代谢相关性脂肪性肝病的研究进展
Metabolic Correlation Research Progress of Fatty Liver Disease
摘要: 代谢相关性脂肪性肝病(metabolic dysfunction-associated fatty liver disease, MAFLD)是遗传易感个体由于营养过剩和胰岛抵抗,引起的慢性进展性肝病,疾病谱包括代谢相关(非酒精性)性脂肪肝、代谢相关性肝炎及其相关纤维化和肝硬化。于2024年7月份中华医学会肝病学分会决定将非酒精性脂肪性肝病(non -alcoholic fatty liver disease, NAFLD)正式更名为代谢相关性脂肪性肝病,本文不做区分。NAFLD全球流行率已超过总人口的四分之一,而我国形势尤为严峻,NAFLD不仅对个体健康构成重大威胁,亦导致家庭和社会医疗成本急剧攀升。因此,深入探究其流行特征、诊断策略及危险因素具有重要公共卫生意义,本文将围绕上述三方面展开系统性综述。
Abstract: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic progressive liver disease that occurs in genetically susceptible individuals due to overnutrition and insulin resistance. The disease spectrum includes metabolic-related (non-alcoholic) fatty liver, metabolic-related hepatitis, and related fibrosis and cirrhosis. In July 2024, the Chinese Society of Hepatology decided to officially rename non-alcoholic fatty liver disease (NAFLD) as MAFLD. This article does not make a distinction between the two. The global prevalence of NAFLD has exceeded a quarter of the total population, and the situation in China is particularly severe. NAFLD not only poses a significant threat to individual health but also leads to a sharp increase in medical costs for families and society. Therefore, in-depth exploration of its epidemiological characteristics, diagnostic strategies, and risk factors has important public health significance. This article will conduct a systematic review of the above three aspects.
文章引用:薛春漫, 边浩欣. 代谢相关性脂肪性肝病的研究进展[J]. 临床个性化医学, 2025, 4(3): 242-252. https://doi.org/10.12677/jcpm.2025.43339

1. 流行现状

非酒精性脂肪性肝病(NAFLD)是一种与乙醇摄入或其他明确肝损因素无关的临床病理综合征,其核心特征为肝细胞内大泡性脂肪过度沉积及脂质代谢异常[1]。该疾病谱涵盖从单纯性肝脂肪变性到非酒精性脂肪性肝炎(NASH)的进展过程,后者可能进一步发展为肝纤维化、肝硬化甚至肝细胞癌(HCC),同时显著增加肝脏相关并发症及全因死亡率[2] [3]。流行病学调查显示,NAFLD全球流行率已超过总人口的四分之一[4],而我国形势尤为严峻:全国患病率达29.2% [5],显著高于全球均值;预测模型表明,至2030年我国NAFLD患者将突破3.146亿,成为全球疾病负担增幅最大的国家[6]。这一增长趋势与居民生活方式转变、膳食能量摄入失衡及健康认知不足密切相关,且呈现年轻化与快速蔓延的特点。

1.1. 国外流行现状

NAFLD作为全球流行最广泛的慢性肝病之一,其患病率持续攀升且呈现显著地域异质性。流行病学数据显示,近二十年间各国NAFLD流行状况因诊断标准、种族构成及地域差异呈现显著异质性:北美地区:基于腹部超声诊断的总体患病率达35.30% [7],其中美国不同族裔患病率差异显著,拉美裔(22.9%)高于白种人(14.4%)及黑人群体(13.0%) [8]南美地区:总体患病率为30.45% [9],但细分人群研究显示,智利拉美裔人群为23.4% [10],巴西55岁以上中老年群体达35.2% [11],哥伦比亚男性空军检出率为26.6% [12]欧洲地区:约25%人口受累[13],荷兰老年人群患病率升至33.3% [14],意大利成年人群介于22.5%~27.0% [15]非洲地区:总体患病率最低(13.48%),尼日利亚研究数据仅为8.7% [16]澳大利亚:现存患者约555.6万例[17],青少年患病率为12.8% [18]亚洲地区:总体患病率29.6%,其中日本最低(22.3%),印度尼西亚高达51.0% [19]。上述数据表明,NAFLD的流行已突破地域与人群界限,其多维度流行特征凸显其作为全球性公共卫生挑战的紧迫性。

1.2. 国内流行现状

NAFLD对我国居民健康构成的威胁已呈现多维度特征。自20世纪90年代我国通过腹部超声开展NAFLD流行病学研究以来,成年人群患病率从最初的5.2%~12.9% [20]持续攀升。当前,NAFLD已占据中国慢性肝病病因构成的50% [21],成为肝脏生化指标异常的首要诱因及慢性肝病首要类型[22],其流行特征具有显著时空异质性:1. 时间演变趋势:基于1999~2018年的荟萃分析[5]显示,我国NAFLD患病率呈现三阶段增长:21世纪初为23.8%,2010年前后增速加快,至2018年达32.9%,反映出疾病负担持续加重的态势。2. 地域分布特征高发区域:台湾地区(39.9%)、华北(36.41%)、香港(31.5%)中高发区域(>20%):华南、西北、东北、华东、华中低发区域:西南地区(16.18%) [23] [24]这种梯度差异可能与区域经济水平、饮食习惯及环境因素密切相关。3. 人群分层差异年龄维度:儿童青少年:深圳龙华区中小学生10.15% [25],西安青少年8.1% [26]成年人群:惠州城乡对比显示城市患病率(16.39%)显著高于农村(12.17%) [27]中老年群体:乌鲁木齐中年人群54% [28],武汉老年人群44.43% [29],三亚老年人群23.78% [30]民族差异:藏族(46.05%) > 汉族(32.02%) [31]-[33]另外尽管儿童青少年NAFLD研究数据有限,但其病理进展风险较成人更高,更易并发代谢综合征及心血管疾病,显著增加远期死亡率[34],亟需引起公共卫生关注。

2. NAFLD诊断方法的临床评估与技术进展

2.1. 肝脏穿刺活检

目前,肝组织病理学活检仍是临床诊断NAFLD的金标准[35]。该技术通过经皮穿刺或经颈静脉、股静脉等血管介入路径获取肝组织标本,能够对肝脏脂肪浸润程度、炎症活动度、组织结构改变及纤维化分期(F0-F4)进行精准评估。然而,作为侵入性检查,其临床应用存在显著限制:研究[36]显示,经皮肝活检术后并发症发生率约为5.6%,其中74%患者出现穿刺部位疼痛,33%存在局部或全身性出血[37]。此外,该技术存在采样误差风险,包括穿刺针型号差异(如16G与18G针具)、样本长度不足及病理医师判读主观性等问题,使其难以适用于流行病学调查、高危人群筛查、治疗动态监测及长期预后随访等场景。

2.2. 影像学检查

在无创诊断领域,影像学技术因可重复性强、风险可控等特点成为主流选择。腹部超声检查作为首选方法,被EASL/EASD/EASO联合指南推荐用于NAFLD初步评估[38]。其通过肝脏回声增强、深部衰减及血管模糊等特征判断脂肪变性程度,对中重度脂肪肝(脂肪含量 > 30%)的诊断效能显著[39],但在肥胖患者(BMI ≥ 30 kg/m2)中声波穿透性下降,导致假阴性率升高[40];对轻度脂肪变性(5%~20%)的敏感性仅60.9%~65% [41],存在较大漏诊风险。尽管如此,其无辐射暴露、检查成本低廉(约为CT的1/5)及操作便捷性仍支撑其成为临床一线工具。

CT技术通过测量肝脏与脾脏的X线衰减值差值(CT值 ≤ 10HU提示脂肪肝)实现半定量分析,对中重度病变的诊断特异性达89%~95% [42],但存在两大局限:一是辐射剂量问题,限制其用于儿童、育龄妇女及需多次复查的患者;二是对轻度脂肪肝(10%~20%脂肪含量)的敏感性仅51.5%~62.3% [43],且受扫描参数(如管电压、重建算法)影响,不同机型间结果可比性较差。相比之下,磁共振成像(MRI)技术基于化学位移编码或质子密度脂肪分数(PDFF)测定,可量化肝脏脂肪含量,对轻度脂肪变性的检测灵敏度达91%~97%,特异度超过92% [43],显著优于超声。

综上,肝活检与影像学检查在NAFLD诊断中形成互补关系:前者提供病理金标准但存在创伤风险,后者实现无创筛查但存在敏感度差异。临床实践中需综合考量疾病阶段(疑似轻度或中重度)、患者基础状况(如肥胖、肾功能)、医疗资源可及性(如MRI设备配置)及卫生经济学成本,制定个体化诊断路径。未来仍需开发更高灵敏度、更低成本的无创生物标志物或新型影像技术以优化诊断体系。

2.3. 非侵入性方法

NAFLD的诊断需权衡病理准确性、患者风险及医疗资源。肝活检仍是明确疾病分期的金标准,而影像学联合生物标志物的无创模式正逐步成为一线评估工具。临床实践中,应根据个体化风险分层及动态监测需求选择适宜方法。生物学标志物:从单一指标到联合诊断脂肪变性评估常用指标脂肪肝指数(FLI):基于BMI、腰围、甘油三酯和GGT,AUC = 0.65 [44] [45]NASH鉴别诊断CK-18:作为凋亡标志物,其片段M30/M65与半胱天冬酶活性正相关,但单一检测敏感度仅64%,阴性预测值67% [46] [47]联合诊断策略:CK-18联合FGF-21两步法可将阳性预测值提升至82%,阴性预测值达74% [48],显著优于单一指标。纤维化分期筛查工具:FIB-4和NFS对晚期纤维化(F3-F4)的排除效能优异[49]分层验证ELF试验:联合HA、PIIINP、TIMP-1,区分早期与晚期纤维化的AUC = 0.86 [50]BARD + BAAT联合评分:敏感度76.35%,适用于基层医疗机构初筛[51]

瞬时弹性成像(TE)优势:快速检测肝硬度(LSM),诊断晚期纤维化[52]局限性:肥胖导致15.8%结果不可靠[53]技术改进:XL探头可将有效测量成功率提升至90% (vs. M探头74%) [54] [55]磁共振弹性成像(MRE)诊断效能:脂肪变性与纤维化同步评估,AUC较TE提高0.07~0.12 [56]临床瓶颈:设备依赖性强(需3T MRI)、单次检查耗时 > 40分钟、成本高昂(约超声的15倍) [57]MRI-PDFF技术突破:全肝脂肪定量误差 < 1%,已被FDA批准用于NASH II期临床试验替代终点[58]应用场景:动态监测脂肪含量变化(如药物治疗后减少≥30%)。新兴技术探索2D-SWE:二维剪切波弹性成像对晚期纤维化诊断AUC = 0.96 (vs. TE 0.89) [59]ARFI:实时动态成像,肥胖患者检测成功率 > 95%,且不受肋间隙狭窄限制[60]

经济学评价NITs可减少约40%的肝活检需求,人均医疗成本降低2.3~4.7万元/年[61]。非侵入性检测技术正逐步重构NAFLD的诊断范式,生物学标志物与弹性成像的联合应用显著提升了筛查效率和诊断精度。然而,技术标准化、成本控制及特殊人群适用性仍是临床转化中的核心挑战。未来需进一步开发智能化、可及性高的分层诊断系统,以应对NAFLD全球流行带来的公共卫生压力。

NAFLD的诊断技术正从单一参数评估向多维度整合迈进。未来需聚焦亚组精准诊断、技术成本控制及全生命周期管理,通过技术创新与临床转化结合,构建分层、动态的诊疗体系,最终实现疾病负担的有效控制。

3. 危险因素

3.1. 肥胖类型与NAFLD

Meta分析显示,风险分层全身性肥胖(BMI驱动)存在剂量效应关系,即BMI每增加1 kg/m2,NAFLD风险提升18% [61]严重肝病转化:BMI > 30 kg/m2患者进展至肝硬化风险增加20%,肝脏相关死亡风险提升14% [62]中心性肥胖(内脏脂肪驱动)指标优选性:WHtR对NAFLD的预测效能显著高于BMI,尤其在女性群体差异更显著[63]协同代谢损伤:WHtR ≥ 0.5合并高尿酸血症时,NAFLD风险激增至对照组的4.3倍[64]。我国非肥胖NAFLD占比达15%~56%,其内脏脂肪面积(VFA)显著高于BMI匹配对照组[65]病理机制脂肪异位沉积:肝内脂质溢出导致脂肪–胰岛轴紊乱,引发胰岛素抵抗(HOMA-IR升高2.1倍) [66]代谢炎症:内脏脂肪分泌IL-6、TNF-α等促炎因子,驱动肝脏Kupffer细胞活化。

3.2. 代谢综合征(MetS)与NAFLD

NAFLD患者中MetS患病率达59.3%,显著高于非NAFLD人群[67]。张明团队的前瞻性队列研究[68]揭示,随着肝细胞脂肪变性程度从轻度(5%~33%)、中度(34%~66%)向重度(≥67%)进展,证实代谢异常与肝脏病理改变存在协同恶化趋势。从病理生理学机制分析,NAFLD被公认为MS在肝脏的靶器官损害表现形式。胰岛素抵抗作为共同发病基础,通过促进外周脂肪分解和肝脏脂质新生,导致肝细胞内甘油三酯过度沉积;而脂肪组织释放的游离脂肪酸、炎症因子(如TNF-α、IL-6)以及脂肪因子(如脂联素减少、瘦素抵抗)进一步加重肝脏氧化应激和脂毒性。反之,肝脏脂肪变性通过诱发系统性低度炎症反应、加剧胰岛素抵抗和血脂异常,形成“肝–代谢轴”恶性循环。这种双向互作机制已被国际肝病学会(EASL)列为代谢相关脂肪性肝病(MAFLD)诊断标准的核心要素[69]

3.3. 胰岛素抵抗与NAFLD

胰岛素抵抗的生物学定义与评估体系

胰岛素抵抗(IR)是代谢综合征的核心病理状态,其特征为靶组织(骨骼肌、脂肪组织及肝脏)对胰岛素介导的葡萄糖摄取和利用效率显著降低。在临床评估中,稳态模型评估的胰岛素抵抗指数(HOMA-IR)是最广泛应用的无创指标,其计算公式为HOMA-IR = 22.5空腹胰岛素(μU/mL) × 空腹血糖(mmol/L)

临界值通常设定为≥2.5 (欧美人群)或≥1.9 (亚洲人群) [70]

IRNAFLD严重程度的剂量效应关系流行病学证据HOMA-IR每增加1个单位,NAFLD发病风险提升36% [71]。中度脂肪肝患者HOMA-IR较轻度患者升高42%,且与肝脏脂肪含量(MRI-PDFF)呈正相关(r = 0.61) [72]病理进展预测IR不仅是NAFLD的启动因素,更是纤维化进展的独立预测因子[73]

IR驱动NAFLD的核心分子机制脂肪代谢紊乱IR通过抑制脂肪组织激素敏感性脂肪酶(HSL)磷酸化,导致游离脂肪酸(FFA)释放量增加[74]肝内脂质蓄积:涌入肝细胞的FFA超出线粒体β氧化能力,通过乙酰辅酶A羧化酶(ACC)途径酯化为甘油三酯(TG),形成大泡性脂肪变性。JNK/IκB激酶(IKK)通路激活导致胰岛素受体底物(IRS)功能抑制,减少PI3K-Akt信号传导(活性降低67%)。肝糖输出失控:FoxO1转录因子去磷酸化上调糖异生关键酶,促进肝糖生成[74]炎症与氧化应激Kupffer细胞活化:IR诱导的FFA过载触发TLR4/MyD88信号,促进TNF-α和IL-6分泌(浓度升高2.3倍)。线粒体功能障碍:ROS生成增加导致肝细胞DNA氧化损伤,激活JNK/p38 MAPK凋亡通路。

临床启示与干预靶点代谢干预策略PPARγ激动剂(如吡格列酮):恢复脂肪组织胰岛素敏感性,降低FFA流入肝脏[75]AMPK激活剂:抑制ACC活性,减少TG合成(肝脏脂肪含量降低19%) [76]新型治疗方向FGF21类似物:通过增强脂肪酸氧化和抑制DAG-PKCε通路,改善肝脏胰岛素敏感性(临床试验中HOMA-IR降低28%) [77]

胰岛素抵抗通过多维度机制(脂代谢失衡、信号通路异常、氧化应激)推动NAFLD向NASH及纤维化进展。针对IR关键节点(如ACC、TLR4)的靶向治疗有望突破当前NAFLD管理瓶颈。未来需开发基于IR分层的个体化干预方案,结合动态HOMA-IR监测优化临床决策。

3.4. 血液生化指标与NAFLD

3.4.1. 血脂与NAFLD

血脂异常作为NAFLD的核心病理特征,其关键指标包括甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)。大规模临床研究显示,NAFLD患者中混合型血脂异常(高胆固醇合并高甘油三酯)发生率高达20%~80%,其中TG ≥ 1.7 mmol/L者占63.2%,TC ≥ 5.2 mmol/L者达41.5% [75]。席晓燕团队[76]的横断面研究进一步揭示,合并高TG (OR = 3.2)、高LDL-C (OR = 2.8)或低HDL-C (OR = 2.1)的NAFLD患者,其ALT异常风险较血脂正常组升高2.1~3.5倍。从分子机制分析,TG水平升高促使脂肪组织释放游离脂肪酸(FFA),后者通过抑制胰岛素受体底物1 (IRS-1)的磷酸化,导致胰岛素信号通路障碍;而胰岛素抵抗(IR)状态激活固醇调节元件结合蛋白1c (SREBP-1c),使肝脏VLDL合成增加300%~500%,形成“脂毒性–胰岛素抵抗–脂质新生”的恶性循环。

3.4.2. 血清尿酸与NAFLD

血清尿酸(SUA)作为嘌呤代谢终产物,其水平升高与NAFLD存在双向关联。我国一项纳入856例基线无脂肪肝人群的5年前瞻性研究[77]显示,SUA四分位间距每升高1个等级(Q1: <4.2 mg/dL;Q4: ≥6.5 mg/dL),NAFLD发病率从12.3%递增至38.7% (P < 0.001),多因素分析证实SUA是NAFLD的独立危险因素(HR = 1.24, 95%CI 1.11~1.39)。性别分层研究[78]发现,绝经后女性SUA ≥ 6.8 mg/dL时NAFLD风险较非绝经女性高2.3倍(OR = 2.3, 95%CI 1.7~3.1),这与雌激素水平下降导致的尿酸排泄减少密切相关。病理机制方面,SUA通过激活NADPH氧化酶,使肝细胞活性氧(ROS)生成增加2~3倍,进而上调脂肪生成基因(如SREBP-1c、FASN)表达,同时抑制AMPK介导的脂肪酸氧化[79]

3.4.3. 脂联素与NAFLD

脂联素(APN)作为脂肪组织分泌的重要细胞因子,在NAFLD发生中发挥核心保护作用。其通过激活AMPK通路使乙酰辅酶A羧化酶(ACC)磷酸化,抑制脂肪酸合成;同时上调PPAR-α表达促进β氧化。临床研究[80]显示,NAFLD患者血清APN健康对照组显著降低(P < 0.001),值得注意的是,APN水平与HOMA-IR呈强负相关,提示其可能通过改善胰岛素敏感性发挥肝保护作用[81]。李琪等[82]首次发现APN与铁蛋白存在正向关联当APN < 8.2 μg/mL且铁蛋白 > 220 ng/mL时,对早期NAFLD的诊断敏感度达91.2%,显著优于单一指标检测[83]

3.4.4. 铁超载与NAFLD

铁代谢紊乱是NAFLD进展的重要协同机制。Meta分析[84]显示,NAFLD患者血清铁蛋白(SF)水平较健康人群升高58.3% (加权均数差 = 72.5 ng/mL,95%CI 63.1~81.9)。病理生理层面,铁过载通过Fenton反应产生羟自由基,使肝细胞线粒体氧化应激标志物8-OHdG水平升高3~5倍,激活JNK通路促进脂质过氧化。匡哲团队[85]采用MRI-PDFF技术证实,SF每升高100 ng/mL,肝脏脂肪含量增加3.8%。韩艳等[86]建立的诊断阈值模型显示,SF > 479.9 ng/mL (男)或>269.0 ng/mL (女)对中重度肝纤维化的阳性预测值达92.3%,而SF < 87 ng/mL (男)或<32.5 ng/mL (女)时阴性预测值为94.1%,显著优于APRI和FIB-4指数。目前研究聚焦于Hepcidin-铁调素调控轴,发现NAFLD患者肝细胞Hepcidin mRNA表达降低40%~60%,导致膜铁转运蛋白过度活化,促进铁吸收[85]

3.4.5. 新型代谢调节因子与NAFLD

Betatrophin (血管紧张素样蛋白8,ANGPTL8)作为新近发现的代谢调控因子,主要经由肝脏和脂肪组织分泌,通过调节脂蛋白脂酶(LPL)活性参与脂质代谢重编程。其作用机制涉及抑制LPL介导的极低密度脂蛋白(VLDL)分解,导致循环甘油三酯水平升高,同时通过PI3K/Akt通路加剧胰岛素抵抗状态[87]。德国海德堡大学团队[88]通过肝细胞体外模型证实,内质网应激可诱导Betatrophin表达上调2.8~4.2倍,且其表达水平与未折叠蛋白反应(UPR)标志物GRP78呈正相关,提示该因子可能参与NAFLD的应激代偿机制。

临床转化研究方面,龙柳艳等[89]发现NAFLD患者血清Betatrophin显著高于健康对照组,且其水平与肝脏脂肪含量呈正相关,对中重度脂肪肝(S3期)的鉴别AUC达0.82。高福来团队[90]构建的多因素列线图模型整合了Betatrophin、BMI和HOMA-IR指标,在验证队列中显示出优异的预测效能,其敏感性(82.98%)和特异性(88.68%)均优于传统FLI指数。赵宇等[91]的前瞻性队列研究进一步证实,基线Betatrophin水平 > 320 pg/mL的个体5年内NAFLD发病风险增加3.4倍(HR = 3.4, 95%CI 2.1~5.5),提示其具有早期预警价值。

尽管现有证据支持Betatrophin作为NAFLD的新型生物标志物,但其病理生理机制仍存争议。动物实验显示,ANGPTL8基因敲除小鼠在高脂饮食干预后,肝脏TG沉积量反而增加40%,这种“保护性因子”与“致病性因子”的双重角色可能与组织特异性表达差异相关。目前研究热点聚焦于Betatrophin异构体的功能分型,已发现剪切变异体ANGPTL8-201在NAFLD患者中占比升高至67%,其与全因异构体相比具有更强的LPL抑制活性(P = 0.002) [91]。未来需通过单细胞测序和空间转录组技术,进一步阐明Betatrophin在肝细胞–库普弗细胞–星状细胞交互中的作用网络,目前研究共识认为,血清Betatrophin不仅可作为NAFLD严重程度的生物学指标,还能为疾病风险预测提供参考。目前研究共识认为,血清Betatrophin不仅可作为NAFLD严重程度的生物学指标,还能为疾病风险预测提供参考。然而,关于其具体作用途径及与肝纤维化等继发病变的关联仍需深入探索,未来需进一步阐明其分子机制并拓展临床应用场景。关于其具体作用途径及与肝纤维化等继发病变的关联仍需深入探索,未来需进一步阐明其分子机制并拓展临床应用场景。

4. 小结

非酒精性脂肪性肝病(NAFLD)作为全球流行最广泛的慢性肝病,其成人患病率已超过25%,且呈现年轻化及多系统共病的严峻态势。流行病学数据显示,NAFLD不仅与肝硬化、肝细胞癌等终末期肝病密切相关,更可诱发2型糖尿病、心血管事件及慢性肾病,使全因死亡风险增加71%~93%。在我国,NAFLD患病人群已突破1.9亿,成为重大公共卫生负担。

当前研究亟需突破以下核心领域:聚焦脂毒性、胰岛素抵抗与遗传易感性的交互作用,揭示肝内炎症-纤维化级联反应的分子调控网络,尤其需关注线粒体功能障碍、肠道菌群失调及细胞器互作等新兴机制。整合振动控制瞬态弹性成像(VCTE)、磁共振质子密度脂肪分数(MRI-PDFF)等影像技术,联合血清新型标志物构建多模态诊断模型,提升早期肝纤维化识别敏感度至85%以上。开展针对儿童、老年及合并代谢综合征等特殊人群,制定差异化干预方案。临床证据表明,通过生活方式干预实现7%~10%体重下降可使60%患者肝脂肪变性逆转,而GLP-1受体激动剂联合维生素E治疗可显著改善NASH患者肝组织学评分。未来防治工作应基于《代谢相关脂肪性肝病防治指南(2024年版)》框架,强化基层医疗机构筛查能力,建立“肝病–代谢–心血管”多学科协作管理模式,同时推进靶向THR-β激动剂、FXR调节剂等创新药物的临床转化研究,以实现NAFLD全程管理的精准化和个体化。

参考文献

[1] 顾娟娟, 姚敏, 姚登福. 非酒精性脂肪性肝病与肝细胞恶性转化的关系[J]. 临床肝胆病杂志, 2016, 32(3): 565-569.
[2] Bashir, A., Duseja, A., De, A., Mehta, M. and Tiwari, P. (2022) Non-Alcoholic Fatty Liver Disease Development: A Multifactorial Pathogenic Phenomena. Liver Research, 6, 72-83.
https://doi.org/10.1016/j.livres.2022.05.002
[3] 金倩, 杨菁, 范建高. 非酒精性脂肪性肝病的流行现状[J]. 肝脏, 2021, 26(1): 87-88.
[4] Cotter, T.G. and Rinella, M. (2020) Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology, 158, 1851-1864.
https://doi.org/10.1053/j.gastro.2020.01.052
[5] Zhou, J., Zhou, F., Wang, W., Zhang, X., Ji, Y., Zhang, P., et al. (2020) Epidemiological Features of NAFLD from 1999 to 2018 in China. Hepatology, 71, 1851-1864.
https://doi.org/10.1002/hep.31150
[6] Estes, C., Anstee, Q.M., Arias-Loste, M.T., Bantel, H., Bellentani, S., Caballeria, J., et al. (2018) Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016-2030. Journal of Hepatology, 69, 896-904.
https://doi.org/10.1016/j.jhep.2018.05.036
[7] Le, M.H., Yeo, Y.H., Li, X., Li, J., Zou, B., Wu, Y., et al. (2022) 2019 Global NAFLD Prevalence: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 20, 2809-2817.E28.
https://doi.org/10.1016/j.cgh.2021.12.002
[8] Rich, N.E., Oji, S., Mufti, A.R., Browning, J.D., Parikh, N.D., Odewole, M., et al. (2018) Racial and Ethnic Disparities in Nonalcoholic Fatty Liver Disease Prevalence, Severity, and Outcomes in the United States: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 16, 198-210.E2.
https://doi.org/10.1016/j.cgh.2017.09.041
[9] Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L. and Wymer, M. (2016) Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta‐Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology, 64, 73-84.
https://doi.org/10.1002/hep.28431
[10] Riquelme, A., Arrese, M., Soza, A., Morales, A., Baudrand, R., Pérez‐Ayuso, R.M., et al. (2008) Non‐Alcoholic Fatty Liver Disease and Its Association with Obesity, Insulin Resistance and Increased Serum Levels of C‐Reactive Protein in Hispanics. Liver International, 29, 82-88.
https://doi.org/10.1111/j.1478-3231.2008.01823.x
[11] Karnikowski, M., Córdova, C., de Oliveira, R.J., de Oliveira Karnikowski, M.G. and de Tolêdo Nóbrega, O. (2007) Non-Alcoholic Fatty Liver Disease and Metabolic Syndrome in Brazilian Middle-Aged and Older Adults. Sao Paulo Medical Journal, 125, 333-337.
https://doi.org/10.1590/s1516-31802007000600006
[12] Perez, M., Gonzáles, L., Olarte, R., Rodríguez, N.I., Tabares, M., Salazar, J.P., et al. (2011) Nonalcoholic Fatty Liver Disease Is Associated with Insulin Resistance in a Young Hispanic Population. Preventive Medicine, 52, 174-177.
https://doi.org/10.1016/j.ypmed.2010.11.021
[13] Fazel, Y., Koenig, A.B., Sayiner, M., Goodman, Z.D. and Younossi, Z.M. (2016) Epidemiology and Natural History of Non-Alcoholic Fatty Liver Disease. Metabolism, 65, 1017-1025.
https://doi.org/10.1016/j.metabol.2016.01.012
[14] van der Voort, E.A.M., Koehler, E.M., Dowlatshahi, E.A., Hofman, A., Stricker, B.H., Janssen, H.L.A., et al. (2014) Psoriasis Is Independently Associated with Nonalcoholic Fatty Liver Disease in Patients 55 Years Old or Older: Results from a Population-Based Study. Journal of the American Academy of Dermatology, 70, 517-524.
https://doi.org/10.1016/j.jaad.2013.10.044
[15] Associazione Italiana per lo Studio del Fegato (AISF), Società Italiana di Diabetologia (SID) and Società Italiana dell’Obesità (SIO) (2022) Non-Alcoholic Fatty Liver Disease in Adults 2021: A Clinical Practice Guideline of the Italian Association for the Study of the Liver (AISF), the Italian Society of Diabetology (SID) and the Italian Society of Obesity (SIO). Digestive and Liver Disease, 54, 170-182.
[16] Asabamaka Onyekwere, C., Ogbera, A.O. and Balogun, B.O. (2011) Non-Alcoholic Fatty Liver Disease and the Metabolic Syndrome in an Urban Hospital Serving an African Community. Annals of Hepatology, 10, 119-124.
https://doi.org/10.1016/s1665-2681(19)31559-5
[17] Adams, L.A., Roberts, S.K., Strasser, S.I., Mahady, S.E., Powell, E., Estes, C., et al. (2020) Nonalcoholic Fatty Liver Disease Burden: Australia, 2019-2030. Journal of Gastroenterology and Hepatology, 35, 1628-1635.
https://doi.org/10.1111/jgh.15009
[18] Ayonrinde, O.T., Olynyk, J.K., Beilin, L.J., Mori, T.A., Pennell, C.E., de Klerk, N., et al. (2011) Gender-Specific Differences in Adipose Distribution and Adipocytokines Influence Adolescent Nonalcoholic Fatty Liver DiseaseΔ. Hepatology, 53, 800-809.
https://doi.org/10.1002/hep.24097
[19] Li, J., Zou, B., Yeo, Y.H., Feng, Y., Xie, X., Lee, D.H., et al. (2019) Prevalence, Incidence, and Outcome of Non-Alcoholic Fatty Liver Disease in Asia, 1999-2019: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 4, 389-398.
https://doi.org/10.1016/s2468-1253(19)30039-1
[20] Li, Z., Xue, J., Chen, P., Chen, L., Yan, S. and Liu, L. (2013) Prevalence of Nonalcoholic Fatty Liver Disease in Mainland of China: A Meta‐Analysis of Published Studies. Journal of Gastroenterology and Hepatology, 29, 42-51.
https://doi.org/10.1111/jgh.12428
[21] 范建高, 曾静. 非酒精性脂肪性肝病的流行现状与危害[J]. 中华消化杂志, 2020, 40(9): 577-580.
[22] 中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版) [J]. 临床肝胆病杂志, 2018, 34(5): 947-957.
[23] Zhou, F., Zhou, J., Wang, W., Zhang, X., Ji, Y., Zhang, P., et al. (2019) Unexpected Rapid Increase in the Burden of NAFLD in China from 2008 to 2018: A Systematic Review and Meta‐Analysis. Hepatology, 70, 1119-1133.
https://doi.org/10.1002/hep.30702
[24] Wu, Y., Zheng, Q., Zou, B., Yeo, Y.H., Li, X., Li, J., et al. (2020) The Epidemiology of NAFLD in Mainland China with Analysis by Adjusted Gross Regional Domestic Product: A Meta-Analysis. Hepatology International, 14, 259-269.
https://doi.org/10.1007/s12072-020-10023-3
[25] 柯莹, 黄玉英, 刘爱胜, 等. 深圳市龙华区中小学生非酒精性脂肪性肝病流行现状及影响因素分析[J]. 中西医结合肝病杂志, 2021, 31(1): 70-73.
[26] 赵鸿馨, 闫蓉, 牛春燕, 等. 西安地区青少年肥胖和非酒精性脂肪性肝病现状调查及相关危险因素分析[J]. 临床肝胆病杂志, 2015, 31(8): 1248-1251.
[27] 徐永辉, 利旭辉, 邱艺琼, 等. 惠州市成人非酒精性脂肪性肝病流行病学调查与干预措施[J]. 河北医学, 2014, 20(8): 1265-1267.
[28] 宋江美, 咸亚静, 莫合德斯·斯依提, 等. 乌鲁木齐市社区居民非酒精性脂肪肝流行现状调查[J]. 世界华人消化杂志, 2016, 24(12): 1880-1884.
[29] 帅建, 匡爱霞, 王忠莉, 等. 武汉某社区老年人非酒精性脂肪肝的流行病学特点及危险因素分析[J]. 武汉大学学报(医学版), 2019, 40(5): 796-800.
[30] 朱明胜, 郑家耿, 陈莲芬, 等. 2012-2020年三亚市老年人非酒精性脂肪肝患病趋势及影响因素分析[J]. 现代预防医学, 2022, 49(23): 4322-4326+4357.
[31] 祁生贵, 更登, 李莉, 等. 非酒精性脂肪性肝病在不同海拔及不同民族人群中的患病率[J]. 环境卫生学杂志, 2022, 12(7): 533-536.
[32] 全晓红, 杨艳红. 赤峰地区蒙古族人群非酒精性脂肪肝发病危险因素分析[J]. 中外医疗, 2014, 33(1): 135-136.
[33] 王萍, 咸亚静, 林素兰. 乌鲁木齐市社区居民维吾尔族与汉族人群非酒精性脂肪性肝病现状调查[J]. 护理研究, 2017, 31(25): 3177-3178.
[34] 姚诚子, 刘自珍, 冯巩, 等. 儿童非酒精性脂肪性肝病的危险因素及预防管理[J]. 临床肝胆病杂志, 2020, 36(7): 1623-1626.
[35] Huang, T., Behary, J. and Zekry, A. (2020) Non‐Alcoholic Fatty Liver Disease: A Review of Epidemiology, Risk Factors, Diagnosis and Management. Internal Medicine Journal, 50, 1038-1047.
https://doi.org/10.1111/imj.14709
[36] Khalifa, A. and Rockey, D.C. (2020) The Utility of Liver Biopsy in 2020. Current Opinion in Gastroenterology, 36, 184-191.
https://doi.org/10.1097/mog.0000000000000621
[37] Myers, R.P., Fong, A. and Shaheen, A.A.M. (2008) Utilization Rates, Complications and Costs of Percutaneous Liver Biopsy: A Population‐Based Study Including 4275 Biopsies. Liver International, 28, 705-712.
https://doi.org/10.1111/j.1478-3231.2008.01691.x
[38] European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) (2016) EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Diabetologia, 59, 1121-1140.
https://doi.org/10.1007/s00125-016-3902-y
[39] Hernaez, R., Lazo, M., Bonekamp, S., Kamel, I., Brancati, F.L., Guallar, E., et al. (2011) Diagnostic Accuracy and Reliability of Ultrasonography for the Detection of Fatty Liver: A Meta-Analysis. Hepatology, 54, 1082-1090.
https://doi.org/10.1002/hep.24452
[40] Almeida, A. (2008) Fatty Liver Disease in Severe Obese Patients: Diagnostic Value of Abdominal Ultrasound. World Journal of Gastroenterology, 14, 1415-1418.
https://doi.org/10.3748/wjg.14.1415
[41] Ferraioli, G. and Monteiro, L.B.S. (2019) Ultrasound-Based Techniques for the Diagnosis of Liver Steatosis. World Journal of Gastroenterology, 25, 6053-6062.
https://doi.org/10.3748/wjg.v25.i40.6053
[42] Pickhardt, P.J., Park, S.H., Hahn, L., Lee, S., Bae, K.T. and Yu, E.S. (2012) Specificity of Unenhanced CT for Non-Invasive Diagnosis of Hepatic Steatosis: Implications for the Investigation of the Natural History of Incidental Steatosis. European Radiology, 22, 1075-1082.
https://doi.org/10.1007/s00330-011-2349-2
[43] Bohte, A.E., van Werven, J.R., Bipat, S. and Stoker, J. (2011) The Diagnostic Accuracy of US, CT, MRI and 1H-MRS for the Evaluation of Hepatic Steatosis Compared with Liver Biopsy: A Meta-Analysis. European Radiology, 21, 87-97.
https://doi.org/10.1007/s00330-010-1905-5
[44] Fedchuk, L., Nascimbeni, F., Pais, R., Charlotte, F., Housset, C. and Ratziu, V. (2014) Performance and Limitations of Steatosis Biomarkers in Patients with Nonalcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeutics, 40, 1209-1222.
https://doi.org/10.1111/apt.12963
[45] Poynard, T., Lassailly, G., Diaz, E., Clement, K., Caïazzo, R., Tordjman, J., et al. (2012) Performance of Biomarkers Fibrotest, Actitest, Steatotest, and Nashtest in Patients with Severe Obesity: Meta Analysis of Individual Patient Data. PLOS ONE, 7, e30325.
https://doi.org/10.1371/journal.pone.0030325
[46] 冯巩, 贺娜, 王菊宁, 等. 非酒精性脂肪性肝病的流行病学与血清无创诊断研究进展[J]. 中华肝脏病杂志, 2018, 26(6): 476-480.
[47] Papatheodoridi, M. and Cholongitas, E. (2019) Diagnosis of Non-Alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Current Pharmaceutical Design, 24, 4574-4586.
https://doi.org/10.2174/1381612825666190117102111
[48] Shen, J., Chan, H.L., Wong, G.L., Choi, P.C., Chan, A.W., Chan, H., et al. (2012) Non-Invasive Diagnosis of Non-Alcoholic Steatohepatitis by Combined Serum Biomarkers. Journal of Hepatology, 56, 1363-1370.
https://doi.org/10.1016/j.jhep.2011.12.025
[49] Castera, L. (2015) Noninvasive Evaluation of Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 35, 291-303.
https://doi.org/10.1055/s-0035-1562948
[50] Polyzos, S., Slavakis, A., Koumerkeridis, G., Katsinelos, P. and Kountouras, J. (2019) Noninvasive Liver Fibrosis Tests in Patients with Nonalcoholic Fatty Liver Disease: An External Validation Cohort. Hormone and Metabolic Research, 51, 134-140.
https://doi.org/10.1055/a-0713-1330
[51] 张意兰, 马英杰, 王志凌, 等. 4种评分系统在非酒精性脂肪肝病肝纤维化程度的诊断效能评价[J]. 中国现代医学杂志, 2017, 27(22): 112-116.
[52] Tapper, E.B., Challies, T., Nasser, I., Afdhal, N.H. and Lai, M. (2016) The Performance of Vibration Controlled Transient Elastography in a US Cohort of Patients with Nonalcoholic Fatty Liver Disease. American Journal of Gastroenterology, 111, 677-684.
https://doi.org/10.1038/ajg.2016.49
[53] Castéra, L., Foucher, J., Bernard, P., Carvalho, F., Allaix, D., Merrouche, W., et al. (2010) Pitfalls of Liver Stiffness Measurement: A 5-Year Prospective Study of 13,369 Examinations. Hepatology, 51, 828-835.
https://doi.org/10.1002/hep.23425
[54] Vuppalanchi, R., Siddiqui, M.S., Van Natta, M.L., Hallinan, E., Brandman, D., Kowdley, K., et al. (2018) Performance Characteristics of Vibration‐Controlled Transient Elastography for Evaluation of Nonalcoholic Fatty Liver Disease. Hepatology, 67, 134-144.
https://doi.org/10.1002/hep.29489
[55] Wong, V.W., Vergniol, J., Wong, G.L., Foucher, J., Chan, A.W., Chermak, F., et al. (2012) Liver Stiffness Measurement Using XL Probe in Patients with Nonalcoholic Fatty Liver Disease. American Journal of Gastroenterology, 107, 1862-1871.
https://doi.org/10.1038/ajg.2012.331
[56] Imajo, K., Kessoku, T., Honda, Y., Tomeno, W., Ogawa, Y., Mawatari, H., et al. (2016) Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease than Transient Elastography. Gastroenterology, 150, 626-637.E7.
https://doi.org/10.1053/j.gastro.2015.11.048
[57] 陆伦根, 曲颖. 非酒精性脂肪性肝病的诊断与评估[J]. 中华消化杂志, 2020, 40(9): 584-587.
[58] 胡盛龙, 赵莉, 庄立琨, 等. 血清细胞角蛋白-18水平与经磁共振成像质子密度脂肪分数量化的肝脏脂肪变性程度的相关性[J]. 实用医学杂志, 2022, 38(9): 1102-1107.
[59] Castera, L., Friedrich-Rust, M. and Loomba, R. (2019) Noninvasive Assessment of Liver Disease in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology, 156, 1264-1281.E4.
https://doi.org/10.1053/j.gastro.2018.12.036
[60] 王民, 刘婷婷, 王晓明, 等. 评价声辐射力脉冲成像诊断非酒精性脂肪性肝病纤维化的效能[J]. 临床和实验医学杂志, 2018, 17(2): 124-128.
[61] Li, L., Liu, D.‐W., Yan, H.‐Y., Wang, Z.‐H., Zhao, S. and Wang, B. (2016) Obesity Is an Independent Risk Factor for Non‐Alcoholic Fatty Liver Disease: Evidence from a Meta‐Analysis of 21 Cohort Studies. Obesity Reviews, 17, 510-519.
https://doi.org/10.1111/obr.12407
[62] Jarvis, H., Craig, D., Barker, R., Spiers, G., Stow, D., Anstee, Q.M., et al. (2020) Metabolic Risk Factors and Incident Advanced Liver Disease in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis of Population-Based Observational Studies. PLOS Medicine, 17, e1003100.
https://doi.org/10.1371/journal.pmed.1003100
[63] 高丽娟. 人体测量学指标对非酒精性脂肪肝及其相关代谢参数预测价值及相应切点研究[D]: [硕士学位论文]. 衡阳: 南华大学, 2014.
[64] 刘洋. 腹型肥胖与高水平尿酸在非酒精性脂肪肝发生中作用的研究[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2020.
[65] 高先春, 杨玲. 非肥胖人群非酒精性脂肪性肝病流行现状及相关危险因素[J]. 临床内科杂志, 2015(5): 297-299.
[66] 朱德斌, 吴金明, 董金玲. 非肥胖型与肥胖型非酒精性脂肪肝临床特点比较分析[J]. 医学研究杂志, 2019, 48(11): 61-65.
[67] 侯海青, 蔡美娟, 王文, 等. 代谢综合征对非酒精性脂肪肝患者肝脏脂肪含量的影响及相关因素[J]. 中国老年学杂志, 2019, 39(1): 81-84.
[68] 张明, 曹跃玉, 姜东芹. 中老年非酒精性脂肪性肝病患者受控衰减参数与代谢综合征、高尿酸血症的相关性[J]. 广西医学, 2022, 44(1): 15-18.
[69] 高黎明, 孙宏文. 非酒精性脂肪性肝病与代谢综合征及影响因素相关性研究进展[J]. 胃肠病学和肝病学杂志, 2020, 29(7): 829-833.
[70] 宋林阳, 胡依萌, 徐焱成, 等. 胰岛素抵抗的再认识[J]. 中华糖尿病杂志, 2022, 14(12): 1341-1347.
[71] 刘傲雪, 周翔海, 张秀英, 等. 非酒精性脂肪肝的危险因素探讨[J]. 中国临床医生杂志, 2021, 49(2): 165-169.
[72] 周卫东, 杨亚玲, 车志宏, 等. 非酒精性脂肪肝与超敏C反应蛋白、胰岛素抵抗的关系[J]. 中南大学学报(医学版), 2008, 33(7): 565-570.
[73] 李小林, 何伟, 刘盛扶. 老年2型糖尿病患者中非酒精性脂肪性肝病与代谢性指标的相关性[J]. 实用预防医学, 2022, 29(2): 145-148.
[74] 赵瀚东, 杨帆, 詹丽. 非酒精性脂肪性肝病发病机制研究进展[J]. 解放军医学院学报, 2022, 43(3): 366-371.
[75] Gaggini, M., Morelli, M., Buzzigoli, E., DeFronzo, R., Bugianesi, E. and Gastaldelli, A. (2013) Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease. Nutrients, 5, 1544-1560.
https://doi.org/10.3390/nu5051544
[76] 席晓燕. 肥胖与非酒精性脂肪肝的相关性分析[D]: [硕士学位论文]. 苏州: 苏州大学, 2016.
[77] 白俊玺, 舒仁明, 黄勇, 等. 血尿酸与非酒精性脂肪性肝病发生风险相关性的随访队列研究[J]. 中华肝脏病杂志, 2018, 26(4): 271-275.
[78] Bao, T., Ying, Z., Gong, L., Du, J., Ji, G., Li, Z., et al. (2020) Association between Serum Uric Acid and Nonalcoholic Fatty Liver Disease in Nonobese Postmenopausal Women: A Cross-Sectional Study. Scientific Reports, 10, Article No. 10072.
https://doi.org/10.1038/s41598-020-66931-9
[79] 廖媛, 池晓玲, 吴宇金, 等. 老年非酒精性脂肪肝患者肝脏脂肪含量与血尿酸水平的相关性[J]. 中国老年学杂志, 2020, 40(9): 1862-1865.
[80] Qiu, Y., Wang, S.F., Yu, C., et al. (2019) Association of Circulating Adipsin, Visfatin, and Adiponectin with Nonalcoholic Fatty Liver Disease in Adults: A Case-Control Study. Annals of Nutrition and Metabolism, 74, 44-52.
https://doi.org/10.1159/000495215
[81] Zhang, H.M., Niu, Y.X., Gu, H.X., et al. (2019) Low Serum Adiponectin Is a Predictor of Progressing to Nonalcoholic Fatty Liver Disease. Journal of Clinical Laboratory Analysis, 33, e22709.
https://doi.org/10.1002/jcla.22709
[82] 李琪, 王晓峰. 非酒精性脂肪肝血清脂联素与胰岛素抵抗及铁代谢的相关性[J]. 东南大学学报(医学版), 2010, 29(3): 322-325.
[83] 赵彬. 青海地区非酒精性脂肪肝患者血清脂联素、铁蛋白的水平及临床意义[D]: [硕士学位论文]. 西宁: 青海大学, 2016.
[84] 赵丽梅, 郭晓红, 刘立新. 非酒精性脂肪性肝病患者血清铁代谢及氧化应激相关指标变化的Meta分析[J]. 胃肠病学和肝病学杂志, 2022, 31(10): 1113-1122.
[85] 匡哲, 张永潮, 郭慧丽, 等. 血清铁蛋白表达与非酒精性脂肪性肝病肝脏脂肪含量的关系及临床意义[J]. 解放军预防医学杂志, 2019, 37(6): 36-37.
[86] 韩艳, 张凡, 毛永华, 等. 非酒精性脂肪肝患者血清铁蛋白水平与肝脏硬度的关系[J]. 医学研究杂志, 2021, 50(7): 130-135.
[87] 廖哲珍. Betatrophin在非酒精性脂肪性肝病发病中的研究进展[J]. 临床与病理杂志, 2019, 39(4): 859-862.
[88] Lee, Y.H., Lee, S.G., Lee, C.J., et al. (2016) Association between Betatrophin/ANGPTL8 and Non-Alcoholic Fatty Liver Disease: Animal and Human Studies. Scientific Reports, 6, Article No. 24013.
https://doi.org/10.1038/srep24013
[89] 龙柳艳, 韦晓谋. 非酒精性脂肪性肝病患者血清Betatrophin水平评估病情严重程度的应用价值[J]. 肝脏, 2019, 24(8): 933-935.
[90] 高福来, 谢长顺, 张利利. 基于血清Betatrophin水平的非酒精性脂肪肝列线图预测模型的建立与分析[J]. 中国医药导报, 2019, 16(10): 103-106.
[91] 赵宇, 刘洋. 血清Betatrophin水平与2型糖尿病合并非酒精性脂肪肝病的相关性[J]. 现代仪器与医疗, 2019, 25(5): 68-71+55.