[1]
|
Zhang, Y., Xia, G., Yu, D., Tu, F. and Liu, J. (2024) The Association of Blood Urea Nitrogen to Serum Albumin Ratio with Short-Term Outcomes in Chinese Patients with Congestive Heart Failure: A Retrospective Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 34, 55-63. https://doi.org/10.1016/j.numecd.2023.10.011
|
[2]
|
Mascolo, A., di Mauro, G., Cappetta, D., De Angelis, A., Torella, D., Urbanek, K., et al. (2022) Current and Future Therapeutic Perspective in Chronic Heart Failure. Pharmacological Research, 175, Article ID: 106035. https://doi.org/10.1016/j.phrs.2021.106035
|
[3]
|
Sinnenberg, L. and Givertz, M.M. (2020) Acute Heart Failure. Trends in Cardiovascular Medicine, 30, 104-112. https://doi.org/10.1016/j.tcm.2019.03.007
|
[4]
|
Pandhi, P., ter Maaten, J.M., Anker, S.D., Ng, L.L., Metra, M., Samani, N.J., et al. (2022) Pathophysiologic Processes and Novel Biomarkers Associated with Congestion in Heart Failure. JACC: Heart Failure, 10, 623-632. https://doi.org/10.1016/j.jchf.2022.05.013
|
[5]
|
Núñez, J., de la Espriella, R., Rossignol, P., et al. (2022) Congestion in Heart Failure: A Circulating Biomarker-Based Perspective. A Review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology. European Journal of Heart Failure, 24,1751-1766.
|
[6]
|
Townsend, N., Nichols, M., Scarborough, P. and Rayner, M. (2015) Cardiovascular Disease in Europe—Epidemiological Update 2015. European Heart Journal, 36, 2696-2705. https://doi.org/10.1093/eurheartj/ehv428
|
[7]
|
Wang, X., Zhang, F., Zhang, C., Zheng, L. and Yang, J. (2020) The Biomarkers for Acute Myocardial Infarction and Heart Failure. BioMed Research International, 2020, Article ID: 2018035. https://doi.org/10.1155/2020/2018035
|
[8]
|
Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., et al. (2016) 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Journal of Heart Failure, 18, 891-975. https://doi.org/10.1002/ejhf.592
|
[9]
|
Schocken, D.D., Benjamin, E.J., Fonarow, G.C., Krumholz, H.M., Levy, D., Mensah, G.A., et al. (2008) Prevention of Heart Failure: A Scientific Statement From the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation, 117, 2544-2565. https://doi.org/10.1161/circulationaha.107.188965
|
[10]
|
Sawalha, K., Norgard, N.B., Drees, B.M. and López-Candales, A. (2023) Growth Differentiation Factor 15 (GDF-15), a New Biomarker in Heart Failure Management. Current Heart Failure Reports, 20, 287-299. https://doi.org/10.1007/s11897-023-00610-4
|
[11]
|
Castiglione, V., Aimo, A., Vergaro, G., Saccaro, L., Passino, C. and Emdin, M. (2021) Biomarkers for the Diagnosis and Management of Heart Failure. Heart Failure Reviews, 27, 625-643. https://doi.org/10.1007/s10741-021-10105-w
|
[12]
|
Ibrahim, N.E. and Januzzi, J.L. (2018) Established and Emerging Roles of Biomarkers in Heart Failure. Circulation Research, 123, 614-629. https://doi.org/10.1161/circresaha.118.312706
|
[13]
|
Tsutsui, H., Albert, N.M., Coats, A.J.S., Anker, S.D., Bayes‐Genis, A., Butler, J., et al. (2023) Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. European Journal of Heart Failure, 25, 616-631. https://doi.org/10.1002/ejhf.2848
|
[14]
|
Chow, S.L., Maisel, A.S., Anand, I., Bozkurt, B., de Boer, R.A., Felker, G.M., et al. (2017) Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement from the American Heart Association. Circulation, 135, e1054-e1091. https://doi.org/10.1161/cir.0000000000000490
|
[15]
|
Zile, M.R., Claggett, B.L., Prescott, M.F., McMurray, J.J.V., Packer, M., Rouleau, J.L., et al. (2016) Prognostic Implications of Changes in N-Terminal Pro-B-Type Natriuretic Peptide in Patients with Heart Failure. Journal of the American College of Cardiology, 68, 2425-2436. https://doi.org/10.1016/j.jacc.2016.09.931
|
[16]
|
Linssen, G.C.M., Jaarsma, T., Hillege, H.L., Voors, A.A. and van Veldhuisen, D.J. (2018) A Comparison of the Prognostic Value of BNP versus NT-ProBNP after Hospitalisation for Heart Failure. Netherlands Heart Journal, 26, 486-492. https://doi.org/10.1007/s12471-018-1145-x
|
[17]
|
中国医师协会心力衰竭专业委员会, 国家心血管病专家委员会心力衰竭专业委员会, 中华心力衰竭和心肌病杂志编辑委员会. 心力衰竭生物标志物临床应用中国专家共识[J]. 中华心力衰竭和心肌病杂志, 2022(3): 175-192.
|
[18]
|
Ndrepepa, G. (2019) Myeloperoxidase—A Bridge Linking Inflammation and Oxidative Stress with Cardiovascular Disease. Clinica Chimica Acta, 493, 36-51. https://doi.org/10.1016/j.cca.2019.02.022
|
[19]
|
Ramachandra, C.J.A., Ja, K.P.M.M., Chua, J., Cong, S., Shim, W. and Hausenloy, D.J. (2020) Myeloperoxidase as a Multifaceted Target for Cardiovascular Protection. Antioxidants & Redox Signaling, 32, 1135-1149. https://doi.org/10.1089/ars.2019.7971
|
[20]
|
Janus, S.E., Hajjari, J., Chami, T., Karnib, M., Al-Kindi, S.G. and Rashid, I. (2022) Myeloperoxidase Is Independently Associated with Incident Heart Failure in Patients with Coronary Artery Disease and Kidney Disease. Current Problems in Cardiology, 47, Article ID: 101080. https://doi.org/10.1016/j.cpcardiol.2021.101080
|
[21]
|
Wang, Y., Jia, Y., Xu, Q., Wang, R., Sun, L., Guo, D., et al. (2023) Association between Myeloperoxidase and the Risks of Ischemic Stroke, Heart Failure, and Atrial Fibrillation: A Mendelian Randomization Study. Nutrition, Metabolism and Cardiovascular Diseases, 33, 210-218. https://doi.org/10.1016/j.numecd.2022.09.027
|
[22]
|
Avaliani, T., Talakvadze, T. and Tabagari, S. (2019) Prognostic Value of Plasma Myeloperoxidase Level’s and Echocardiographic Determinants in Chronic Heart Failure Patients. Georgian Medical News, No. 288, 55-60.
|
[23]
|
Tang, W.H.W., Brennan, M., Philip, K., Tong, W., Mann, S., Van Lente, F., et al. (2006) Plasma Myeloperoxidase Levels in Patients with Chronic Heart Failure. The American Journal of Cardiology, 98, 796-799. https://doi.org/10.1016/j.amjcard.2006.04.018
|
[24]
|
Tang, W.H.W., Tong, W., Troughton, R.W., Martin, M.G., Shrestha, K., Borowski, A., et al. (2007) Prognostic Value and Echocardiographic Determinants of Plasma Myeloperoxidase Levels in Chronic Heart Failure. Journal of the American College of Cardiology, 49, 2364-2370. https://doi.org/10.1016/j.jacc.2007.02.053
|
[25]
|
Wollert, K.C., Kempf, T. and Wallentin, L. (2017) Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clinical Chemistry, 63, 140-151. https://doi.org/10.1373/clinchem.2016.255174
|
[26]
|
Claus, R., Berliner, D., Bavendiek, U., Vodovar, N., Lichtinghagen, R., David, S., et al. (2020) Soluble Neprilysin, NT-ProBNP, and Growth Differentiation Factor-15 as Biomarkers for Heart Failure in Dialysis Patients (SONGBIRD). Clinical Research in Cardiology, 109, 1035-1047. https://doi.org/10.1007/s00392-020-01597-x
|
[27]
|
Kosum, P., Siranart, N., Mattanapojanat, N., Phutinart, S., Kongruttanachok, N., Sinphurmsukskul, S., et al. (2024) GDF-15: A Novel Biomarker of Heart Failure Predicts Short-Term and Long-Term Heart-Failure Rehospitalization and Short-Term Mortality in Patients with Acute Heart Failure Syndrome. BMC Cardiovascular Disorders, 24, Article No. 151. https://doi.org/10.1186/s12872-024-03802-5
|
[28]
|
Eggers, K.M. and Lindahl, B. (2017) Application of Cardiac Troponin in Cardiovascular Diseases Other than Acute Coronary Syndrome. Clinical Chemistry, 63, 223-235. https://doi.org/10.1373/clinchem.2016.261495
|
[29]
|
Garg, P., Morris, P., Fazlanie, A.L., Vijayan, S., Dancso, B., Dastidar, A.G., et al. (2017) Cardiac Biomarkers of Acute Coronary Syndrome: From History to High-Sensitivity Cardiac Troponin. Internal and Emergency Medicine, 12, 147-155. https://doi.org/10.1007/s11739-017-1612-1
|
[30]
|
Yafasova, A., Butt, J.H. and Rørth, R. (2021) Troponin: An Important Prognostic Biomarker in Patients with Heart Failure and Reduced Ejection Fraction? European Journal of Heart Failure, 23, 1539-1540. https://doi.org/10.1002/ejhf.2282
|
[31]
|
Felker, G.M., Mentz, R.J., Teerlink, J.R., Voors, A.A., Pang, P.S., Ponikowski, P., et al. (2015) Serial High Sensitivity Cardiac Troponin T Measurement in Acute Heart Failure: Insights from the RELAX‐AHF Study. European Journal of Heart Failure, 17, 1262-1270. https://doi.org/10.1002/ejhf.341
|
[32]
|
Jaffe, A.S. and Miller, W.L. (2018) Meta-Analyses and Interpretation of Troponin Values in Heart Failure. JACC: Heart Failure, 6, 198-200. https://doi.org/10.1016/j.jchf.2017.12.001
|
[33]
|
Kilpatrick, E.S. (2022) Cardiac Troponin as a Marker of Heart Failure Risk in Diabetes. Clinical Chemistry, 68, 1232-1234. https://doi.org/10.1093/clinchem/hvac124
|
[34]
|
Lokaj, P., Spinar, J., Spinarova, L., Malek, F., Ludka, O., Krejci, J., et al. (2021) Prognostic Value of High-Sensitivity Cardiac Troponin I in Heart Failure Patients with Mid-Range and Reduced Ejection Fraction. PLOS ONE, 16, e0255271. https://doi.org/10.1371/journal.pone.0255271
|
[35]
|
Dale, M. and Nicklin, M.J.H. (1999) Interleukin-1 Receptor Cluster: Gene Organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on Human Chromosome 2q. Genomics, 57, 177-179. https://doi.org/10.1006/geno.1999.5767
|
[36]
|
Maisel, A.S. and Di Somma, S. (2016) Do We Need Another Heart Failure Biomarker: Focus on Soluble Suppression of Tumorigenicity 2 (sST2). European Heart Journal, 38, 2325-2333. https://doi.org/10.1093/eurheartj/ehw462
|
[37]
|
Sciatti, E., Merlo, A., Scangiuzzi, C., Limonta, R., Gori, M., D’Elia, E., et al. (2023) Prognostic Value of sST2 in Heart Failure. Journal of Clinical Medicine, 12, Article 3970. https://doi.org/10.3390/jcm12123970
|
[38]
|
Kotsiou, O.S., Gourgoulianis, K.I. and Zarogiannis, S.G. (2018) IL-33/ST2 Axis in Organ Fibrosis. Frontiers in Immunology, 9, Article 2432. https://doi.org/10.3389/fimmu.2018.02432
|
[39]
|
Vergaro, G., Gentile, F., Aimo, A., Januzzi, J.L., Richards, A.M., Lam, C.S.P., et al. (2022) Circulating Levels and Prognostic Cut‐offs of sST2, hs-cTnT, and NT-proBNP in Women vs. Men with Chronic Heart Failure. ESC Heart Failure, 9, 2084-2095. https://doi.org/10.1002/ehf2.13883
|
[40]
|
Mueller, T., Gegenhuber, A., Leitner, I., Poelz, W., Haltmayer, M. and Dieplinger, B. (2016) Diagnostic and Prognostic Accuracy of Galectin-3 and Soluble ST2 for Acute Heart Failure. Clinica Chimica Acta, 463, 158-164. https://doi.org/10.1016/j.cca.2016.10.034
|
[41]
|
Jin, X., Huang, N., Shang, H., Zhou, M., Hong, Y., Cai, W., et al. (2017) Diagnosis of Chronic Heart Failure by the Soluble Suppression of Tumorigenicity 2 and N‐Terminal Pro‐Brain Natriuretic Peptide. Journal of Clinical Laboratory Analysis, 32, e22295. https://doi.org/10.1002/jcla.22295
|
[42]
|
Gül, İ. (2017) Prognostic Role of Soluble Suppression of Tumorigenicity-2 on Cardiovascular Mortality in Outpatients with Heart Failure. The Anatolian Journal of Cardiology, 18, 200-205. https://doi.org/10.14744/anatoljcardiol.2017.7741
|
[43]
|
Dong, G., Chen, H., Zhang, H. and Gu, Y. (2021) Long-Term and Short-Term Prognostic Value of Circulating Soluble Suppression of Tumorigenicity-2 Concentration in Chronic Heart Failure: A Systematic Review and Meta-Analysis. Cardiology, 146, 433-440. https://doi.org/10.1159/000509660
|
[44]
|
Scholler, N. and Urban, N. (2007) CA125 in Ovarian Cancer. Biomarkers in Medicine, 1, 513-523. https://doi.org/10.2217/17520363.1.4.513
|
[45]
|
Núñez, J., de la Espriella, R., Miñana, G., Santas, E., Llácer, P., Núñez, E., et al. (2021) Antigen Carbohydrate 125 as a Biomarker in Heart Failure: A Narrative Review. European Journal of Heart Failure, 23, 1445-1457. https://doi.org/10.1002/ejhf.2295
|
[46]
|
Zhang, M., Zhang, Y., Fu, J. and Zhang, L. (2019) Serum CA125 Levels Are Decreased in Rectal Cancer but Increased in Fibrosis-Associated Diseases and in Most Types of Cancers. Progress in Molecular Biology and Translational Science, 162, 241-252. https://doi.org/10.1016/bs.pmbts.2018.12.012
|
[47]
|
Llàcer, P., Bayés-Genís, A. and Núñez, J. (2019) Antígeno carbohidrato 125 en insuficiencia cardiaca. Nueva era en la monitorización y control del tratamiento. Medicina Clínica, 152, 266-273. https://doi.org/10.1016/j.medcli.2018.08.020
|
[48]
|
Núñez, J., Miñana, G., Núñez, E., Chorro, F.J., Bodí, V. and Sanchis, J. (2013) Clinical Utility of Antigen Carbohydrate 125 in Heart Failure. Heart Failure Reviews, 19, 575-584. https://doi.org/10.1007/s10741-013-9402-y
|
[49]
|
Feng, R., Zhang, Z. and Fan, Q. (2023) Carbohydrate Antigen 125 in Congestive Heart Failure: Ready for Clinical Application? Frontiers in Oncology, 13, Article 1161723. https://doi.org/10.3389/fonc.2023.1161723
|
[50]
|
Zhang, J., Li, W., Xiao, J., Hui, J. and Li, Y. (2023) Prognostic Significance of Carbohydrate Antigen 125 in Stage D Heart Failure. BMC Cardiovascular Disorders, 23, Article No. 108. https://doi.org/10.1186/s12872-023-03139-5
|
[51]
|
Castiglione, V., Vergaro, G., Aimo, A., et al. (2021) Biomarkers for the Diagnosis and Management of Heart Failure: Natriuretic Peptides. Giornale Italiano di Cardiologia, 22, 292-300.
|