高频超声技术在诊断周围神经病变中的现状与展望
Current Status and Prospects of High-Frequency Ultrasound in the Diagnosis of Peripheral Neuropathy
摘要: 周围神经病变(Peripheral Neuropathy, PN)是一类常见的神经系统疾病,早期诊断对防止病情进展至关重要。高频超声因具备高分辨率、无创、便捷等优势,已在PN的辅助诊断中广泛应用。本文综述了二维超声、多普勒成像、超微血流成像、弹性成像及超声造影等技术在PN中的应用与诊断价值,比较了不同方法的敏感性与适用性,并展望未来发展方向,提出结合标准化图像数据库与人工智能算法以提升诊断准确性,实现PN智能化、精准化早期识别。
Abstract: Peripheral neuropathy (PN) is a common neurological disorder, and early diagnosis is crucial for preventing disease progression. High-frequency ultrasound, with its high resolution, non-invasiveness, and convenience, has been widely used as an auxiliary tool in the diagnosis of PN. This review summarizes the application and diagnostic value of various high-frequency ultrasound techniques in PN, including two-dimensional ultrasound, Doppler imaging, superb microvascular imaging, elastography, and contrast-enhanced ultrasound. The sensitivity and applicability of different methods are compared, and future directions are discussed. The paper proposes integrating standardized image databases with artificial intelligence algorithms to improve diagnostic accuracy and facilitate intelligent, precise early detection of PN.
文章引用:戚伶俐, 王志刚. 高频超声技术在诊断周围神经病变中的现状与展望[J]. 临床个性化医学, 2025, 4(3): 149-154. https://doi.org/10.12677/jcpm.2025.43327

1. 引言

周围神经病变(Peripheral Neuropathy, PN)是指周围神经系统的损伤或疾病,导致神经功能异常。随着影像技术的发展,磁共振与高频超声目前也广泛用于周围神经病变的诊断。与MR相比,高频超声具有简便、实时成像、费用低、无创、可重复检查等优点,能够直观清晰地显示神经的走行路径、神经内部的回声情况、神经外膜与毗邻组织的关系,在检查浅表神经方面具有绝对的优势,能为临床诊断周围神经病变提供有力的证据,具有良好的临床指导意义及应用前景[1] [2]。现就检查方式的不同对PN患者的超声声像图改变进行综述,并对其新技术的应用与发展趋势作一展望。

2. 高频二维超声

正常周围神经超声声像图在纵切面表现为平行排列的条索状低回声束,其间可见高回声光带分隔;在横切面表现为内部呈蜂窝状的椭圆形,周围有高回声包绕[3]。当周围神经出现病变时,神经声像图也会发生明显变化,国内外已有许多学者证实了上述观点。陈涛、郭稳等[4]对49例腕管综合征患者双侧腕管处正中神经的内部结构、回声、神经束膜及外膜进行了研究,发现与健康对照组相比,腕管综合征患者正中神经水肿增粗,横截面积增大,变扁平,内部神经束膜回声减低,正常神经横切面蜂巢状结构模糊。Kun Wang等[5]发现胫神经厚度(P = 0.043)和横截面积(P = 0.030)是糖尿病周围神经病变(DPN)的危险因素,DPN患者的胫神经横截面积和最大厚度大于健康对照者。而中度至重度DPN患者胫神经横截面积又高于轻度DPN患者。

3. 多普勒超声

3.1. 彩色多普勒超声(Color Doppler flow imaging, CDFI)

外周神经由神经外膜和神经内膜上相互吻合的血管网供血。目前已有实验证明慢性压迫[6]会导致神经内血流增多。Mallouhi等[7]最早研究了腕管综合征(carpal tunnel syndrome, CTS)中的神经血管,认为神经内血管增生是诊断CTS的所有超声检查标准中准确率最高的特征。DAPHNEW等[8]对161名临床怀疑为肘部尺神经病变(ulnar neuropathy at the elbow, UNE)的患者和70名健康对照者首先进行了CDFI检查,对于CDFI显示欠清的情况下,则使用PDI来优化血流图像。在137名确诊UNE的患者中,有21人(15%)发现了神经内血流(intraneural vascularization detected by ultrasonography, IVUS);在70名健康对照组患者中,有0人发现了IVUS (P = 0.001),差异具有统计学意义。Muhammed等[9]的研究同样发现腕管综合征的患者均出现了IVUS,而对照组的正中神经均未出现,该作者同时研究了麻风病患者,相较正常组麻风病患者出现了神经内血流信号增多,这可能与麻风导致的相关免疫性炎症有关。

3.2. 超微血流成像(Superb microvasular imaging, SMI)

SMI是一种微血管超声成像技术,通过采用新的多普勒算法,可高帧频、高分辨率地检测低血流速度的微血管,理论上较CDFI或PDI更易检测出血流速度较低的微血管。多项研究表明,与健康受试者相比,严重神经病变患者的神经内血管密度升高[10] [11]。Ali等[12]使用SMI和PDI评估CTS患者正中神经的神经内血流,结果发现随着CTS严重程度的增加,观察到SMI和PDI评分增加,并且在评估CTS患者正中神经血管情况方面,SMI比PDI更敏感。这与Endo T等[13]的实验结论一致。

4. 超声弹性成像(Ultrasound Elastography, USE)

目前不同USE技术可按测量的物理量进行分类:1) 应变成像:a. 弹性应变成像(SE);b. 声辐射力脉冲成像(ARFI Imaging);2) 剪切波成像:a. 一维瞬态弹性成像(1D-TE);b. 点剪切波弹性成像(pSWE);c. 二维剪切波弹性成像(2D-SWE) [14]。其中SE、ARFI Imaging、pSWE与2D-SWE [15]已有实验证实可用于辅助诊断PN。

4.1. 弹性应变成像(SE)

SE通过手动或生理施加应力,该应力虽不可量化,但可通过假设均匀的法向应力σ,计算出杨氏模量E,从而反映组织的弹性。Fukashi Ishibashi等[16]招募了198名2型糖尿病患者和29名健康对照个体,通过重复手动压缩胫神经来获得胫神经的弹性图像,结果发现与对照组相比,非DPN的Ⅱ型糖尿病患者胫神经的弹性(P < 0.001)降低(0.76~0.023),在神经病变进展后进一步降低(0.655~0.014至0.414~0.018)。以胫神经弹性为0.558作为诊断神经病变的临界值,敏感性与特异性分别为86%、69.6%。

4.2. 声辐射力脉冲成像(ARFI Imaging)

AFRI同样运用应变成像,与SE不同的是在检查过程中不使用任何机械压力,利用聚焦超声波束来产生剪切波使组织位移,计算组织硬度,获取剪切波速度,除此之外与SE类似。Harun Arslan等[17]使用ARFI对CTS患者及健康对照组的正中神经硬度进行测量,结果发现CTS患者的正中神经硬度显著高于对照组,以ARFI的3.250 m/s作为临界值,敏感性、特异性、阳性预测值、阴性预测值和准确性分别为81%、82%、95.1%、50%和82%。

ARFI中的声触诊组织成像和定量(virtual touch tissue imaging quantification, VTIQ)是一种更为先进的弹性成像技术,可以同时对组织硬度进行定性与定量评估。Chen Zhang等[18]的实验证实VTIQ可辅助诊断CTS,以VTIS的3.0 m/s作为临界值,敏感性、特异性、阳性预测值、阴性预测值和准确性分别为83.3%,91.3%,93.8%,77.8%和86.4%。ZhenHan Lai等[19]同时使用了高频二维超声与VTIQ,他指出高频超声和VTIQ技术均可用于评估CTS。高频超声适用于诊断中度和重度CTS。对于轻度CTS,结合高频超声和VTIQ有助于提高诊断效率。

4.3. 点剪切波弹性成像(pSWE)

pSWE类似于ARFI,区别在于组织位移本身并不被测量,相反,ARFI产生的部分纵波通过声能的吸收转化为剪切波。测量垂直于激发平面的剪切波速度,这些速度可直接测量,也可转换为杨氏模量E,以提供对组织弹性的定量估计。Mei Wei等[20]发现DPN患者及非DPN的Ⅱ型糖尿病患者的胫神经硬度明显高于健康对照组,评估DPN的pSWE临界值为2.60 m/s;在该临界值下,灵敏度为63.33%,特异性为92.50%。

4.4. 二维剪切波弹性成像(2D-SWE)

2D-SWE使用多个聚焦区域以快速连续的方式进行测量,形成了一个近乎圆柱形的剪切波锥,允许实时监测二维剪切波,以测量剪切波速或杨氏模量E,并生成定量弹性图。Xuan Li等[21]对慢性肾病五期患者外周神经进行了研究,他们收集了40名CKD5期患者分为尿毒性周围神经病(UPN)组(n = 25)和非UPN组(n = 15),还招募了16名健康对照者。对胫神经进行二维超声检查并用2D-SWE测量胫神经的杨氏模量,研究结果发现胫神经的左右径、前后径、横截面积在三组之间没有显著差异,而三组之间E值的差异具有统计学意义(P < 0.05)。以胫神经E值48.35 kPa作为临界值,敏感性、特异性、阳性预测值和阴性预测值分别为86.0%、84.0%、81.1%和88.1%,是周围神经病的最佳临界值,在UPN的诊断中具有最佳诊断效率。Bingtian Dong等[22]对DPN患者胫神经的SWE进行了测量,肯定了SWE在DPN诊断上的准确性。

5. 超声造影(Contrast-enhanced Ultrasound, CEUS)

超声造影是利用造影剂使回声增强,明显提高超声诊断的分辨力、敏感性和特异性的技术。这种技术可以更清晰地显示器官和组织的血流情况,目前国内外已有许多研究证实CEUS可通过显示神经内微血流辅助诊断PN [23]-[27]。陈思明等[28]观察了坐骨神经挤压伤术后的神经内部血流灌注,发现PDI仅能显示神经损伤后急性期的血流信号,而CEUS可显示损伤后急性期和恢复期的血流情况,这有助于临床评估神经修复情况并制定治疗方案。

6. 未来展望

当前,PN的诊断仍面临影像学敏感性不足、解读依赖经验等问题。未来发展可考虑以下研究方向:

一、探索高频超声与人工智能(AI)的深度融合,通过构建大样本图像数据库,利用深度学习提升超声图像识别和分类的准确率,提高PN早期诊断效率。该方向的实现需要多个维度的协同发展,首先是多中心、高质量的图像数据采集与标准化处理,以构建具备代表性和泛化能力的训练集;其次需开发适用于神经影像的特定深度学习模型,如卷积神经网络与注意力机制网络,以精准提取神经的微小结构特征;再者,还需构建基于AI的自动化诊断辅助系统,实现对疑似PN病例的智能提示与风险分级,从而减少对操作者经验的依赖,提升诊断一致性。AI模型还可进一步与临床指标、患者既往病史等信息融合,形成多模态诊断框架,从而实现超声影像的精准医学转化。

二、开发新型超声成像技术,例如融合超声弹性成像与SMI的多模态成像平台,以提高神经微结构与微循环的同时可视化能力。

三、构建PN影像评估标准,推动超声在神经病变中的量化分析,提升诊断一致性和可重复性。

NOTES

*通讯作者。

参考文献

[1] Stoll, G., Wilder-Smith, E. and Bendszus, M. (2013) Imaging of the Peripheral Nervous System. Handbook of Clinical Neurology, 115, 137-153.
https://doi.org/10.1016/b978-0-444-52902-2.00008-4
[2] Gallardo, E., Noto, Y. and Simon, N.G. (2015) Ultrasound in the Diagnosis of Peripheral Neuropathy: Structure Meets Function in the Neuromuscular Clinic. Journal of Neurology, Neurosurgery & Psychiatry, 86, 1066-1074.
https://doi.org/10.1136/jnnp-2014-309599
[3] 程娟, 陈亚青. 超声诊断糖尿病周围神经病变[J]. 中国医学影像技术, 2011, 27(5): 1035-1038.
[4] 陈涛, 郭稳, 秦晓婷, 于静淼, 高侃, 邓宇鲲. 腕管处正中神经超声成像研究[J]. 中国超声医学杂志, 2014, 30(2): 162-166.
[5] Wang, K., Yu, D., Yao, T., Zhang, S., Wen, L. and Gu, C. (2021) Retrospective Study of the Ultrasound Characteristics of the Tibial Nerve in Patients with Type 2 Diabetic Peripheral Neuropathy. Annals of Palliative Medicine, 10, 8787-8796.
https://doi.org/10.21037/apm-21-1573
[6] Shigeru, K., Adam, M., Hisatoshi, B., Kenzo, U. and Katsuhiko, H. (2005) Imaging of Intraneural Edema by Using Gadolinium-Enhanced MR Imaging: Experimental Compression Injury. AJNR. American Journal of Neuroradiology, 26, 973-980.
[7] Mallouhi, A., Pültzl, P., Trieb, T., Piza, H. and Bodner, G. (2006) Predictors of Carpal Tunnel Syndrome: Accuracy of Gray-Scale and Color Doppler Sonography. American Journal of Roentgenology, 186, 1240-1245.
https://doi.org/10.2214/ajr.04.1715
[8] Frijlink, D.W., Brekelmans, G.J.F. and Visser, L.H. (2012) Increased Nerve Vascularization Detected by Color Doppler Sonography in Patients with Ulnar Neuropathy at the Elbow Indicates Axonal Damage. Muscle & Nerve, 47, 188-193.
https://doi.org/10.1002/mus.23505
[9] Afsal, M., Chowdhury, V., Prakash, A., Singh, S. and Chowdhury, N. (2016) Evaluation of Peripheral Nerve Lesions with High-Resolution Ultrasonography and Color Doppler. Neurology India, 64, 1002-1009.
https://doi.org/10.4103/0028-3886.190269
[10] Ghasemi-Esfe, A.R., Khalilzadeh, O., Vaziri-Bozorg, S.M., Jajroudi, M., Shakiba, M., Mazloumi, M., et al. (2011) Color and Power Doppler US for Diagnosing Carpal Tunnel Syndrome and Determining Its Severity: A Quantitative Image Processing Method. Radiology, 261, 499-506.
https://doi.org/10.1148/radiol.11110150
[11] Dejaco, C., Stradner, M., Zauner, D., Seel, W., Simmet, N.E., Klammer, A., et al. (2013) Ultrasound for Diagnosis of Carpal Tunnel Syndrome: Comparison of Different Methods to Determine Median Nerve Volume and Value of Power Doppler Sonography. Annals of the Rheumatic Diseases, 72, 1934-1939.
https://doi.org/10.1136/annrheumdis-2012-202328
[12] Karahan, A.Y., Arslan, S., Ordahan, B., Bakdik, S. and Ekiz, T. (2018) Superb Microvascular Imaging of the Median Nerve in Carpal Tunnel Syndrome: An Electrodiagnostic and Ultrasonographic Study. Journal of Ultrasound in Medicine, 37, 2855-2861.
https://doi.org/10.1002/jum.14645
[13] Endo, T., Matsui, Y., Kawamura, D., Urita, A., Momma, D., Ota, M., et al. (2022) Diagnostic Utility of Superb Microvascular Imaging and Power Doppler Ultrasonography for Visualizing Enriched Microvascular Flow in Patients with Carpal Tunnel Syndrome. Frontiers in Neurology, 13, Article 832569.
https://doi.org/10.3389/fneur.2022.832569
[14] Sigrist, R.M.S., Liau, J., Kaffas, A.E., Chammas, M.C. and Willmann, J.K. (2017) Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics, 7, 1303-1329.
https://doi.org/10.7150/thno.18650
[15] Wee, T.C. and Simon, N.G. (2019) Ultrasound Elastography for the Evaluation of Peripheral Nerves: A Systematic Review. Muscle & Nerve, 60, 501-512.
https://doi.org/10.1002/mus.26624
[16] Ishibashi, F., Taniguchi, M., Kojima, R., Kawasaki, A., Kosaka, A. and Uetake, H. (2015) Elasticity of the Tibial Nerve Assessed by Sonoelastography Was Reduced before the Development of Neuropathy and Further Deterioration Associated with the Severity of Neuropathy in Patients with Type 2 Diabetes. Journal of Diabetes Investigation, 7, 404-412.
https://doi.org/10.1111/jdi.12408
[17] Arslan, H., Yavuz, A., İlgen, F., Aycan, A., Ozgokce, M., Akdeniz, H., et al. (2018) The Efficiency of Acoustic Radiation Force Impulse (ARFI) Elastography in the Diagnosis and Staging of Carpal Tunnel Syndrome. Journal of Medical Ultrasonics, 45, 453-459.
https://doi.org/10.1007/s10396-017-0857-7
[18] Zhang, C., Li, M., Jiang, J., Zhou, Q., Xiang, L., Huang, Y., et al. (2017) Diagnostic Value of Virtual Touch Tissue Imaging Quantification for Evaluating Median Nerve Stiffness in Carpal Tunnel Syndrome. Journal of Ultrasound in Medicine, 36, 1783-1791.
https://doi.org/10.1002/jum.14213
[19] Lai, Z., Yang, S., Shen, H., Luo, Y., Cai, X., Jiang, W., et al. (2021) Combination of High-Frequency Ultrasound and Virtual Touch Tissue Imaging and Quantification Improve the Diagnostic Efficiency for Mild Carpal Tunnel Syndrome. BMC Musculoskeletal Disorders, 22, Article No. 112.
https://doi.org/10.1186/s12891-021-03982-7
[20] Wei, M. and Ye, X. (2019) Feasibility of Point Shear Wave Elastography for Evaluating Diabetic Peripheral Neuropathy. Journal of Ultrasound in Medicine, 39, 1135-1141.
https://doi.org/10.1002/jum.15198
[21] Li, X., et al. (2022) Shear Wave Elastography in the Diagnosis of Peripheral Neuropathy in Patients with Chronic Kidney Disease Stage 5. Frontiers in Endocrinology, 13, Article 899822.
[22] Dong, B., Lyu, G., Yang, X., Wang, H. and Chen, Y. (2022) Shear Wave Elastography as a Quantitative Biomarker of Diabetic Peripheral Neuropathy: A Systematic Review and Meta-Analysis. Frontiers in Public Health, 10, Article 915883.
https://doi.org/10.3389/fpubh.2022.915883
[23] Motomiya, M., Funakoshi, T., Ishizaka, K., Nishida, M., Matsui, Y. and Iwasaki, N. (2017) Blood Flow Changes in Subsynovial Connective Tissue on Contrast‐Enhanced Ultrasonography in Patients with Carpal Tunnel Syndrome before and after Surgical Decompression. Journal of Ultrasound in Medicine, 37, 1597-1604.
https://doi.org/10.1002/jum.14500
[24] Volz, K.R., Evans, K.D., Kanner, C.D. and Dickerson, J.A. (2016) Detection of Intraneural Median Nerve Microvascularity Using Contrast‐enhanced Sonography. Journal of Ultrasound in Medicine, 35, 1309-1316.
https://doi.org/10.7863/ultra.15.07012
[25] 王磊, 卢漫, 贺凡丁, 郭璇妍. 不同时期周围神经损伤的超声造影特征研究[J]. 中国超声医学杂志, 2014, 30(3): 262-265.
https://kns.cnki.net/kcms2/article/abstract?v=PAev8JwjQitenXWh4GH4iNcgrHq4ecSJu4z7SH2ZeujTp9Kc6C2asn7WHGJGuVwCCGLsNukL2_INb40O47EVOMfvA9zarofR4-qAN17dMinqlcLtvDa5KkEARQLETcb1&uniplatform=NZKPT&language=gb
[26] Motomiya, M., Funakoshi, T. and Iwasaki, N. (2015) Intraneural Microvascular Patterns of the Median Nerve Assessed Using Contrast-Enhanced Ultrasonography in Carpal Tunnel Syndrome. Journal of Hand Surgery (European Volume), 41, 229-231.
https://doi.org/10.1177/1753193415570222
[27] Ishizaka, K., Nishida, M., Motomiya, M., Satoh, M., Inoue, M., Kudoh, Y., et al. (2014) Reliability of Peripheral Intraneural Microhemodynamics Evaluation by Using Contrast-Enhanced Ultrasonography. Journal of Medical Ultrasonics, 41, 481-486.
https://doi.org/10.1007/s10396-014-0533-0
[28] 陈思明, 朱亚琼, 王月香, 罗渝昆. 超声造影在周围神经挤压伤检测中的应用价值[J]. 中国医学科学院学报, 2020, 42(5): 640-645.
http://journal13.magtechjournal.com/yxkxy/CN/10.3881/j.issn.1000-503X.12830