miR-29a-3p在恶性肿瘤发生发展中的作用及临床应用
The Role and Clinical Application of miR-29a-3p in the Development and Progression of Malignant Tumors
DOI: 10.12677/jcpm.2025.43334, PDF, HTML, XML,    科研立项经费支持
作者: 赵泽鹏, 朱 雨, 冯俊逸:济宁医学院临床医学院(附属医院),山东 济宁;张 涛*:济宁医学院附属医院胸外科,山东 济宁
关键词: 肿瘤miRNAmiR-29a-3p机制调控ceRNATumor miRNA miR-29a-3p Mechanism Regulation ceRNA
摘要: miR-29a-3p作为微小RNA (microRNA, miRNA)家族中的重要成员,近年来在恶性肿瘤研究中备受关注。大量研究表明,miR-29a-3p在多种恶性肿瘤中表达异常,能够通过靶向IGF-1、PTEN、Robo1等多个关键基因,调控PI3K/AKT、Wnt/β-catenin、NF-κB等经典信号通路,来影响肿瘤细胞的发生发展。此外,miR-29a-3p的表达还受到多种ceRNA分子(如lncRNA H19、lncRNA SNHG17)的调控。在临床应用方面,miR-29a-3p在肿瘤的早期诊断、预后评估及放疗敏感性预测中展现出良好的应用潜力。本文就miR-29a-3p在恶性肿瘤发生发展过程中的作用机制及临床应用做一综述,为其作为潜在的肿瘤生物标志物和治疗靶点提供充足的理论依据和新的方向。
Abstract: As an important member of the microRNA (miRNA) family, miR-29a-3p has attracted much attention in the study of malignant tumors in recent years. A large number of studies have shown that miR-29a-3p is abnormally expressed in a variety of malignant tumors and can affect the occurrence and development of tumor cells by targeting multiple key genes such as IGF-1, PTEN, and Robo1, regulating classic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and NF-κB. In addition, the expression of miR-29a-3p is also regulated by a variety of ceRNA molecules (such as lncRNA H19 and lncRNA SNHG17). In terms of clinical application, miR-29a-3p shows good application potential in the early diagnosis, prognosis evaluation, and prediction of radiotherapy sensitivity of tumors. This article reviews the mechanism of action and clinical application of miR-29a-3p in the occurrence and development of malignant tumors, providing sufficient theoretical basis and new directions for it as a potential tumor biomarker and therapeutic target.
文章引用:赵泽鹏, 朱雨, 冯俊逸, 张涛. miR-29a-3p在恶性肿瘤发生发展中的作用及临床应用[J]. 临床个性化医学, 2025, 4(3): 199-207. https://doi.org/10.12677/jcpm.2025.43334

1. 前言

人类microRNA (miRNA)序列主要分布于非编码RNA的内含子或外显子区域,以及pre-mRNA的内含子中,广泛参与靶基因转录后调控过程,在生物体内发挥着不可替代的作用[1] [2]。随着癌症发病率的提高,miRNA与癌症之间的研究变得更加深入。研究发现,在不同类型的肿瘤中miRNA的表达存在显著差异,能够作为促癌或抑癌因子影响肿瘤的增殖、迁移和侵袭等生命过程。目前,miRNA被认为是潜在的肿瘤诊断和预后评估的标志物,其miRNA疗法更是在临床应用中表现出巨大潜力[3]-[5]

miR-29a-3p是miR-29家族中的一员,位于人类7号染色体上,最早被Lagos-Quintana等人发现[6] [7]。它通过与靶基因mRNA的3'-非翻译区(3'-UTR)结合参与机体的各种生理过程,包括正常细胞及肿瘤细胞的增殖、迁移、侵袭、凋亡及信号转导等生命过程。miR-29a-3p还受多种上游基因的调控,如长链非编码RNA (long non-coding RNA, lncRNA)、环状RNA (circRNAs)等[8] [9]。本文整理了近年来国内外对miR-29a-3p的相关研究,重点阐述miR-29a-3p在恶性肿瘤发生发展中的作用机制及临床应用,为未来诊断及治疗提供新的靶点,积极推动miR-29a-3p在临床实践中的应用转化。

2. miR-29a-3p在肿瘤发生发展中的作用

2.1. 对肿瘤细胞增殖的影响

细胞增殖是肿瘤发生发展的核心环节,也是肿瘤细胞迁移、侵袭及血管生成的基础过程。近年来,大量研究表明,miR-29a-3p在多数肿瘤中发挥广泛的抑癌作用。SONG等[10]研究发现,miR-29a-3p在肝癌细胞中低表达,其上调可抑制肝癌细胞的增殖。通过TargetScan预测和双萤光素酶标记法检测发现,miR-29a-3p对环状同源物1 (Robo1)具有靶向作用。两者表达呈负相关,而Robo1证实可通过PI3K/AKT信号通路影响肿瘤生长,因此,miR-29a-3p通过下调Robo1表达进而失活PI3K/AKT信号通路,最终抑制肝癌细胞的增殖。此外,有研究证实PTEN对PI3K/AKT信号也具有调控作用。PTEN通常被视为一种关键的肿瘤抑制蛋白,其异常表达与多种癌症的发展密切相关,包括骨肉瘤[11]、胃癌[12]等。然而,在喉癌研究[13]中,PTEN的作用并不是抑制癌症发展。相反,PTEN被证实作为miR-29a-3p的直接下游靶点,人骨髓间充质干细胞来源的外泌体通过释放miR-29a-3p靶向抑制PTEN的表达,从而抑制喉癌细胞的增殖。其机制同样可能涉及PI3K/AKT信号通路。

胰岛素样生长因子-1 (IGF-1)和胰岛素样生长因子-1受体(IGF-1R)是两个相互关联的蛋白,二者共同构成的IGF-1/IGF-1R信号通路在多种肿瘤的发生和发展中发挥关键调控作用[14]。在催乳素瘤研究[15]中,miR-29a-3p在MMQ和GH3细胞中表达较低。miR-29a-3p通过下调IGF-1表达,从而抑制肿瘤细胞增殖;而IGF-1本身可激活β-catenin信号通路。进一步研究表明,IGF-1的过表达逆转了miR-29a-3p对β-catenin的抑制作用,提示miR-29a-3p/IGF-1可能通过β-catenin通路影响催乳素瘤细胞的增殖。另外,在肝癌研究[16] [17]中,miR-29a-3p被证实可直接靶向IGF-1R并抑制其表达,上调miR-29a-3p通过IGF-1R可抑制肝癌细胞的增殖。

除上述研究外,miR-29a-3p对肿瘤细胞增殖的抑制作用在胶质瘤[18]、结直肠癌[19]、骨肉瘤[20] [21]、宫颈癌[22]中也有报道,分别对下游靶基因Gab1、RPS15A、LASP1、SNIP1负调节。值得注意的是,在结直肠癌研究[19]中,miR-29a-3p mimic转染组显示,CDK4和Cyclin D1的表达水平明显降低,p21的表达水平升高。在DLD-1细胞中,促凋亡Bax的表达上调,抗凋亡Bcl-2的表达下调。通过上调RPS15A的表达,成功逆转了miR-29a-3p过表达对上述细胞周期和凋亡标志物的影响。这说明miR-29a-3p对于下游基因的调控不仅仅局限在增殖过程,对肿瘤细胞的凋亡等生命过程也有一定的作用。

总体而言,miR-29a-3p通常在多种恶性肿瘤中展现抑制细胞增殖的特性。然而,值得注意的是,在某些特殊类型的肿瘤中,miR-29a-3p却呈现出促进细胞增殖的趋势。这种反常的作用表明miR-29a-3p在不同类型肿瘤中的不同特征。为深入理解其双重生物学效应,未来应加强对miR-29a-3p调控网络的系统研究,结合单细胞测序等技术揭示其在不同肿瘤环境中的作用差异,并通过动物实验与临床样本来进一步验证其功能机制与应用潜力。

2.2. 对肿瘤细胞迁移和侵袭的影响

上皮–间质转化(Epithelial-mesenchymal transition, EMT)是肿瘤细胞获得侵袭性和迁移能力的关键过程,其主要表现为上皮细胞失去极性和细胞间连接,转变为具有间质表型的细胞。XU等[23]发现,过表达miR-29a-3p可显著上调E-cadherin表达,抑制N-cadherin和Vimentin的表达,从而抑制EMT过程。当miR-29a-3p被沉默时,这些分子表达趋势相反,提示其在维持上皮表型中具有关键作用。此外,双荧光素酶标记法证实,Quaking是miR-29a-3p的直接靶点,miR-29a-3p通过结合Quaking mRNA的3'-UTR抑制了Quaking的表达。由此推测,miR-29a-3p可能通过下调Quaking表达来影响泪腺腺样囊性癌细胞的EMT过程,最终抑制肿瘤细胞的迁移和侵袭。E2F1是E2F转录因子家族成员之一,在控制细胞周期和诱导肿瘤细胞EMT过程中扮演关键角色[24]。过表达miR-29a-3p可下调E2F1的表达,抑制了CircFGFR3过表达所赋予的细胞增殖和迁移能力。其分子机制可能是抑制了CircFGFR3对卵巢癌细胞EMT过程的诱导作用。同样,在肾透明细胞癌[25]中也被证实,miR-29a-3p对E2F1具有靶向作用并且两者具有负调控关系。通过Transwell侵袭实验进一步验证了miR-29a-3p在EMT抑制中的有效性,提示其通过负调控E2F1阻断肿瘤细胞表型转化。

miR-29a-3p本身具有双面性。在非小细胞肺癌[26]中,相较于对照组,A549、H1299和H460细胞中miR-29a-3p的表达较低。划痕愈合实验和Transwell侵袭实验证实,敲低miR-29a-3p可促进肿瘤细胞的迁移和侵袭。进一步研究发现,miR-29a-3p与Wnt/β-catenin通路密切相关。Wnt/β-catenin通路是一种相对保守的通路,在不同类型肿瘤中发挥着促癌或抑癌作用[27]。上调miR-29a-3p使Wnt3a和β-catenin的蛋白表达水平下降,抑制了A549细胞中的Wnt/β-catenin通路。在小鼠肺肿瘤异种移植模型中,BALB/c裸小鼠注射转染miR-29a-3p mimic的细胞,qPCR分析显示miR-29a-3p的表达在小鼠中成功上调,肿瘤体积和重量变小,并且降低了肿瘤中Wnt3a和β-catenin的表达。这表明miR-29a-3p可通过抑制Wnt/β-catenin通路显著降低非小细胞肺癌的侵袭性。然而,在釉母细胞瘤[28]中,miR-29a-3p则表现出促癌特性。研究发现,miR-29a-3p直接作用于CTNNBIP1,导致其表达水平下降。进一步实验证实,CTNNBIP1与Wnt/β-catenin信号通路负相关。由此推测,miR-29a-3p通过抑制CTNNBIP1的表达,解除其对Wnt/β-catenin通路的抑制作用,从而激活该通路,促进釉母细胞瘤细胞的迁移与侵袭。

miR-29a-3P与NF-κB信号通路之间亦存在紧密的负向调控关系。在甲状腺乳头状癌研究[29]中,miR-29a-3p表现出明显抑癌作用。研究发现,OTUB2是miR-29a-3p的直接靶基因,OTUB2通过介导NF-κB信号中的TRAF6去泛素化,使TRAF6处于稳定状态。当OTUB2被敲低时,能够模拟miR-29a-3p过表达所产生的抗肿瘤效应。因此,miR-29a-3p通过靶向抑制OTUB2,负向调控TRAF6/NF-κB通路,达到抑制甲状腺乳头状癌细胞增殖和侵袭的作用。类似的调控机制在非小细胞肺癌中也有体现[9],miR-29a-3p可靶向调控NKIRAS2表达。敲低miR-29a-3p后,NKIRAS2表达显著上调,导致IκBβ水平下降,同时p65水平升高,从而激活NF-κB信号通路,促进肿瘤细胞增殖过程。

miR-29a-3p对迁移和侵袭的抑制作用在肺腺癌[30]、前列腺癌[31]也有报道。值得强调的是,miR-29a-3p对下游信号通路的调控作用并不仅限于迁移和侵袭方面,在其他生物学过程中同样发挥着重要作用。例如,非小细胞肺癌[9]。因此,在未来研究应进一步聚焦于miR-29a-3p的组织特异性调控机制,深入探索其与其他因子及通路之间的互作网络。通过揭示其在多层次调控中的功能特征,努力为精准肿瘤治疗提供新的方向。

2.3. 对细胞凋亡、免疫逃逸的影响

近年来,miR-29a-3p在调控肿瘤细胞凋亡及免疫逃逸方面的功能逐渐受到关注。LIU等[32]发现,肿瘤细胞释放的外泌体可携带多种miRNA,其中miR-29a-3p在患者血浆外泌体中的表达水平显著低于健康对照。进一步实验表明,在常氧及低氧条件下,过表达miR-29a-3p可显著诱导胶质瘤细胞凋亡,其机制包括促凋亡蛋白Bax表达上调、抗凋亡蛋白Bcl-2下调,以及HIF-1α表达被抑制。通过qPCR、Western blotting及双荧光素酶报告实验验证,miR-29a-3p靶向抑制PI3K表达,进而阻断PI3K/AKT/HIF-1α信号通路,诱导肿瘤细胞发生凋亡。类似作用也在肝癌[33]和前列腺癌[34]中得到证实,miR-29a-3p通过调控不同的靶基因,增强细胞对凋亡刺激的敏感性。

除凋亡调控外,miR-29a-3p在调节肿瘤免疫逃逸方面同样发挥关键作用。在卵巢癌研究[35]中,研究人员通过构建SKOV3和A2780细胞与CD8 + T细胞的共培养体系发现,与对照组相比,CD8 + T细胞中PD-L1的表达量提高。PD-L1通过与PD-1结合,抑制了T细胞的活性,使得肿瘤细胞得以逃避免疫系统的识别和攻击,从而增强抗肿瘤免疫应答。然而,经miR-29a-3p抑制剂处理的SKOV3和A2780细胞与CD8 + T细胞共培养时,发现CD8 + T细胞中PD-L1的表达减少,同时T细胞凋亡率也下降。这表明miR-29a-3p的下调可以有效抑制卵巢癌细胞的免疫逃逸过程。此外,在肝癌研究[16] [17]中,miR-29a-3p通过靶向抑制IGF-1R,间接上调趋化因子CCL5的表达。CCL5具有促进CD8 + T细胞局部募集和持续激活的功能,研究显示,CCL5表达升高与患者生存期延长密切相关,进一步提示miR-29a-3p在塑造抗肿瘤免疫微环境中的潜在作用。

上述研究表明,miR-29a-3p通过调节不同的下游靶标及通路,如PTEN、IGF-1、PI3K/AKT通路、Wnt通路、NF-κB通路等,对肿瘤细胞的恶性生物学行为产生影响,这为进一步研究miR-29a-3p与其他肿瘤之间的分子机制提供新的方向和证据。然而,其影响通常不仅仅限于单一生物学行为,而涉及多种生物学过程。miR-29a-3p与下游靶基因及通路相关机制见表1

Table 1. The Regulatory Mechanism of miR-29a-3p on Downstream Target Genes and Pathways in Tumors

1. miR-29a-3p在肿瘤中对下游靶基因及通路的调控机制

Target gene

Tumor

Regulatory effect of miR-29a-3p overexpression

Literature

NKIRAS2

Non-small cell lung cancer

Inhibit proliferation, migration and invasion

[9]

Robo1

Hepatocellular carcinoma

Inhibit proliferation, migration and invasion

[10]

PTEN

Throat cancer

Inhibit proliferation, migration and invasion

[13]

IGF-1

prolactinoma

Inhibit proliferation

[15]

IGF-1R

Hepatocellular carcinoma

Inhibit proliferation, migration, invasion and immune evasion

[16]

GAB1

Glioma

Inhibit proliferation

[18]

RPS15A

Colorectal carcinoma

Inhibit proliferation

[19]

LASP1

Osteosarcoma

Inhibit proliferation, migration and invasion

[20]

SNIP1

Cervical cancer

Inhibit proliferation, migration and invasion

[22]

Quaking

Lacrimal gland adenoid cystic carcinoma

Inhibits EMT, migration and invasion

[23]

E2F1

Ovarian cancer

Inhibits EMT, migration and invasion

[24]

E2F1

Clear cell renal cell carcinoma

Inhibit migration and invasion

[25]

Wnt/β-catenin

Non-small cell lung cancer

Inhibit proliferation, migration and invasion

[26]

CTNNBIP1

Ameloblastoma

Promote migration and invasion

[28]

OTUB2

Papillary thyroid cancer

Inhibit proliferation, migration and invasion

[29]

C1QTNF6

Lung adenocarcinoma

Inhibit proliferation, migration and invasion

[30]

JARID2

Prostate cancer

Inhibit proliferation, migration and invasion

[31]

PI3K

Glioma

Inhibit proliferation; Promote apoptosis

[32]

HDGF

Liver cancer

Inhibit proliferation; Promote apoptosis

[33]

SLC25A15

Prostate cancer

Promote apoptosis

[34]

3. miR-29a-3p有关的ceRNA调控网络

竞争性内源RNA (Competing endogenous rna, ceRNAs)是一类转录后竞争性调控miRNA的分子(lncRNA、circRNA等),具有相同的miRNA应答元件(MicroRNA Response Element, MRE),通过ceRNA/miRNA/mRNA轴参与肿瘤的多种生物学过程[36] [37]。在肺癌研究[38]中,lncRNA H19被证实可通过“海绵”机制吸附miR-29a-3p,从而调节其下游靶基因COL1A1的表达。实验表明,敲低lncRNA H19或COL1A1,或过表达miR-29a-3p均可显著抑制肺癌细胞的增殖,增强细胞黏附能力,并上调抑癌蛋白p53的表达。而在miR-29a-3p表达被抑制的条件下,敲低lncRNA H19可部分逆转由其高表达所导致的恶性表型。

铜死亡是一种新近发现的细胞程序性死亡形式,其诱导机制主要源于细胞内铜离子的异常积累,进而触发三羧酸循环(TCA)相关线粒体脂化蛋白的聚集,从而导致细胞功能障碍与死亡。XIAO等[39]在研究与铜相关基因GCSH时发现,miR-29a-3p可作为前列腺腺癌中GCSH的潜在上游miRNA,并且在前列腺腺癌中展现出抑癌作用。进一步研究发现,lncRNA SNHG17在前列腺腺癌中呈显著高表达,可能具有促癌功能。通过构建lncRNA–miRNA–mRNA ceRNA网络,研究发现lncRNA SNHG17可通过海绵机制吸附miR-29a-3p,从而解除其对铜死亡关键基因GCSH的抑制。上述结果提示,lncRNA SNHG17/miR-29a-3p/GCSH构成了前列腺腺癌中潜在的铜死亡相关ceRNA轴,有望为前列腺腺癌的治疗和预防提供新的靶点和策略。此外,类似的ceRNA调控网络在其他肿瘤中亦有报道,如前列腺癌[40]、乳腺癌[41]、肝母细胞瘤[42]等,这提示ceRNA机制在多种肿瘤的miRNA调控体系中具有显著的普遍性。

尽管目前已有多个ceRNA调控轴被发现,但大多数研究仍停留在体外细胞水平,对于ceRNA调控轴在原位肿瘤模型中的生物学效应、稳定性及临床可操作性仍缺乏系统研究。此外,ceRNA调控是否具组织特异性、与其他信号网络的交叉调控机制亦尚不明确。因此,未来可结合单细胞测序、原位杂交、功能基因组学技术,进一步揭示ceRNA在肿瘤微环境中的作用及其精准治疗潜力。

4. miR-29a-3p与肿瘤的临床应用

4.1. miR-29a-3p作为生物标志物

在下咽癌研究[43]中,通过对比40例下咽癌组织标本和非癌组织标本,发现miR-29a-3p在非癌组织和细胞中表达水平显著高于肿瘤组织,ROC曲线分析显示,miRNA-29a-3p + Ki67 + Ecadherin的ROC曲线下面积(AUC)为0.659,95% CI为0.49 ~ 0.829,相对于单独检测Ki67和E-cadherin来说,性能得到显著提高,提示其在评估下咽癌患者预后方面具有较高的临床应用价值。研究人员进一步分析了miR-29a-3p与下咽癌临床病理特征的关系,发现miR-29a-3p表达水平与下咽癌患者肿瘤大小、肿瘤分期、肿瘤分化程度、术后复发转移及生存时间呈负相关,因此,miR-29a-3p有望成为下咽癌潜在的肿瘤生物标志物。在另一项下咽癌研究[44]中,研究人员发现,无论是敏感组还是耐受组,miR-29a-3p与Cdc42 mRNA表达呈负相关。通过免疫组化检测发现,在下咽癌组织中,Cdc42的表达明显增加,而miR-29a-3p呈下调趋势。此外,Cdc42 mRNA在Ⅱ期、Ⅲ期和Ⅳ期的表达量显著高于Ⅰ期,并且随临床状态的进展而逐渐增加。在有淋巴结转移的下咽癌中,miR-29a-3p的表达水平明显低于无淋巴结转移的下咽癌,且表达水平随临床状态的进展呈下降趋势。因此miR-29a-3p与Cdc42 mRNA的联合分析有助于下咽癌进展的诊断和分型,未来有望成为下咽癌潜在的诊断生物标志物。除上述研究外,miR-29a-3p可作为潜在肿瘤生物标志物在慢性淋巴细胞白血病[45]、肝癌[46]、急性髓系白血病[47]、结肠癌[48]等也有相关报道。

4.2. miR-29a-3p对放疗敏感性的影响

放疗抵抗一直以来是癌症治疗过程中亟待解决的重要难题之一。在鼻咽癌放疗[49]中发现,CNE-2R细胞中miR-29a-3p表达水平低。过表达miR-29a-3p可显著提高鼻咽癌耐药细胞对电离辐射(ionizing radiation, IR)的敏感性,提高肿瘤细胞的凋亡率。最近,JIANG等[50]研究发现,ADAM12的表达水平会随着照射剂量的增加而提高,呈现出明显的剂量依赖性。而ADAM12本身具有增强细胞增殖、迁移,抑制细胞凋亡的能力,所以随着ADAM12表达上调,口腔鳞状细胞癌对放疗的敏感性降低。然而研究发现,miR-29a-3p对ADAM12具有靶向作用。当miR-29a-3p过表达时,通过靶向抑制ADAM12的表达,使口腔鳞状细胞癌对放疗的敏感性得到增强,有效提高放疗治疗效果。总之,miR-29a-3p与放疗的关联研究为未来开发更有效的放射治疗提供了新的方向。

5. 展望

当前研究指出,在不同类型肿瘤中,miR-29a-3p的表达水平存在显著差异。通过调控多种下游靶点和信号通路,如PTEN、IGF-1、PI3K/AKT通路、Wnt通路、NF-κB通路等,影响肿瘤细胞的多个生物学过程,包括细胞增殖、迁移、侵袭、凋亡和免疫侵袭。这些发现为深入理解肿瘤发生发展机制提供了重要线索,并为未来肿瘤的靶向治疗提供了新的方向。

在癌症的治疗过程中,一些癌细胞通过各种逃避手段成功规避了治疗诱导的凋亡,从而导致治疗耐药性和癌症复发。前列腺癌的研究中已探索出关于铜死亡相关的潜在ceRNA网络,这为进一步探索诱导癌细胞凋亡提供了方向,同时也为研究新型细胞凋亡机制(如铁死亡、双硫死亡等)的ceRNA网络提供了契机。尽管ceRNA机制已经得到了广泛的研究,但仍然存在许多挑战,如准确识别ceRNA网络中的关键部分以及解析ceRNA网络在不同类型肿瘤中的变化等。因此,未来可从以下几方面进行研究,一、利用单细胞测序技术揭示ceRNA网络在不同细胞亚群中的差异;二、开发新的实验技术揭示ceRNA网络的调控机制;三、探索ceRNA网络在疾病诊断和治疗中的潜在应用,开发新的靶向ceRNA网络的治疗。

作为一种潜在的肿瘤生物标志物,在肿瘤的早期诊断、预后评估以及药物研发上具有重要意义,对改善肿瘤患者的生存质量和治疗效果具有重要的临床和科研价值。综合而言,miR-29a-3p的深入研究不仅有助于揭示肿瘤发生发展机制,还为未来的治疗策略提供了新的思路和方向。

基金项目

济宁市重点研发计划(编号:2022YXNS077),济宁医学院高层次科研项目培育计划(编号:JYGC2021FKJ005)。

NOTES

*通讯作者。

参考文献

[1] Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2018) An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465.
https://doi.org/10.1002/jcp.27486
[2] Lu, T.X. and Rothenberg, M.E. (2018) MicroRNA. Journal of Allergy and Clinical Immunology, 141, 1202-1207.
https://doi.org/10.1016/j.jaci.2017.08.034
[3] Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167.
https://doi.org/10.3390/ijms23137167
[4] Garofalo, M., Leva, G. and Croce, C. (2014) MicroRNAs as Anti-Cancer Therapy. Current Pharmaceutical Design, 20, 5328-5335.
https://doi.org/10.2174/1381612820666140128211346
[5] Iorio, M.V. and Croce, C.M. (2009) MicroRNAs in Cancer: Small Molecules with a Huge Impact. Journal of Clinical Oncology, 27, 5848-5856.
https://doi.org/10.1200/jco.2009.24.0317
[6] Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001) Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294, 853-858.
https://doi.org/10.1126/science.1064921
[7] Kriegel, A.J., Liu, Y., Fang, Y., Ding, X. and Liang, M. (2012) The miR-29 Family: Genomics, Cell Biology, and Relevance to Renal and Cardiovascular Injury. Physiological Genomics, 44, 237-244.
https://doi.org/10.1152/physiolgenomics.00141.2011
[8] Zhou, W., Li, H., Shang, S. and Liu, F. (2021) LncRNA KCNQ1OT1 Reverses the Effect of Sevoflurane on Hepatocellular Carcinoma Progression via Regulating the miR-29a-3p/CBX3 Axis. Brazilian Journal of Medical and Biological Research, 54, e10213.
https://doi.org/10.1590/1414-431x2020e10213
[9] Zhou, X,. Qiu, G., Yang, Y., et al. (2023) Circ_0001955 Promotes Non-Small Cell Lung Cancer Cell Proliferation and Invasion by Regulating MiR-29a-3p/NKIRAS2 Axis to Activate the Nuclear Factor-κB Pathway. Pathology International, 73, 434-443.
https://doi.org/10.1111/pin.13353
[10] Song, Q., Zhang, H., He, J., Kong, H., Tao, R., Huang, Y., et al. (2020) Long Non-Coding RNA LINC00473 Acts as a MicroRNA-29a-3p Sponge to Promote Hepatocellular Carcinoma Development by Activating Robo1-Dependent PI3K/AKT/mTOR Signaling Pathway. Therapeutic Advances in Medical Oncology, 12, 1-21.
https://doi.org/10.1177/1758835920937890
[11] Sadrkhanloo, M., Paskeh, M.D.A., Hashemi, M., Raesi, R., Bahonar, A., Nakhaee, Z., et al. (2023) New Emerging Targets in Osteosarcoma Therapy: PTEN and PI3K/AKT Crosstalk in Carcinogenesis. PathologyResearch and Practice, 251, Article ID: 154902.
https://doi.org/10.1016/j.prp.2023.154902
[12] Wang, X., Xu, W., Zhu, C., Cheng, Y. and Qi, J. (2023) PRMT7 Inhibits the Proliferation and Migration of Gastric Cancer Cells by Suppressing the PI3K/AKT Pathway via PTEN. Journal of Cancer, 14, 2833-2844.
https://doi.org/10.7150/jca.88102
[13] Yu, T., Yu, H., Xiao, D. and Cui, X. (2022) Human Bone Marrow Mesenchymal Stem Cell (hBMSCs)-Derived miR-29a-3p-Containing Exosomes Impede Laryngocarcinoma Cell Malignant Phenotypes by Inhibiting PTEN. Stem Cells International, 2022, Article ID: 8133632.
https://doi.org/10.1155/2022/8133632
[14] Liu, G., Zhu, M., Zhang, M., et al. (2023) Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers, 15, Article 1287.
https://doi.org/10.3390/cancers15041287
[15] Xia, J., Li, S., Ma, D., Guo, W., Long, H. and Yin, W. (2021) MicroRNA-29-3p Regulates the β-Catenin Pathway by Targeting IGF1 to Inhibit the Proliferation of Prolactinoma Cells. Molecular Medicine Reports, 23, Article No. 432.
https://doi.org/10.3892/mmr.2021.12071
[16] Wang, X., Liu, S., Cao, L., Zhang, T., Yue, D., Wang, L., et al. (2017) MiR-29a-3p Suppresses Cell Proliferation and Migration by Downregulating IGF1R in Hepatocellular Carcinoma. Oncotarget, 8, 86592-86603.
https://doi.org/10.18632/oncotarget.21246
[17] Wang, X., Liu, S., Cao, L., Zhang, T., Yue, D., Wang, L., et al. (2023) Correction: miR-29a-3p Suppresses Cell Proliferation and Migration by Downregulating IGF1R in Hepatocellular Carcinoma. Oncotarget, 14, 464-465.
https://doi.org/10.18632/oncotarget.28398
[18] Shao, N., Wang, D., Wang, Y., Li, Y., Zhang, Z., Jiang, Q., et al. (2018) MicroRNA-29a-3p Downregulation Causes Gab1 Upregulation to Promote Glioma Cell Proliferation. Cellular Physiology and Biochemistry, 48, 450-460.
https://doi.org/10.1159/000491776
[19] Zheng, Z., Cui, H., Wang, Y. and Yao, W. (2019) Downregulation of RPS15A by miR-29a-3p Attenuates Cell Proliferation in Colorectal Carcinoma. Bioscience, Biotechnology, and Biochemistry, 83, 2057-2064.
https://doi.org/10.1080/09168451.2019.1637712
[20] Jin, H., Wang, H., Jin, X. and Wang, W. (2021) Long Non-Coding RNA H19 Regulates LASP1 Expression in Osteosarcoma by Competitively Binding to miR-29a-3p. Oncology Reports, 46, Article No. 207.
https://doi.org/10.3892/or.2021.8158
[21] Jin, H., Wang, H., Jin, X. and Wang, W. (2024) [Corrigendum] Long Non-Coding RNA H19 Regulates LASP1 Expression in Osteosarcoma by Competitively Binding to miR-29a-3p. Oncology Reports, 51, Article No. 78.
https://doi.org/10.3892/or.2024.8737
[22] Chen, Y., Zhang, W., Yan, L., Zheng, P. and Li, J. (2020) miR-29a-3p Directly Targets Smad Nuclear Interacting Protein 1 and Inhibits the Migration and Proliferation of Cervical Cancer Hela Cells. PeerJ, 8, e10148.
https://doi.org/10.7717/peerj.10148
[23] Xu, F., Jiang, M., Tang, Q., Lin, J., Liu, X., Zhang, C., et al. (2022) miR-29a-3p Inhibits High-Grade Transformation and Epithelial-Mesenchymal Transition of Lacrimal Gland Adenoid Cystic Carcinoma by Targeting Quaking. Molecular Biology Reports, 50, 2305-2316.
https://doi.org/10.1007/s11033-022-08150-1
[24] Fujiwara, K., Yuwanita, I., Hollern, D.P. and Andrechek, E.R. (2011) Prediction and Genetic Demonstration of a Role for Activator E2Fs in MYC-Induced Tumors. Cancer Research, 71, 1924-1932.
https://doi.org/10.1158/0008-5472.can-10-2386
[25] He, H., Wang, N., Yi, X., Tang, C. and Wang, D. (2017) Long Non-Coding RNA H19 Regulates E2F1 Expression by Competitively Sponging Endogenous miR-29a-3p in Clear Cell Renal Cell Carcinoma. Cell & Bioscience, 7, Article No. 65.
https://doi.org/10.1186/s13578-017-0193-z
[26] Zhang, K., Han, X., Hu, W., Su, C. and He, B. (2022) miR-29a-3p Inhibits the Malignant Characteristics of Non-Small Cell Lung Cancer Cells by Reducing the Activity of the Wnt/β-Catenin Signaling Pathway. Oncology Letters, 24, Article No. 379.
https://doi.org/10.3892/ol.2022.13499
[27] Zhang, Y. and Wang, X. (2020) Targeting the Wnt/β-Catenin Signaling Pathway in Cancer. Journal of Hematology & Oncology, 13, Article No. 165.
https://doi.org/10.1186/s13045-020-00990-3
[28] Liu, S., Liu, D., Liu, J., Liu, J. and Zhong, M. (2021) miR‐29a‐3p Promotes Migration and Invasion in Ameloblastoma via Wnt/β‐Catenin Signaling by Targeting Catenin β Interacting Protein 1. Head & Neck, 43, 3911-3921.
https://doi.org/10.1002/hed.26888
[29] Ma, Y. and Sun, Y. (2018) miR-29a-3p Inhibits Growth, Proliferation, and Invasion of Papillary Thyroid Carcinoma by Suppressing NF-κB Signaling via Direct Targeting of OTUB2. Cancer Management and Research, 11, 13-23.
https://doi.org/10.2147/cmar.s184781
[30] Lin, G., Lin, L., Lin, H., Xu, Y., Chen, W., Liu, Y., et al. (2022) C1QTNF6 Regulated by miR‐29a-3p Promotes Proliferation and Migration in Stage I Lung Adenocarcinoma. BMC Pulmonary Medicine, 22, Article No. 285.
https://doi.org/10.1186/s12890-022-02055-2
[31] Zhang, H., Du, Y., Xin, P. and Man, X. (2022) The LINC00852/miR-29a-3p/JARID2 Axis Regulates the Proliferation and Invasion of Prostate Cancer Cell. BMC Cancer, 22, Article No. 1269.
https://doi.org/10.1186/s12885-022-10263-6
[32] Liu, Z., Yang, Z. and He, L. (2023) Effect of miR-29a-3p in Exosomes on Glioma Cells by Regulating the PI3K/AKT/HIF-1α Pathway. Molecular Medicine Reports, 27, Article No. 72.
https://doi.org/10.3892/mmr.2023.12959
[33] 周箭, 黄纯兰, 刘恒伟, 等. miR-29a-3p靶向肝癌衍生生长因子抑制E6-1细胞增殖并促进其凋亡[J]. 中国实验血液学杂志, 2022, 30(6): 1650-1654.
[34] Kong, Z., Wan, X., Lu, Y., Zhang, Y., Huang, Y., Xu, Y., et al. (2019) Circular RNA circFOXO3 Promotes Prostate Cancer Progression through Sponging miR‐29a‐3p. Journal of Cellular and Molecular Medicine, 24, 799-813.
https://doi.org/10.1111/jcmm.14791
[35] Lu, L., Ling, W. and Ruan, Z. (2021) Tam-Derived Extracellular Vesicles Containing MicroRNA-29a-3p Explain the Deterioration of Ovarian Cancer. Molecular TherapyNucleic Acids, 25, 468-482.
https://doi.org/10.1016/j.omtn.2021.05.011
[36] Wu, S., Zhong, B., Yang, Y., Wang, Y. and Pan, Z. (2023) ceRNA Networks in Gynecological Cancers Progression and Resistance. Journal of Drug Targeting, 31, 920-930.
https://doi.org/10.1080/1061186x.2023.2261079
[37] Shen, J., Liang, C., Su, X., Wang, Q., Ke, Y., Fang, J., et al. (2022) Dysfunction and ceRNA Network of the Tumor Suppressor miR-637 in Cancer Development and Prognosis. Biomarker Research, 10, Article No. 72.
https://doi.org/10.1186/s40364-022-00419-8
[38] Zhang, H., Li, X., Jia, M., Ji, J., Wu, Z., Chen, X., et al. (2022) Roles of H19/miR-29a-3p/COL1A1 Axis in Coe-Induced Lung Cancer. Environmental Pollution, 313, Article ID: 120194.
https://doi.org/10.1016/j.envpol.2022.120194
[39] Xiao, S. and Lou, W. (2023) Integrated Analysis Reveals a Potential Cuproptosis-Related ceRNA Axis SNHG17/miR-29a-3p/GCSH in Prostate Adenocarcinoma. Heliyon, 9, e21506.
https://doi.org/10.1016/j.heliyon.2023.e21506
[40] Liao, B., Chen, S., Li, Y., Yang, Z., Yang, Y., Deng, X., et al. (2021) LncRNA BLACAT1 Promotes Proliferation, Migration and Invasion of Prostate Cancer Cells via Regulating miR-29a-3p/DVL3 Axis. Technology in Cancer Research & Treatment, 20, 1-10.
https://doi.org/10.1177/1533033820972342
[41] Razi, S., Mozdarani, H. and Behzadi Andouhjerdi, R. (2023) Evaluation of the Potential Diagnostic Role of the Lnc-MIAT, miR-29a-3p, and FOXO3a ceRNA Networks as Noninvasive Circulatory Bioindicator in Ductal Carcinoma Breast Cancer. Breast Cancer: Basic and Clinical Research, 17, 1-11.
https://doi.org/10.1177/11782234231184378
[42] Liu, Y., Song, J., Liu, Y., Zhou, Z. and Wang, X. (2020) Transcription Activation of Circ-STAT3 Induced by Gli2 Promotes the Progression of Hepatoblastoma via Acting as a Sponge for miR-29a/b/c-3p to Upregulate STAT3/Gli2. Journal of Experimental & Clinical Cancer Research, 39, Article No. 101.
https://doi.org/10.1186/s13046-020-01598-8
[43] Liu, T., Ding, D., Wang, W., Wu, Y., Ma, D., Liu, M., et al. (2023) The Role and Clinical Significance of MicroRNA-29a-3p in the Development of Hypopharyngeal Carcinoma. Brazilian Journal of Otorhinolaryngology, 89, 401-409.
https://doi.org/10.1016/j.bjorl.2023.03.001
[44] Li, L., Zou, L., Yue, W., et al. (2022) MicroRNA-29a-3p Regulates Chemosensitivity in Hypopharyngeal Carcinoma via Targeting CDC42. Malaysian Journal of Pathology, 44, 53-60.
[45] Casabonne, D., Benavente, Y., Seifert, J., Costas, L., Armesto, M., Arestin, M., et al. (2020) Serum Levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR-223-3p and Subsequent Risk of Chronic Lymphocytic Leukemia in the EPIC Study. International Journal of Cancer, 147, 1315-1324.
https://doi.org/10.1002/ijc.32894
[46] Kim, S.S., Cho, H.J., Nam, J.S., Kim, H.J., Kang, D.R., Won, J.H., et al. (2018) Plasma MicroRNA-21, 26a, and 29a-3p as Predictive Markers for Treatment Response Following Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma. Journal of Korean Medical Science, 33, e6.
https://doi.org/10.3346/jkms.2018.33.e6
[47] Gado, M.M., Mousa, N.O., Badawy, M.A., El Taweel, M.A. and Osman, A. (2019) Assessment of the Diagnostic Potential of miR-29a-3p and miR-92a-3p as Circulatory Biomarkers in Acute Myeloid Leukemia. Asian Pacific Journal of Cancer Prevention, 20, 3625-3633.
https://doi.org/10.31557/apjcp.2019.20.12.3625
[48] Mo, W. and Cao, S. (2022) miR-29a-3p: A Potential Biomarker and Therapeutic Target in Colorectal Cancer. Clinical and Translational Oncology, 25, 563-577.
https://doi.org/10.1007/s12094-022-02978-6
[49] Guo, Y., Zhai, J., Zhang, J., Ni, C. and Zhou, H. (2019) Improved Radiotherapy Sensitivity of Nasopharyngeal Carcinoma Cells by miR-29-3p Targeting COL1A1 3’-UTR. Medical Science Monitor, 25, 3161-3169.
https://doi.org/10.12659/msm.915624
[50] Jiang, C., Liu, F., Xiao, S., He, L., Wu, W. and Zhao, Q. (2021) miR-29a-3p Enhances the Radiosensitivity of Oral Squamous Cell Carcinoma Cells by Inhibiting ADAM12. European Journal of Histochemistry, 65, Article No. 3295.
https://doi.org/10.4081/ejh.2021.3295