌细胞产生。mRNA的选择性启动子剪接和3'末端加工可以产生多种ST2亚型,主要包括跨膜型肿瘤发生抑制蛋白2 (ST2配体或ST2L)和可溶性肿瘤发生抑制蛋白2 (sST2),他们通过与IL-33结合发挥作用。IL-33是活细胞在应对细胞损伤或坏死时而分泌的细胞因子,IL-33和ST2L介导的IL-33/ST2L信号通路可以防止心肌细胞纤维化和细胞肥大,减少细胞凋亡,并最终改善心脏功能,这种心脏保护作用仅通过ST2L受体发生,而不是通过可溶性形式发生[36]。心衰发生时心室壁张力增加,刺激心肌细胞大量的分泌sST2,而sST2作为诱骗受体与ST2L竞争性结合IL-33以拮抗IL-33/ST2L相互作用的心脏保护作用[37],sST2通过广泛的研究已被证明是心力衰竭的生物标志物并且可以提供一定的诊断和预后信息[38]。而且与利钠肽相比,sST2受年龄、体重指数、肾功能或HF的其他病因的影响更小,对HF预后的预测敏感度更高[39]。在AHF中,血流动力学充血和炎症会激活血管内皮细胞和肺组织,释放促炎细胞因子,从而导致sST2上调。PRIDE等多项研究表明,与其他原因引起的呼吸困难相比,急性心衰患者sST2水平更高,但sST2对急性心衰不具有诊断价值[40]。而在一项纳入197名慢性心力衰竭患者(并按心室功能分级将其分组)和106名健康人作为正常对照组的研究中发现血清sST2水平与心室功能分级显著相关[41]。同时,sST2测量有助于心衰门诊患者的风险分层,在一项前瞻性队列性研究中,对130例连续的心衰门诊患者进行前瞻性评估并将其分为存活组和死亡组,结果发现死亡组的sST2水平高于存活组,预测心血管死亡率的最佳临界值sST2水平 > 30 ng/mL [42]。在预后方面,sST2水平升高已经被证明与急性冠状动脉综合征、肺动脉高压、急性和慢性心力衰竭(HF)的预后相关。最近的一项系统综述纳入了11项研究,共有5121名参与者 ,将全因死亡率(ACM)、心血管死亡率(CVM)/心衰住院(HFH)、全因死亡率(ACM)/心力衰竭相关再入院(HFR)等作为终点,最后证实基线时较高的sST2浓度与长期ACM、ACM/HFR和CVM/HFH的风险增加相关,这也表明sST2浓度可以作为慢性心力衰竭预后评估的工具[43]

sST2是一种与炎症和纤维化相关的生物标志物,不仅可以与常用的临床生物标志物相结合来诊断和评估心衰严重程度和预后,还可以指导HF患者的危险分层,有助于及时制定相对应的治疗方案。这表明sST2在心力衰竭管理中的重要作用,为个性化治疗提供了潜在的生物学基础,但其在急性心衰中的诊断作用还需进一步研究。

7. 其它心衰相关生物标志物CA125

糖蛋白抗原125 (carbohydrate antigen 125, CA125)又称粘蛋白16 (MUC16)是一种由人类MUC16基因编码的复杂糖蛋白[44]。该标志物最初是在1981年,由针对卵巢癌细胞系产生的第125个单克隆抗体所识别,它作为膜结合蛋白主要在胸膜、腹膜和心包的细胞表面表达,或者被蛋白水解酶切割后以可溶性形式释放,使其成为循环生物标志物[5] [45]。尽管CA125主要用于诊断卵巢癌,但在其他的恶性肿瘤和一些良性疾病中也可以发现CA125水平的升高[46] [47]。近年来,越来越多的证据支持CA125在心血管疾病中的应用,特别是在失代偿性心力衰竭中[47] [48]。心衰充血时静水压增加、机械应力和炎症刺激可能会激活浆膜表面的间皮细胞,从而导致CA125的过度产生和释放[45]。将近三分之二的急性心力衰竭(AHF)患者的CA125水平升高,并与充血的严重程度高度相关[48]。此外,CA125也被确定为AHF伴胸腔积液和外周水肿的重要预测因子[49]。在慢性HF患者中,有浆液性腔积液(SCE)的患者血清CA125水平显著高于无SCE的患者[45]。一项对176名D期HF患者的研究发现,CA125水平升高可高度预测全因死亡、心血管死亡率、全因死亡/HF再入院和MACE (主要不良心血管事件),可用于更好的风险分层[50]。近年来,来自观察性研究和随机临床试验的数据也强调了CA125在AHF住院后指导利尿剂治疗中的潜在作用[45]。总之,CA125是HF患者的一个有用的诊断、预后因素,当与其他生物标志物联合使用时,可以提高预测不良事件的准确性[49]。CA125在临床上的广泛可用性和低的成本,使该标志物对失代偿性心力衰竭的常规使用具有吸引力,需要进一步的研究来更好地了解其生物学作用及其作为指导HF缓解充血治疗的工具的前景。

8. 小结

随着医疗技术水平的迅速发展,越来越多代表心力衰竭不同病理生理过程的生物标志物被发现,其中,BNP和NT-proBNP作为心力衰竭诊断和预后评估的金标准得到了ESC和ACC/AHA指南的推荐[51]。综合利用这些生物标志物可以更全面的评估心力衰竭患者的病情,以实现早期诊断,以及早干预治疗从而大大改善患者的预后。然而,应该注意到单一生物标志物可能存在一定局限性,因此在临床实践中通常会结合多种标志物进行综合分析。

NOTES

*通讯作者。

参考文献

[1] Zhang, Y., Xia, G., Yu, D., Tu, F. and Liu, J. (2024) The Association of Blood Urea Nitrogen to Serum Albumin Ratio with Short-Term Outcomes in Chinese Patients with Congestive Heart Failure: A Retrospective Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 34, 55-63.
https://doi.org/10.1016/j.numecd.2023.10.011
[2] Mascolo, A., di Mauro, G., Cappetta, D., De Angelis, A., Torella, D., Urbanek, K., et al. (2022) Current and Future Therapeutic Perspective in Chronic Heart Failure. Pharmacological Research, 175, Article ID: 106035.
https://doi.org/10.1016/j.phrs.2021.106035
[3] Sinnenberg, L. and Givertz, M.M. (2020) Acute Heart Failure. Trends in Cardiovascular Medicine, 30, 104-112.
https://doi.org/10.1016/j.tcm.2019.03.007
[4] Pandhi, P., ter Maaten, J.M., Anker, S.D., Ng, L.L., Metra, M., Samani, N.J., et al. (2022) Pathophysiologic Processes and Novel Biomarkers Associated with Congestion in Heart Failure. JACC: Heart Failure, 10, 623-632.
https://doi.org/10.1016/j.jchf.2022.05.013
[5] Núñez, J., de la Espriella, R., Rossignol, P., et al. (2022) Congestion in Heart Failure: A Circulating Biomarker-Based Perspective. A Review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology. European Journal of Heart Failure, 24,1751-1766.
[6] Townsend, N., Nichols, M., Scarborough, P. and Rayner, M. (2015) Cardiovascular Disease in Europe—Epidemiological Update 2015. European Heart Journal, 36, 2696-2705.
https://doi.org/10.1093/eurheartj/ehv428
[7] Wang, X., Zhang, F., Zhang, C., Zheng, L. and Yang, J. (2020) The Biomarkers for Acute Myocardial Infarction and Heart Failure. BioMed Research International, 2020, Article ID: 2018035.
https://doi.org/10.1155/2020/2018035
[8] Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., et al. (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Journal of Heart Failure, 18, 891-975.
https://doi.org/10.1002/ejhf.592
[9] Schocken, D.D., Benjamin, E.J., Fonarow, G.C., Krumholz, H.M., Levy, D., Mensah, G.A., et al. (2008) Prevention of Heart Failure: A Scientific Statement From the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation, 117, 2544-2565.
https://doi.org/10.1161/circulationaha.107.188965
[10] Sawalha, K., Norgard, N.B., Drees, B.M. and López-Candales, A. (2023) Growth Differentiation Factor 15 (GDF-15), a New Biomarker in Heart Failure Management. Current Heart Failure Reports, 20, 287-299.
https://doi.org/10.1007/s11897-023-00610-4
[11] Castiglione, V., Aimo, A., Vergaro, G., Saccaro, L., Passino, C. and Emdin, M. (2021) Biomarkers for the Diagnosis and Management of Heart Failure. Heart Failure Reviews, 27, 625-643.
https://doi.org/10.1007/s10741-021-10105-w
[12] Ibrahim, N.E. and Januzzi, J.L. (2018) Established and Emerging Roles of Biomarkers in Heart Failure. Circulation Research, 123, 614-629.
https://doi.org/10.1161/circresaha.118.312706
[13] Tsutsui, H., Albert, N.M., Coats, A.J.S., Anker, S.D., Bayes‐Genis, A., Butler, J., et al. (2023) Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. European Journal of Heart Failure, 25, 616-631.
https://doi.org/10.1002/ejhf.2848
[14] Chow, S.L., Maisel, A.S., Anand, I., Bozkurt, B., de Boer, R.A., Felker, G.M., et al. (2017) Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement from the American Heart Association. Circulation, 135, e1054-e1091.
https://doi.org/10.1161/cir.0000000000000490
[15] Zile, M.R., Claggett, B.L., Prescott, M.F., McMurray, J.J.V., Packer, M., Rouleau, J.L., et al. (2016) Prognostic Implications of Changes in N-Terminal Pro-B-Type Natriuretic Peptide in Patients with Heart Failure. Journal of the American College of Cardiology, 68, 2425-2436.
https://doi.org/10.1016/j.jacc.2016.09.931
[16] Linssen, G.C.M., Jaarsma, T., Hillege, H.L., Voors, A.A. and van Veldhuisen, D.J. (2018) A Comparison of the Prognostic Value of BNP versus NT-ProBNP after Hospitalisation for Heart Failure. Netherlands Heart Journal, 26, 486-492.
https://doi.org/10.1007/s12471-018-1145-x
[17] 中国医师协会心力衰竭专业委员会, 国家心血管病专家委员会心力衰竭专业委员会, 中华心力衰竭和心肌病杂志编辑委员会. 心力衰竭生物标志物临床应用中国专家共识[J]. 中华心力衰竭和心肌病杂志, 2022(3): 175-192.
[18] Ndrepepa, G. (2019) Myeloperoxidase—A Bridge Linking Inflammation and Oxidative Stress with Cardiovascular Disease. Clinica Chimica Acta, 493, 36-51.
https://doi.org/10.1016/j.cca.2019.02.022
[19] Ramachandra, C.J.A., Ja, K.P.M.M., Chua, J., Cong, S., Shim, W. and Hausenloy, D.J. (2020) Myeloperoxidase as a Multifaceted Target for Cardiovascular Protection. Antioxidants & Redox Signaling, 32, 1135-1149.
https://doi.org/10.1089/ars.2019.7971
[20] Janus, S.E., Hajjari, J., Chami, T., Karnib, M., Al-Kindi, S.G. and Rashid, I. (2022) Myeloperoxidase Is Independently Associated with Incident Heart Failure in Patients with Coronary Artery Disease and Kidney Disease. Current Problems in Cardiology, 47, Article ID: 101080.
https://doi.org/10.1016/j.cpcardiol.2021.101080
[21] Wang, Y., Jia, Y., Xu, Q., Wang, R., Sun, L., Guo, D., et al. (2023) Association between Myeloperoxidase and the Risks of Ischemic Stroke, Heart Failure, and Atrial Fibrillation: A Mendelian Randomization Study. Nutrition, Metabolism and Cardiovascular Diseases, 33, 210-218.
https://doi.org/10.1016/j.numecd.2022.09.027
[22] Avaliani, T., Talakvadze, T. and Tabagari, S. (2019) Prognostic Value of Plasma Myeloperoxidase Level’s and Echocardiographic Determinants in Chronic Heart Failure Patients. Georgian Medical News, No. 288, 55-60.
[23] Tang, W.H.W., Brennan, M., Philip, K., Tong, W., Mann, S., Van Lente, F., et al. (2006) Plasma Myeloperoxidase Levels in Patients with Chronic Heart Failure. The American Journal of Cardiology, 98, 796-799.
https://doi.org/10.1016/j.amjcard.2006.04.018
[24] Tang, W.H.W., Tong, W., Troughton, R.W., Martin, M.G., Shrestha, K., Borowski, A., et al. (2007) Prognostic Value and Echocardiographic Determinants of Plasma Myeloperoxidase Levels in Chronic Heart Failure. Journal of the American College of Cardiology, 49, 2364-2370.
https://doi.org/10.1016/j.jacc.2007.02.053
[25] Wollert, K.C., Kempf, T. and Wallentin, L. (2017) Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clinical Chemistry, 63, 140-151.
https://doi.org/10.1373/clinchem.2016.255174
[26] Claus, R., Berliner, D., Bavendiek, U., Vodovar, N., Lichtinghagen, R., David, S., et al. (2020) Soluble Neprilysin, NT-ProBNP, and Growth Differentiation Factor-15 as Biomarkers for Heart Failure in Dialysis Patients (SONGBIRD). Clinical Research in Cardiology, 109, 1035-1047.
https://doi.org/10.1007/s00392-020-01597-x
[27] Kosum, P., Siranart, N., Mattanapojanat, N., Phutinart, S., Kongruttanachok, N., Sinphurmsukskul, S., et al. (2024) GDF-15: A Novel Biomarker of Heart Failure Predicts Short-Term and Long-Term Heart-Failure Rehospitalization and Short-Term Mortality in Patients with Acute Heart Failure Syndrome. BMC Cardiovascular Disorders, 24, Article No. 151.
https://doi.org/10.1186/s12872-024-03802-5
[28] Eggers, K.M. and Lindahl, B. (2017) Application of Cardiac Troponin in Cardiovascular Diseases Other than Acute Coronary Syndrome. Clinical Chemistry, 63, 223-235.
https://doi.org/10.1373/clinchem.2016.261495
[29] Garg, P., Morris, P., Fazlanie, A.L., Vijayan, S., Dancso, B., Dastidar, A.G., et al. (2017) Cardiac Biomarkers of Acute Coronary Syndrome: From History to High-Sensitivity Cardiac Troponin. Internal and Emergency Medicine, 12, 147-155.
https://doi.org/10.1007/s11739-017-1612-1
[30] Yafasova, A., Butt, J.H. and Rørth, R. (2021) Troponin: An Important Prognostic Biomarker in Patients with Heart Failure and Reduced Ejection Fraction? European Journal of Heart Failure, 23, 1539-1540.
https://doi.org/10.1002/ejhf.2282
[31] Felker, G.M., Mentz, R.J., Teerlink, J.R., Voors, A.A., Pang, P.S., Ponikowski, P., et al. (2015) Serial High Sensitivity Cardiac Troponin T Measurement in Acute Heart Failure: Insights from the RELAX‐AHF Study. European Journal of Heart Failure, 17, 1262-1270.
https://doi.org/10.1002/ejhf.341
[32] Jaffe, A.S. and Miller, W.L. (2018) Meta-Analyses and Interpretation of Troponin Values in Heart Failure. JACC: Heart Failure, 6, 198-200.
https://doi.org/10.1016/j.jchf.2017.12.001
[33] Kilpatrick, E.S. (2022) Cardiac Troponin as a Marker of Heart Failure Risk in Diabetes. Clinical Chemistry, 68, 1232-1234.
https://doi.org/10.1093/clinchem/hvac124
[34] Lokaj, P., Spinar, J., Spinarova, L., Malek, F., Ludka, O., Krejci, J., et al. (2021) Prognostic Value of High-Sensitivity Cardiac Troponin I in Heart Failure Patients with Mid-Range and Reduced Ejection Fraction. PLOS ONE, 16, e0255271.
https://doi.org/10.1371/journal.pone.0255271
[35] Dale, M. and Nicklin, M.J.H. (1999) Interleukin-1 Receptor Cluster: Gene Organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on Human Chromosome 2q. Genomics, 57, 177-179.
https://doi.org/10.1006/geno.1999.5767
[36] Maisel, A.S. and Di Somma, S. (2016) Do We Need Another Heart Failure Biomarker: Focus on Soluble Suppression of Tumorigenicity 2 (sST2). European Heart Journal, 38, 2325-2333.
https://doi.org/10.1093/eurheartj/ehw462
[37] Sciatti, E., Merlo, A., Scangiuzzi, C., Limonta, R., Gori, M., D’Elia, E., et al. (2023) Prognostic Value of sST2 in Heart Failure. Journal of Clinical Medicine, 12, Article 3970.
https://doi.org/10.3390/jcm12123970
[38] Kotsiou, O.S., Gourgoulianis, K.I. and Zarogiannis, S.G. (2018) IL-33/ST2 Axis in Organ Fibrosis. Frontiers in Immunology, 9, Article 2432.
https://doi.org/10.3389/fimmu.2018.02432
[39] Vergaro, G., Gentile, F., Aimo, A., Januzzi, J.L., Richards, A.M., Lam, C.S.P., et al. (2022) Circulating Levels and Prognostic Cut‐offs of sST2, hs-cTnT, and NT-proBNP in Women vs. Men with Chronic Heart Failure. ESC Heart Failure, 9, 2084-2095.
https://doi.org/10.1002/ehf2.13883
[40] Mueller, T., Gegenhuber, A., Leitner, I., Poelz, W., Haltmayer, M. and Dieplinger, B. (2016) Diagnostic and Prognostic Accuracy of Galectin-3 and Soluble ST2 for Acute Heart Failure. Clinica Chimica Acta, 463, 158-164.
https://doi.org/10.1016/j.cca.2016.10.034
[41] Jin, X., Huang, N., Shang, H., Zhou, M., Hong, Y., Cai, W., et al. (2017) Diagnosis of Chronic Heart Failure by the Soluble Suppression of Tumorigenicity 2 and N‐Terminal Pro‐Brain Natriuretic Peptide. Journal of Clinical Laboratory Analysis, 32, e22295.
https://doi.org/10.1002/jcla.22295
[42] Gül, İ. (2017) Prognostic Role of Soluble Suppression of Tumorigenicity-2 on Cardiovascular Mortality in Outpatients with Heart Failure. The Anatolian Journal of Cardiology, 18, 200-205.
https://doi.org/10.14744/anatoljcardiol.2017.7741
[43] Dong, G., Chen, H., Zhang, H. and Gu, Y. (2021) Long-Term and Short-Term Prognostic Value of Circulating Soluble Suppression of Tumorigenicity-2 Concentration in Chronic Heart Failure: A Systematic Review and Meta-Analysis. Cardiology, 146, 433-440.
https://doi.org/10.1159/000509660
[44] Scholler, N. and Urban, N. (2007) CA125 in Ovarian Cancer. Biomarkers in Medicine, 1, 513-523.
https://doi.org/10.2217/17520363.1.4.513
[45] Núñez, J., de la Espriella, R., Miñana, G., Santas, E., Llácer, P., Núñez, E., et al. (2021) Antigen Carbohydrate 125 as a Biomarker in Heart Failure: A Narrative Review. European Journal of Heart Failure, 23, 1445-1457.
https://doi.org/10.1002/ejhf.2295
[46] Zhang, M., Zhang, Y., Fu, J. and Zhang, L. (2019) Serum CA125 Levels Are Decreased in Rectal Cancer but Increased in Fibrosis-Associated Diseases and in Most Types of Cancers. Progress in Molecular Biology and Translational Science, 162, 241-252.
https://doi.org/10.1016/bs.pmbts.2018.12.012
[47] Llàcer, P., Bayés-Genís, A. and Núñez, J. (2019) Antígeno carbohidrato 125 en insuficiencia cardiaca. Nueva era en la monitorización y control del tratamiento. Medicina Clínica, 152, 266-273.
https://doi.org/10.1016/j.medcli.2018.08.020
[48] Núñez, J., Miñana, G., Núñez, E., Chorro, F.J., Bodí, V. and Sanchis, J. (2013) Clinical Utility of Antigen Carbohydrate 125 in Heart Failure. Heart Failure Reviews, 19, 575-584.
https://doi.org/10.1007/s10741-013-9402-y
[49] Feng, R., Zhang, Z. and Fan, Q. (2023) Carbohydrate Antigen 125 in Congestive Heart Failure: Ready for Clinical Application? Frontiers in Oncology, 13, Article 1161723.
https://doi.org/10.3389/fonc.2023.1161723
[50] Zhang, J., Li, W., Xiao, J., Hui, J. and Li, Y. (2023) Prognostic Significance of Carbohydrate Antigen 125 in Stage D Heart Failure. BMC Cardiovascular Disorders, 23, Article No. 108.
https://doi.org/10.1186/s12872-023-03139-5
[51] Castiglione, V., Vergaro, G., Aimo, A., et al. (2021) Biomarkers for the Diagnosis and Management of Heart Failure: Natriuretic Peptides. Giornale Italiano di Cardiologia, 22, 292-300.