[1]
|
Ostrom, Q.T., Cioffi, G., Waite, K., Kruchko, C. and Barnholtz-Sloan, J.S. (2021) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro-Oncology, 23, iii1-iii105. https://doi.org/10.1093/neuonc/noab200
|
[2]
|
国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版) [J]. 中华神经外科杂志, 2022, 38(8): 757-777。
|
[3]
|
Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J.B., et al. (2005) Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352, 987-996. https://doi.org/10.1056/nejmoa043330
|
[4]
|
Tran, B. and Rosenthal, M.A. (2010) Survival Comparison between Glioblastoma Multiforme and Other Incurable Cancers. Journal of Clinical Neuroscience, 17, 417-421. https://doi.org/10.1016/j.jocn.2009.09.004
|
[5]
|
Ostrom, Q.T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky, Y., et al. (2013) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro-Oncology, 15, ii1-ii56. https://doi.org/10.1093/neuonc/not151
|
[6]
|
Dawood, S., Austin, L. and Cristofanilli, M. (2014) Cancer Stem Cells: Implications for Cancer Therapy. Oncology (Williston Park), 28, 1101-1107, 1110.
|
[7]
|
Corbeil, D., Röper, K., Weigmann, A. and Huttner, W.B. (1998) AC133 Hematopoietic Stem Cell Antigen: Human Homologue of Mouse Kidney Prominin or Distinct Member of a Novel Protein Family? Blood, 91, 2625-2626. https://doi.org/10.1182/blood.v91.7.2625
|
[8]
|
Miraglia, S., Godfrey, W. and Buck, D. (1998) A Response to AC133 Hematopoietic Stem Cell Antigen: Human Homologue of Mouse Kidney Prominin or Distinct Member of a Novel Protein Family? Blood, 91, 4390-4391. https://doi.org/10.1182/blood.v91.11.4390
|
[9]
|
Kleinlützum, D., Hanauer, J.D.S., Muik, A., Hanschmann, K., Kays, S., Ayala-Breton, C., et al. (2017) Enhancing the Oncolytic Activity of CD133-Targeted Measles Virus: Receptor Extension or Chimerism with Vesicular Stomatitis Virus Are Most Effective. Frontiers in Oncology, 7, Article No. 127. https://doi.org/10.3389/fonc.2017.00127
|
[10]
|
Zhang, X., Lian, W., Lou, W., Han, S., Lu, C., Zuo, K., et al. (2016) Transcatheter Arterial Infusion of Autologous CD133(+) Cells for Diabetic Peripheral Artery Disease. Stem Cells International, 2016, Article ID: 6925357. https://doi.org/10.1155/2016/6925357
|
[11]
|
Singh, S.K., Clarke, I.D., Terasaki, M., et al. (2003) Identification of a Cancer Stem Cell in Human Brain Tumors. Cancer Research, 63, 5821-5828.
|
[12]
|
Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., et al. (2004) Identification of Human Brain Tumour Initiating Cells. Nature, 432, 396-401. https://doi.org/10.1038/nature03128
|
[13]
|
Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P.J., et al. (2007) CD133+ and CD133− Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Research, 67, 4010-4015. https://doi.org/10.1158/0008-5472.can-06-4180
|
[14]
|
Brescia, P., Ortensi, B., Fornasari, L., Levi, D., Broggi, G. and Pelicci, G. (2013) CD133 Is Essential for Glioblastoma Stem Cell Maintenance. Stem Cells, 31, 857-869. https://doi.org/10.1002/stem.1317
|
[15]
|
Lim, S.H., Jang, J., Park, J.O., et al. (2014) CD133-Positive Tumor Cell Content Is a Predictor of Early Recurrence in Colorectal Cancer. Journal of Gastrointestinal Oncology, 5, 447-456.
|
[16]
|
You, H., Ding, W. and Rountree, B.C. (2010) Epigenetic Regulation of Cancer Stem Cell Marker CD133 by Transforming Growth Factor-β. Hepatology, 51, 1635-1644. https://doi.org/10.1002/hep.23544
|
[17]
|
Fukamachi, H., Shimada, S., Ito, K., Ito, Y. and Yuasa, Y. (2011) CD133 Is a Marker of Gland‐Forming Cells in Gastric Tumors and Sox17 Is Involved in Its Regulation. Cancer Science, 102, 1313-1321. https://doi.org/10.1111/j.1349-7006.2011.01947.x
|
[18]
|
Liu, A., Yu, Q., Peng, Z., Huang, Y., Diao, S., Cheng, J., et al. (2017) miR-200b Inhibits CD133(+) Glioma Cells by Targeting the AKT Pathway. Oncology Letters, 13, 4701-4707. https://doi.org/10.3892/ol.2017.6055
|
[19]
|
Hambardzumyan, D., Squartro, M. and Holland, E.C. (2006) Radiation Resistance and Stem-Like Cells in Brain Tumors. Cancer Cell, 10, 454-456. https://doi.org/10.1016/j.ccr.2006.11.008
|
[20]
|
Georgia, S., Soliz, R., Li, M., Zhang, P. and Bhushan, A. (2006) P57 and Hes1 Coordinate Cell Cycle Exit with Self-Renewal of Pancreatic Progenitors. Developmental Biology, 298, 22-31. https://doi.org/10.1016/j.ydbio.2006.05.036
|
[21]
|
Chang, C., Liu, W., Hung, H., Gean, C., Tsai, H., Su, C., et al. (2017) Synergistic Inhibition of Tumor Growth by Combination Treatment with Drugs against Different Subpopulations of Glioblastoma Cells. BMC Cancer, 17, Article No. 905. https://doi.org/10.1186/s12885-017-3924-y
|
[22]
|
Ding, B., James, D., Iyer, R., Falciatori, I., Hambardzumyan, D., Wang, S., et al. (2013) Prominin 1/CD133 Endothelium Sustains Growth of Proneural Glioma. PLOS ONE, 8, e62150. https://doi.org/10.1371/journal.pone.0062150
|
[23]
|
Yang, L., Yan, Z., Wang, Y., Ma, W. and Li, C. (2016) Down‐Expression of Mir‐154 Suppresses Tumourigenesis in Cd133+ Glioblastoma Stem Cells. Cell Biochemistry and Function, 34, 404-413. https://doi.org/10.1002/cbf.3201
|
[24]
|
Kim, J.S., Shin, D.H. and Kim, J. (2018) Dual-Targeting Immunoliposomes Using Angiopep-2 and CD133 Antibody for Glioblastoma Stem Cells. Journal of Controlled Release, 269, 245-257. https://doi.org/10.1016/j.jconrel.2017.11.026
|
[25]
|
Liu, X., Wu, W., Wu, W., Yin, F., Ma, S., Qin, J., et al. (2013) A Minority Subpopulation of CD133(+)/EGFRvIII(+)/EGFR(-) Cells Acquires Stemness and Contributes to Gefitinib Resistance. CNS Neuroscience & Therapeutics, 19, 494-502. https://doi.org/10.1111/cns.12092
|
[26]
|
Jamal, M., Rath, B.H., Tsang, P.S., Camphausen, K. and Tofilon, P.J. (2012) The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-Like Cells. Neoplasia, 14, 150-158. https://doi.org/10.1593/neo.111794
|
[27]
|
Ahmed, E.M., Bandopadhyay, G., Coyle, B. and Grabowska, A. (2018) A HIF-Independent, CD133-Mediated Mechanism of Cisplatin Resistance in Glioblastoma Cells. Cellular Oncology, 41, 319-328. https://doi.org/10.1007/s13402-018-0374-8
|
[28]
|
Son, M.J., Woolard, K., Nam, D., Lee, J. and Fine, H.A. (2009) SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell, 4, 440-452. https://doi.org/10.1016/j.stem.2009.03.003
|
[29]
|
Lin, W., Modiano, J.F. and Ito, D. (2017) Stage-Specific Embryonic Antigen: Determining Expression in Canine Glioblastoma, Melanoma, and Mammary Cancer Cells. Journal of Veterinary Science, 18, 101-104. https://doi.org/10.4142/jvs.2017.18.1.101
|
[30]
|
Lendahl, U., Zimmerman, L.B. and McKay, R.D.G. (1990) CNS Stem Cells Express a New Class of Intermediate Filament Protein. Cell, 60, 585-595. https://doi.org/10.1016/0092-8674(90)90662-x
|
[31]
|
Matsuda, Y., Hagio, M. and Ishiwata, T. (2013) Nestin: A Novel Angiogenesis Marker and Possible Target for Tumor Angiogenesis. World Journal of Gastroenterology, 19, 42-48. https://doi.org/10.3748/wjg.v19.i1.42
|
[32]
|
Czekierdowska, S., Stachowicz, N., Chróściel, M. and Czekierdowski, A. (2017) Proliferation and Maturation of Intratumoral Blood Vessels in Women with Malignant Ovarian Tumors Assessed with Cancer Stem Cells Marker Nestin and Platelet Derived Growth Factor PDGF-B. Ginekologia Polska, 88, 120-128. https://doi.org/10.5603/gp.a2017.0023
|
[33]
|
Krüger, K., Wik, E., Knutsvik, G., Nalwoga, H., Klingen, T.A., Arnes, J.B., et al. (2017) Expression of Nestin Associates with BRCA1 Mutations, a Basal-Like Phenotype and Aggressive Breast Cancer. Scientific Reports, 7, Article No. 1089. https://doi.org/10.1038/s41598-017-00862-w
|
[34]
|
Strojnik, T., Røsland, G.V., Sakariassen, P.O., Kavalar, R. and Lah, T. (2007) Neural Stem Cell Markers, Nestin and Musashi Proteins, in the Progression of Human Glioma: Correlation of Nestin with Prognosis of Patient Survival. Surgical Neurology, 68, 133-143. https://doi.org/10.1016/j.surneu.2006.10.050
|
[35]
|
Dahlrot, R.H., et al. (2013) What Is the Clinical Value of Cancer Stem Cell Markers in Gliomas. International Journal of Clinical and Experimental Pathology, 6, 334-348.
|
[36]
|
Sun, T., Chen, G., Li, Y., Xie, X., Zhou, Y. and Du, Z. (2015) Aggressive Invasion Is Observed in CD133−/A2B5+ Glioma-Initiating Cells. Oncology Letters, 10, 3399-3406. https://doi.org/10.3892/ol.2015.3823
|
[37]
|
Veerkamp, J.H. and Zimmerman, A.W. (2001) Fatty Acid-Binding Proteins of Nervous Tissue. Journal of Molecular Neuroscience, 16, 133-142. https://doi.org/10.1385/jmn:16:2-3:133
|
[38]
|
Arai, Y., Funatsu, N., Numayama-Tsuruta, K., Nomura, T., Nakamura, S. and Osumi, N. (2005) Role of fabp7, a Downstream Gene of Pax6, in the Maintenance of Neuroepithelial Cells during Early Embryonic Development of the Rat Cortex. The Journal of Neuroscience, 25, 9752-9761. https://doi.org/10.1523/jneurosci.2512-05.2005
|
[39]
|
Jia, H.E., et al. (2015) Aquaporin 1 Expression in Glioma Patients and Its Potential Function in Glioma Progression. Chinese Journal of Clinical Oncology, 43, 493.
|
[40]
|
McCoy, E. and Sontheimer, H. (2007) Expression and Function of Water Channels (Aquaporins) in Migrating Malignant Astrocytes. Glia, 55, 1034-1043. https://doi.org/10.1002/glia.20524
|
[41]
|
Warth, A., Mittelbronn, M., Hülper, P., Erdlenbruch, B. and Wolburg, H. (2007) Expression of the Water Channel Protein Aquaporin-9 in Malignant Brain Tumors. Applied Immunohistochemistry & Molecular Morphology, 15, 193-198. https://doi.org/10.1097/01.pai.0000213110.05108.e9
|
[42]
|
Bello, L., Francolini, M., Marthyn, P., Zhang, J., Carroll, R.S., Nikas, D.C., et al. (2001) Αvβ3 and Αvβ5 Integrin Expression in Glioma Periphery. Neurosurgery, 49, 380-390. https://doi.org/10.1227/00006123-200108000-00022
|
[43]
|
艾文兵, 刘学勇, 熊志云, 等. 整合素αvβ3对胶质瘤细胞增殖和侵袭力影响的实验研究[J]. 中华肿瘤防治杂志, 2007, 14(19): 1450-1453.
|
[44]
|
Ogden, A.T., Waziri, A.E., Lochhead, R.A., Fusco, D., Lopez, K., Ellis, J.A., et al. (2008) Identification of A2B5+CD133− Tumor-Initiating Cells in Adult Human Gliomas. Neurosurgery, 62, 505-515. https://doi.org/10.1227/01.neu.0000316019.28421.95
|
[45]
|
汪庆, 李炎炎, 韩笑笑, 等. 建立人源A2B5+/CD133−的胶质瘤亚群干细胞样细胞株的实验研究[J]. 中国细胞生物学学报, 2018, 40(7): 1101-1110.
|
[46]
|
Xia, C., Du, Z., Liu, Z., Huang, Q. and Chan, W. (2003) A2B5 Lineages of Human Astrocytic Tumors and Their Recurrence. International Journal of Oncology, 23, 353-361. https://doi.org/10.3892/ijo.23.2.353
|
[47]
|
Xu, M., Yao, Y., Hua, W., Wu, Z., Zhong, P., Mao, Y., et al. (2014) Mouse Glioma Immunotherapy Mediated by A2B5+ GL261 Cell Lysate-Pulsed Dendritic Cells. Journal of Neuro-Oncology, 116, 497-504. https://doi.org/10.1007/s11060-013-1334-9
|