[1]
|
Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2018) An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465. https://doi.org/10.1002/jcp.27486
|
[2]
|
Lu, T.X. and Rothenberg, M.E. (2018) MicroRNA. Journal of Allergy and Clinical Immunology, 141, 1202-1207. https://doi.org/10.1016/j.jaci.2017.08.034
|
[3]
|
Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167. https://doi.org/10.3390/ijms23137167
|
[4]
|
Garofalo, M., Leva, G. and Croce, C. (2014) MicroRNAs as Anti-Cancer Therapy. Current Pharmaceutical Design, 20, 5328-5335. https://doi.org/10.2174/1381612820666140128211346
|
[5]
|
Iorio, M.V. and Croce, C.M. (2009) MicroRNAs in Cancer: Small Molecules with a Huge Impact. Journal of Clinical Oncology, 27, 5848-5856. https://doi.org/10.1200/jco.2009.24.0317
|
[6]
|
Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001) Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294, 853-858. https://doi.org/10.1126/science.1064921
|
[7]
|
Kriegel, A.J., Liu, Y., Fang, Y., Ding, X. and Liang, M. (2012) The miR-29 Family: Genomics, Cell Biology, and Relevance to Renal and Cardiovascular Injury. Physiological Genomics, 44, 237-244. https://doi.org/10.1152/physiolgenomics.00141.2011
|
[8]
|
Zhou, W., Li, H., Shang, S. and Liu, F. (2021) LncRNA KCNQ1OT1 Reverses the Effect of Sevoflurane on Hepatocellular Carcinoma Progression via Regulating the miR-29a-3p/CBX3 Axis. Brazilian Journal of Medical and Biological Research, 54, e10213. https://doi.org/10.1590/1414-431x2020e10213
|
[9]
|
Zhou, X,. Qiu, G., Yang, Y., et al. (2023) Circ_0001955 Promotes Non-Small Cell Lung Cancer Cell Proliferation and Invasion by Regulating MiR-29a-3p/NKIRAS2 Axis to Activate the Nuclear Factor-κB Pathway. Pathology International, 73, 434-443. https://doi.org/10.1111/pin.13353
|
[10]
|
Song, Q., Zhang, H., He, J., Kong, H., Tao, R., Huang, Y., et al. (2020) Long Non-Coding RNA LINC00473 Acts as a MicroRNA-29a-3p Sponge to Promote Hepatocellular Carcinoma Development by Activating Robo1-Dependent PI3K/AKT/mTOR Signaling Pathway. Therapeutic Advances in Medical Oncology, 12, 1-21. https://doi.org/10.1177/1758835920937890
|
[11]
|
Sadrkhanloo, M., Paskeh, M.D.A., Hashemi, M., Raesi, R., Bahonar, A., Nakhaee, Z., et al. (2023) New Emerging Targets in Osteosarcoma Therapy: PTEN and PI3K/AKT Crosstalk in Carcinogenesis. Pathology—Research and Practice, 251, Article ID: 154902. https://doi.org/10.1016/j.prp.2023.154902
|
[12]
|
Wang, X., Xu, W., Zhu, C., Cheng, Y. and Qi, J. (2023) PRMT7 Inhibits the Proliferation and Migration of Gastric Cancer Cells by Suppressing the PI3K/AKT Pathway via PTEN. Journal of Cancer, 14, 2833-2844. https://doi.org/10.7150/jca.88102
|
[13]
|
Yu, T., Yu, H., Xiao, D. and Cui, X. (2022) Human Bone Marrow Mesenchymal Stem Cell (hBMSCs)-Derived miR-29a-3p-Containing Exosomes Impede Laryngocarcinoma Cell Malignant Phenotypes by Inhibiting PTEN. Stem Cells International, 2022, Article ID: 8133632. https://doi.org/10.1155/2022/8133632
|
[14]
|
Liu, G., Zhu, M., Zhang, M., et al. (2023) Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers, 15, Article 1287. https://doi.org/10.3390/cancers15041287
|
[15]
|
Xia, J., Li, S., Ma, D., Guo, W., Long, H. and Yin, W. (2021) MicroRNA-29-3p Regulates the β-Catenin Pathway by Targeting IGF1 to Inhibit the Proliferation of Prolactinoma Cells. Molecular Medicine Reports, 23, Article No. 432. https://doi.org/10.3892/mmr.2021.12071
|
[16]
|
Wang, X., Liu, S., Cao, L., Zhang, T., Yue, D., Wang, L., et al. (2017) MiR-29a-3p Suppresses Cell Proliferation and Migration by Downregulating IGF1R in Hepatocellular Carcinoma. Oncotarget, 8, 86592-86603. https://doi.org/10.18632/oncotarget.21246
|
[17]
|
Wang, X., Liu, S., Cao, L., Zhang, T., Yue, D., Wang, L., et al. (2023) Correction: miR-29a-3p Suppresses Cell Proliferation and Migration by Downregulating IGF1R in Hepatocellular Carcinoma. Oncotarget, 14, 464-465. https://doi.org/10.18632/oncotarget.28398
|
[18]
|
Shao, N., Wang, D., Wang, Y., Li, Y., Zhang, Z., Jiang, Q., et al. (2018) MicroRNA-29a-3p Downregulation Causes Gab1 Upregulation to Promote Glioma Cell Proliferation. Cellular Physiology and Biochemistry, 48, 450-460. https://doi.org/10.1159/000491776
|
[19]
|
Zheng, Z., Cui, H., Wang, Y. and Yao, W. (2019) Downregulation of RPS15A by miR-29a-3p Attenuates Cell Proliferation in Colorectal Carcinoma. Bioscience, Biotechnology, and Biochemistry, 83, 2057-2064. https://doi.org/10.1080/09168451.2019.1637712
|
[20]
|
Jin, H., Wang, H., Jin, X. and Wang, W. (2021) Long Non-Coding RNA H19 Regulates LASP1 Expression in Osteosarcoma by Competitively Binding to miR-29a-3p. Oncology Reports, 46, Article No. 207. https://doi.org/10.3892/or.2021.8158
|
[21]
|
Jin, H., Wang, H., Jin, X. and Wang, W. (2024) [Corrigendum] Long Non-Coding RNA H19 Regulates LASP1 Expression in Osteosarcoma by Competitively Binding to miR-29a-3p. Oncology Reports, 51, Article No. 78. https://doi.org/10.3892/or.2024.8737
|
[22]
|
Chen, Y., Zhang, W., Yan, L., Zheng, P. and Li, J. (2020) miR-29a-3p Directly Targets Smad Nuclear Interacting Protein 1 and Inhibits the Migration and Proliferation of Cervical Cancer Hela Cells. PeerJ, 8, e10148. https://doi.org/10.7717/peerj.10148
|
[23]
|
Xu, F., Jiang, M., Tang, Q., Lin, J., Liu, X., Zhang, C., et al. (2022) miR-29a-3p Inhibits High-Grade Transformation and Epithelial-Mesenchymal Transition of Lacrimal Gland Adenoid Cystic Carcinoma by Targeting Quaking. Molecular Biology Reports, 50, 2305-2316. https://doi.org/10.1007/s11033-022-08150-1
|
[24]
|
Fujiwara, K., Yuwanita, I., Hollern, D.P. and Andrechek, E.R. (2011) Prediction and Genetic Demonstration of a Role for Activator E2Fs in MYC-Induced Tumors. Cancer Research, 71, 1924-1932. https://doi.org/10.1158/0008-5472.can-10-2386
|
[25]
|
He, H., Wang, N., Yi, X., Tang, C. and Wang, D. (2017) Long Non-Coding RNA H19 Regulates E2F1 Expression by Competitively Sponging Endogenous miR-29a-3p in Clear Cell Renal Cell Carcinoma. Cell & Bioscience, 7, Article No. 65. https://doi.org/10.1186/s13578-017-0193-z
|
[26]
|
Zhang, K., Han, X., Hu, W., Su, C. and He, B. (2022) miR-29a-3p Inhibits the Malignant Characteristics of Non-Small Cell Lung Cancer Cells by Reducing the Activity of the Wnt/β-Catenin Signaling Pathway. Oncology Letters, 24, Article No. 379. https://doi.org/10.3892/ol.2022.13499
|
[27]
|
Zhang, Y. and Wang, X. (2020) Targeting the Wnt/β-Catenin Signaling Pathway in Cancer. Journal of Hematology & Oncology, 13, Article No. 165. https://doi.org/10.1186/s13045-020-00990-3
|
[28]
|
Liu, S., Liu, D., Liu, J., Liu, J. and Zhong, M. (2021) miR‐29a‐3p Promotes Migration and Invasion in Ameloblastoma via Wnt/β‐Catenin Signaling by Targeting Catenin β Interacting Protein 1. Head & Neck, 43, 3911-3921. https://doi.org/10.1002/hed.26888
|
[29]
|
Ma, Y. and Sun, Y. (2018) miR-29a-3p Inhibits Growth, Proliferation, and Invasion of Papillary Thyroid Carcinoma by Suppressing NF-κB Signaling via Direct Targeting of OTUB2. Cancer Management and Research, 11, 13-23. https://doi.org/10.2147/cmar.s184781
|
[30]
|
Lin, G., Lin, L., Lin, H., Xu, Y., Chen, W., Liu, Y., et al. (2022) C1QTNF6 Regulated by miR‐29a-3p Promotes Proliferation and Migration in Stage I Lung Adenocarcinoma. BMC Pulmonary Medicine, 22, Article No. 285. https://doi.org/10.1186/s12890-022-02055-2
|
[31]
|
Zhang, H., Du, Y., Xin, P. and Man, X. (2022) The LINC00852/miR-29a-3p/JARID2 Axis Regulates the Proliferation and Invasion of Prostate Cancer Cell. BMC Cancer, 22, Article No. 1269. https://doi.org/10.1186/s12885-022-10263-6
|
[32]
|
Liu, Z., Yang, Z. and He, L. (2023) Effect of miR-29a-3p in Exosomes on Glioma Cells by Regulating the PI3K/AKT/HIF-1α Pathway. Molecular Medicine Reports, 27, Article No. 72. https://doi.org/10.3892/mmr.2023.12959
|
[33]
|
周箭, 黄纯兰, 刘恒伟, 等. miR-29a-3p靶向肝癌衍生生长因子抑制E6-1细胞增殖并促进其凋亡[J]. 中国实验血液学杂志, 2022, 30(6): 1650-1654.
|
[34]
|
Kong, Z., Wan, X., Lu, Y., Zhang, Y., Huang, Y., Xu, Y., et al. (2019) Circular RNA circFOXO3 Promotes Prostate Cancer Progression through Sponging miR‐29a‐3p. Journal of Cellular and Molecular Medicine, 24, 799-813. https://doi.org/10.1111/jcmm.14791
|
[35]
|
Lu, L., Ling, W. and Ruan, Z. (2021) Tam-Derived Extracellular Vesicles Containing MicroRNA-29a-3p Explain the Deterioration of Ovarian Cancer. Molecular Therapy—Nucleic Acids, 25, 468-482. https://doi.org/10.1016/j.omtn.2021.05.011
|
[36]
|
Wu, S., Zhong, B., Yang, Y., Wang, Y. and Pan, Z. (2023) ceRNA Networks in Gynecological Cancers Progression and Resistance. Journal of Drug Targeting, 31, 920-930. https://doi.org/10.1080/1061186x.2023.2261079
|
[37]
|
Shen, J., Liang, C., Su, X., Wang, Q., Ke, Y., Fang, J., et al. (2022) Dysfunction and ceRNA Network of the Tumor Suppressor miR-637 in Cancer Development and Prognosis. Biomarker Research, 10, Article No. 72. https://doi.org/10.1186/s40364-022-00419-8
|
[38]
|
Zhang, H., Li, X., Jia, M., Ji, J., Wu, Z., Chen, X., et al. (2022) Roles of H19/miR-29a-3p/COL1A1 Axis in Coe-Induced Lung Cancer. Environmental Pollution, 313, Article ID: 120194. https://doi.org/10.1016/j.envpol.2022.120194
|
[39]
|
Xiao, S. and Lou, W. (2023) Integrated Analysis Reveals a Potential Cuproptosis-Related ceRNA Axis SNHG17/miR-29a-3p/GCSH in Prostate Adenocarcinoma. Heliyon, 9, e21506. https://doi.org/10.1016/j.heliyon.2023.e21506
|
[40]
|
Liao, B., Chen, S., Li, Y., Yang, Z., Yang, Y., Deng, X., et al. (2021) LncRNA BLACAT1 Promotes Proliferation, Migration and Invasion of Prostate Cancer Cells via Regulating miR-29a-3p/DVL3 Axis. Technology in Cancer Research & Treatment, 20, 1-10. https://doi.org/10.1177/1533033820972342
|
[41]
|
Razi, S., Mozdarani, H. and Behzadi Andouhjerdi, R. (2023) Evaluation of the Potential Diagnostic Role of the Lnc-MIAT, miR-29a-3p, and FOXO3a ceRNA Networks as Noninvasive Circulatory Bioindicator in Ductal Carcinoma Breast Cancer. Breast Cancer: Basic and Clinical Research, 17, 1-11. https://doi.org/10.1177/11782234231184378
|
[42]
|
Liu, Y., Song, J., Liu, Y., Zhou, Z. and Wang, X. (2020) Transcription Activation of Circ-STAT3 Induced by Gli2 Promotes the Progression of Hepatoblastoma via Acting as a Sponge for miR-29a/b/c-3p to Upregulate STAT3/Gli2. Journal of Experimental & Clinical Cancer Research, 39, Article No. 101. https://doi.org/10.1186/s13046-020-01598-8
|
[43]
|
Liu, T., Ding, D., Wang, W., Wu, Y., Ma, D., Liu, M., et al. (2023) The Role and Clinical Significance of MicroRNA-29a-3p in the Development of Hypopharyngeal Carcinoma. Brazilian Journal of Otorhinolaryngology, 89, 401-409. https://doi.org/10.1016/j.bjorl.2023.03.001
|
[44]
|
Li, L., Zou, L., Yue, W., et al. (2022) MicroRNA-29a-3p Regulates Chemosensitivity in Hypopharyngeal Carcinoma via Targeting CDC42. Malaysian Journal of Pathology, 44, 53-60.
|
[45]
|
Casabonne, D., Benavente, Y., Seifert, J., Costas, L., Armesto, M., Arestin, M., et al. (2020) Serum Levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p and Subsequent Risk of Chronic Lymphocytic Leukemia in the EPIC Study. International Journal of Cancer, 147, 1315-1324. https://doi.org/10.1002/ijc.32894
|
[46]
|
Kim, S.S., Cho, H.J., Nam, J.S., Kim, H.J., Kang, D.R., Won, J.H., et al. (2018) Plasma MicroRNA-21, 26a, and 29a-3p as Predictive Markers for Treatment Response Following Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma. Journal of Korean Medical Science, 33, e6. https://doi.org/10.3346/jkms.2018.33.e6
|
[47]
|
Gado, M.M., Mousa, N.O., Badawy, M.A., El Taweel, M.A. and Osman, A. (2019) Assessment of the Diagnostic Potential of miR-29a-3p and miR-92a-3p as Circulatory Biomarkers in Acute Myeloid Leukemia. Asian Pacific Journal of Cancer Prevention, 20, 3625-3633. https://doi.org/10.31557/apjcp.2019.20.12.3625
|
[48]
|
Mo, W. and Cao, S. (2022) miR-29a-3p: A Potential Biomarker and Therapeutic Target in Colorectal Cancer. Clinical and Translational Oncology, 25, 563-577. https://doi.org/10.1007/s12094-022-02978-6
|
[49]
|
Guo, Y., Zhai, J., Zhang, J., Ni, C. and Zhou, H. (2019) Improved Radiotherapy Sensitivity of Nasopharyngeal Carcinoma Cells by miR-29-3p Targeting COL1A1 3’-UTR. Medical Science Monitor, 25, 3161-3169. https://doi.org/10.12659/msm.915624
|
[50]
|
Jiang, C., Liu, F., Xiao, S., He, L., Wu, W. and Zhao, Q. (2021) miR-29a-3p Enhances the Radiosensitivity of Oral Squamous Cell Carcinoma Cells by Inhibiting ADAM12. European Journal of Histochemistry, 65, Article No. 3295. https://doi.org/10.4081/ejh.2021.3295
|