卒中相关肺炎的神经科管理:优化预防、诊疗及多学科协作
Neurological Management of Stroke-Associated Pneumonia: Optimizing Prevention, Diagnosis-Treatment, and Multidisciplinary Collaboration
摘要: 卒中患者常伴随多种并发症,给家庭和社会带来沉重的负担。卒中相关性肺炎(Stroke-Associated Pneumonia, SAP)的概念由Hilker等于2003年首先提出。SAP定义为非机械通气的卒中患者在发病7 d内新出现、符合改良美国疾病控制与预防中心(Centers for Disease Control and Prevention, CDC)标准的肺炎,给家庭和社会带来沉重的负担。早期识别高风险患者、尽早干预,治疗上建立神经科主导的SAP多学科管理团队,对改善患者预后尤为重要。虽然目前研究在SAP的识别、诊断与治疗方面取得一些进展,但临床仍存在一些争议,如是否需要启用免疫调节治疗及预防性抗生素的时机等。我们建议结合患者风险分层及动态评估,更加个体化和灵活调整预防性抗生素使用时间窗口和时长。通过改善患者免疫功能治疗SAP可能成为一种新的治疗方案,未来应通过高质量研究验证新型干预策略的临床价值。
Abstract: Stroke patients are frequently complicated by multiple comorbidities, posing a substantial burden on families and society. The concept of stroke-associated pneumonia (SAP) was first proposed by Hilker et al. in 2003. SAP is defined as pneumonia newly developed within 7 days post-stroke in non-ventilated stroke patients, meeting the modified Centers for Disease Control and Prevention (CDC) criteria, further exacerbating the societal and familial burden. Early identification of high-risk patients, prompt intervention, and establishing a neurology-led multidisciplinary management team for SAP are critical to improving patient prognosis. Although advancements have been made in the recognition, diagnosis, and treatment of SAP, several clinical controversies persist, such as the necessity of initiating immunomodulatory therapies and the optimal timing of prophylactic antibiotics. We recommend tailoring prophylactic antibiotic regimens to individual patient risk stratification and dynamic clinical assessments, with flexible adjustment of therapeutic windows and duration. Therapies targeting immune function modulation in SAP patients may represent a novel therapeutic strategy, though its clinical value requires validation through high-quality studies.
文章引用:朱文亚, 徐安定. 卒中相关肺炎的神经科管理:优化预防、诊疗及多学科协作[J]. 临床医学进展, 2025, 15(6): 75-83. https://doi.org/10.12677/acm.2025.1561700

1. 引言

随着我国进入老龄化社会,卒中的发病率逐年上升。作为致死率、致残率最高的疾病,卒中患者常伴随多种并发症。卒中相关性肺炎(Stroke-Associated Pneumonia, SAP)的概念由Hilker等于2003年首先提出[1]。SAP定义为非机械通气的卒中患者在发病7 d内新出现、符合改良美国疾病控制与预防中心(Centers for Disease Control and Prevention, CDC)标准的肺炎[2]。其发病群体为急性卒中后患者,在重型卒中患者群体中更为明显。SAP与预后不良有极为密切的关系,其特点为发生率高(10%~25%)、死亡风险增加(急性期死亡风险增加3倍)、增加住院费用(ICU重症监护时间平均延长5~7天),给家庭和社会带来沉重的负担[3]

研究发现,约10%的急性卒中会出现SAP,其中50%发生在急性期的48小时内。神经功能缺损更严重的重症患者肺炎的发病率更高[4]。一项纳入了9238名患者的观察性研究显示,中风相关肺炎与一年内死亡率之间存在正相关。因此,对于易感染的高危人群更需要积极管理[5]。虽然目前研究在SAP的识别、诊断与治疗方面取得一些进展,但临床仍存在一些争议,如是否需要启用免疫调节治疗及预防性抗生素的时机等。SAP的识别、诊断与治疗在吞咽功能评估、改良诊断标准及靶向抗生素选择方面取得进展,但争议集中在影像学必要性、是否启用免疫调节及时机、预防性抗生素的利弊权衡。目前指南不推荐启动免疫调节治疗,未来需通过高质量RCT和转化研究验证新型干预策略的临床价值。

2. SAP患者的多维病理机制与协同防控

在急性卒中患者中,涉及皮层(初级感觉运动区、岛叶、额叶)、皮质下结构(基底节、丘脑)及脑干(延髓模式发生器)、左侧或右侧半球的损伤均可导致吞咽功能障碍DAS,延髓麻痹引起吞咽功能受损,导致误吸风险大幅升高。40%~70%的卒中患者会出现意识水平下降、吞咽障碍、保护性反射减弱、食管下段括约肌功能下降、呼吸运动与吞咽运动的协调性下降、咽部感觉减退等症状,影响吞咽和分泌物清理,此机制引起的PSP约占40%~50% [6]。一项前瞻性、多中心研究纳入了486名急性缺血性卒中患者,在多变量回归分析表明吞咽困难和中风诱导的免疫抑制综合征是中风相关肺炎的独立危险因素。因此筛查免疫抑制和吞咽困难可能有助于识别卒中相关肺炎的高危患者[7],早期识别吞咽功能障碍、进行吞咽功能训练可以显著减少肺部并发症。

急性卒中后机体出现系统性免疫反应,在避免进一步的炎症刺激、保护脑组织的同时,也造成了免疫抑制,引起卒中诱导免疫抑制综合征和感染。下丘脑、脑干、岛叶皮质通过参与自主神经调控,使免疫细胞功能受到抑制;重症卒中引起的全身应激反应使交感–肾上腺系统过度兴奋,儿茶酚胺释放增加,全身血管收缩,肺毛细血管压力急剧升高(肺循环为低压系统),肺瘀血水肿导致神经源性肺水肿,亦可能参与SAP的发病;大面积梗死可通过全身性炎症反应或细胞因子风暴间接诱发免疫抑制[8] [9]。这些反应通常在24~72小时达峰,并持续约1周左右。此阶段炎症因子迅速变化,感染风险最高,需警惕肺炎、尿路感染等并发症[10] [11]

卒中急性期内,由于自主神经紊乱、肠道缺血和全身炎症,引发肠道菌群失调。菌群及其代谢产物通过“肠–脑–肺轴”破坏肺部免疫屏障、促进病原体定植,最终导致肺炎[11] [12]。急性缺血性卒中患者的肠道菌群多样性显著降低,且特定菌群与SAP风险相关。可能的机制包括:(1) 免疫抑制:减少短链脂肪酸(SCFA)产生(如丁酸),削弱肺部巨噬细胞功能,增加病原体易感性[13]。(2) 肠屏障破坏:由于中风后肠道屏障的完整性受损,菌群代谢物入血,激活全身炎症反应,可能成为卒中后感染的原因[14];而色氨酸代谢物吲哚类物质通过激活AHR通路,可增强肺部上皮屏障功能[15]。肠道菌群可通过免疫调节、代谢产物和神经通路等影响SAP的发生发展。

针对其发病机制,可采取一系列预防措施。目前2024年中国重症卒中管理指南建议:早期评估和处理吞咽困难和误吸问题,对意识障碍、重型卒中、气管插管的患者应特别注意预防肺炎;疑有肺炎的发热患者或诊断肺炎后应尽早开始经验性抗感染治疗,不推荐预防性使用。此外,卧床患者分泌物淤滞坠积于肺底,细菌易于繁殖,从而更容易引起SAP。对于非高危患者,优先通过抬高床头、早期活动、口腔护理等非药物措施预防感染[16] [17]。请营养科会诊调整肠内营养方案,通过益生菌、膳食纤维或粪便移植调节“肠–肺轴”,减少病原体易位,调节肠道菌群,降低肠源性感染风险[18]。卒中后24小时内请康复科会诊,启动吞咽训练,改善免疫功能,降低感染风险;通过其他功能锻炼方法包括神经肌肉电刺激(NMES)联合传统吞咽训练、镜像疗法等改善吞咽功能;研究表明通过经颅磁刺激TMS在未受损半球的代偿性重组是吞咽功能恢复的关键机制[6]。此外,是否需要对卒中后患者进行免疫调节以预防SAP目前仍存在争议;而对于高危患者,需根据具体情况评估是否需要预防性使用抗生素,将在后文中做详细阐述[19]

3. 对于SAP高危患者的识别

首先,快速识别高危患者?从风险评估出发,目前临床经验研究提示SAP的主要风险因素包括以下方面:(1) 患者相关因素:高龄(≥65岁)、男性、糖尿病、慢性阻塞性肺病(COPD)、心脏病等[20] [21]。卒中严重程度、卒中部位、吞咽困难、意识障碍、保护性反射减弱[22]。(2) 治疗相关因素:机械通气、侵入性操作(鼻饲管、气管插管等)、长期卧床、PPI类药物、质子泵抑制剂的使用等.(3) 实验室与影像学标志:胸片示早期渗出或实变提示风险、C反应蛋白(CRP) [23]、降钙素原(PCT)及其他炎症指标等升高[24] [25]时,应警惕急性卒中患者的SAP风险。A2DS2评分以简单、易用的特点,成为最常用的SAP预测模型[26] [27]。但传统量表(如A2DS2)敏感性不足(仅60%~70%),而生物标志物(如IL-6/GFAP)尚未普及。目前的预测模型侧重点在临床指标,主要以卒中严重程度、吞咽障碍和机械通气为核心,未来可能需要结合新型标志物和动态评估以提升预测能力。

其次,有多项研究强调了急性卒中患者筛查吞咽功能的重要性[28]。对于纤维内镜吞咽评估FEES、视频透视VFSS等吞咽功能评估需专业设备和人员,基层医院难以普及;床旁筛查工具(如TOR-BSST量表)敏感性不足,可能漏诊高危患者。可以对卒中患者实行分层筛查;若临床床旁吞咽功能筛查阳性则可进一步进行FEES或VFSS检查,并聚焦急性期执行时效性(如入院24小时内完成筛查),以满足尽早预防性使用抗生素的时间窗口。早期吞咽筛查执行率低且缺乏标准化培训,仍对SAP的预防产生了一些不利影响。

有些研究还发现急性卒中患者行再通治疗(静脉溶栓或血管内治疗)后,卒中相关性肺炎(SAP)发病率出现差异,各研究显示出不同结果。成功再通(如mTICI 2b-3级)可快速恢复脑血流,改善吞咽功能和意识水平,降低误吸风险[29]。一项纳入1278例取栓患者的观察性研究显示,成功再通患者SAP发生率为12%,而未再通组为24% [30]。静脉溶栓(rt-PA)患者中,早期神经功能改善(NIHSS减少 ≥ 4分)与SAP风险下降40%相关[17]。再通治疗通过快速恢复血流,减少缺血核心和半暗带细胞的坏死,从而减少危险相关分子模式(DAMPs)的释放(如ATP、HMGB1),缓解全身炎症反应和免疫抑制[9]。但再通失败或出现再通相关并发症,如出血转化或脑水肿则会显著增加感染风险[29]。接受再通治疗的患者可能基线病情更重(如大血管闭塞),年龄更大,合并房颤或慢性肺病,间接升高感染风险,再通后仍可能因误吸或全身炎症反应导致SAP [31]。机械取栓因再通率更高,因此可能比静脉溶栓降低SAP风险更显著[3]。总体来说,成功再通治疗(尤其是血管内治疗)可改善SAP发病率,主要归因于神经功能恢复和免疫抑制缓解。但若再通失败或出现严重并发症时(如sICH、脑水肿),SAP风险可能高于普通脑梗患者。

4. 诊疗困境:症状和影像学的局限

由于脑梗患者常伴随意识障碍、吞咽困难、中枢性发热等症状,与肺炎的临床表现高度重叠,导致早期漏诊风险显著升高,而过度依赖影像学(如胸部CT)则可能延误治疗。联合血清降钙素原(PCT)或C反应蛋白(CRP)动态监测[32],可辅助区分SAP与卒中相关炎症反应,但特异性仍不足。部分卒中急性期患者症状不典型,可能表现为意识障碍掩盖肺炎表现,诊断完全依赖影像学以致诊断延迟,仍是SAP诊断的核心难点。且SAP可能加重脑水肿或诱发谵妄,可能导致卒中症状加重、急性期神经功能变差。因此,对于年龄 ≥ 70岁的老人,无其他明确原因出现意识状态改变、氧合指数波动等征象时,应考虑SAP可能。通过改良CDC标准诊断,完善影像学及实验室指标检查、关注临床症状。神经科医师对PSP的误诊率高,需要与神经源性肺水肿(无发热,B型利钠肽升高)、吸入性化学性肺炎(无菌性炎症,无需抗生素)、药物热(如甘露醇反应)等进行鉴别诊断。

5. 治疗优化:个体化调整及多学科协同破局

卒中患者由于意识障碍、吞咽功能异常症状而存在持续误吸的可能,沉默性误吸占SAP患者的40%。吸入物不仅有口咽部的分泌物,还包括鼻腔分泌物、口腔内残留的食物、胃肠道内容物和反流的消化液等。SAP的病原菌以G-杆菌为主,多种细菌及厌氧菌混合感染多见,而且疾病过程中病原体往往多变[33]。前期经验性抗感染可优选覆盖口腔/呼吸道常见病原体(如肺炎链球菌、流感嗜血杆菌)的广谱抗生素如头孢曲松、阿莫西林克拉维酸等[34]。避免氟喹诺酮类或碳青霉烯类,以减少耐药风险。后可基于痰培养/支气管肺泡灌洗结果调整。住院时间较长的患者属于耐药菌感染的高危人群,治疗上可联合替加环素或多粘菌素。

在急性期脑梗患者的抗生素选择中,还需要关注患者卒中急性期的特殊情况,若患者正在口服抗癫痫药,则可能与抗生素发生相互作用,如美罗培南(MEPM)和丙戊酸钠(VPA)共同给药,碳青霉烯类会抑制水解酶,水解酶参与VPA-G水解为VPA,导致血浆VPA浓度降低,导致癫痫患者癫痫发作[35] [36]。如患者已进行再灌注治疗,还需考虑出血风险,对抗生素的选择上应避免加重凝血功能障碍。头孢哌酮舒巴坦可抑制肠道维生素K合成,导致低凝血酶原血症,增加溶栓后出血风险(需补充维生素K或避免使用);哌拉西林他唑巴坦可能延长凝血酶原时间(PT),亦慎用于溶栓后的患者[34]。目前推荐使用对凝血功能影响小的头孢曲松,广谱覆盖肺炎链球菌、革兰氏阴性菌(如流感嗜血杆菌);阿莫西林克拉维酸覆盖口腔菌群及常见呼吸道病原体且凝血风险低。还需要结合肝肾功能、耐药风险及病原学结果动态个体化调整方案,减少耐药及继发感染风险。

除以上治疗方法外,还需要尽早启动吞咽训练,降低持续误吸的风险。通过神经肌肉电刺激(NMES)联合传统吞咽训练、经颅磁刺激TMS、镜像疗法等改善吞咽功能[6];益生菌(如乳酸杆菌)联合膳食纤维可降低SAP风险,机制亦涉及肠道菌群恢复和全身免疫调节[11]。这些方式可能需要与康复科、营养科等协作完成。目前各科室协作不足,干预措施碎片化产生诸多问题,未来可以更加明确各科室职责,构建神经科主导的SAP-MDT模式。

6. 目前争议与未来方向

关于早期是否预防性使用抗生素及时间窗口仍有争议。PASS和STROKE-INF是两个早期预防性使用抗生素的大型随机对照试验[37] [38],但这两个临床试验虽然证明预防性抗生素可降低肺部感染率,但均未证实在脑卒中患者中早期使用抗生素对患者90天临床预后的获益。其中PASS研究表明,头孢曲松的预防性使用可降低重症卒中肺炎风险,但同时使耐药率增加1.8倍,可能会诱导耐药菌株定植,增加后续治疗难度,因此不推荐急性中风患者进行预防性抗生素治疗。还有研究发现,在急性卒中患者抗生素治疗7天后,尽管降低了其他系统感染的风险,但并没有降低卒中后肺炎的发生率[4]。也有研究呈现出与此相反的结果,多项RCT和Meta分析表明,在特定人群中早期预防性抗生素的使用极大获益,减少SAP发生率[39] [40]及重症监护的需求,但仅限于发病48小时内给药有效。欧洲卒中组织(ESO)建议针对高危患者短期使用,比如存在吞咽障碍、严重神经功能缺损、重型卒中、意识障碍或大面积大脑半球/脑干梗死、机械通气或重症监护、需气管插管或存在误吸高风险(如延髓梗死)等明显存在感染风险的患者,可以启用预防性抗生素以减少感染[2] [7] [41]。并且用药48~72小时后重新评估感染风险,及时调整策略。还有研究表明r-tPA导致体外粒细胞和单核细胞的吞噬作用和氧化爆发减少,降低了抵御细菌的功能,r-tPA效应还可能引起的免疫改变[42]。因此,在接受溶栓治疗的患者中,尤其是再通治疗失败的患者可能具有更高的感染风险,应在未来的研究中进行分析。鉴于卒中相关性肺炎(SAP)多发生于急性卒中后1周内,其预防性抗生素的最佳启用时间窗建议在卒中后24~48小时。此时间窗设计旨在覆盖感染风险的上升期及高发期(即卒中后1周内),若超过72小时再启动预防性抗感染措施,则可能错过最佳预防时机[40]。PASS研究纳入了发病24小时内的患者,提示抗生素使用开始时间和患者长期预后无相关性。STROKE-INF研究纳入发病48小时内的患者。且过早预防性抗生素使用可能干扰卒中后免疫修复,增加耐药风险[10]。有证据支持卒中后48小时内使用头孢曲松对高危患者有益,但需严格限制疗程 ≤ 7天,延长疗程无获益且会增加艰难梭菌感染风险[41] [37]。若无明确感染证据时,48小时后继续预防性用药可能弊大于利。而对于超过72小时后启动预防性抗生素治疗的患者,研究结果发现无显著获益,这可能是因为卒中后肠道菌群失调和误吸风险在24~48小时内迅速进展,而早期抗生素可阻断病原体定植[2] [40]。还有研究表明,部分患者可延长预防性抗生素使用疗程,如部分感染风险较高的机械通气或重症患者,可持续至卒中后2周[43]。也有研究建议将炎症指标为导向,对降钙素原(PCT)进行动态监测,仅在PCT > 0.25 ng/mL时启动抗生素,避免固定时间窗的限制[44],通过免疫分型淋巴细胞亚群(如CD4+/CD8+比值)指导抗生素时机[45] [46]

综上,在固定时间窗内使用预防性抗生素可能忽略个体化需求(如机械通气的患者),但可在急性卒中后的高风险患者中尽早启用,需结合患者风险分层及动态评估灵活调整,而非机械执行。是否需限制PA在卒中超早期(<24小时)或仅针对特定病原体(如革兰氏阴性菌)的预防,是否建立卒中单元耐药菌监测系统,优化抗生素管理策略,尽可能在降低感染的同时避免耐药性等,未来研究需进一步明确最佳个体化干预时机。

虽然SAP的免疫治疗目前暂未达成共识,指南不推荐作为常规治疗方法[34]。但抗生素选择仍存在困境,作为SAP的独立危险因素,所以卒中后免疫抑制机制成为预防或干预治疗的另一重要切入点,旨在通过调节卒中后免疫紊乱状态,改善机体抗感染能力,同时避免过度炎症反应、减少抗生素耐药性。在时间窗的选择上,由于急性期卒中后早期免疫抑制是感染主因,但此阶段进行免疫增强治疗可能干扰内源性神经修复信号;亚急性期免疫调节可能更安全,但此时感染风险已部分降低,干预获益有限[47],因此,免疫治疗在亚急性期(>7天)修复阶段可能获益,但急性期(<72小时)使用需严格避免。最新研究表明,在缺血性卒中、创伤性脑损伤和神经退行性疾病中,IL-6在免疫调节、组织修复、神经保护和突触可塑性中发挥了多种作用,证明IL-6的调控在神经系统疾病中的潜在价值[44]。卒中后脑损伤触发全身炎症反应综合征(SIRS),释放IL-1β、IL-6、TNF-α等促炎因子,导致免疫细胞(如中性粒细胞)功能失调,增加感染风险[48]。当前的免疫增强调节研究大部分集中在动物基础实验,研究者在缺血性卒中大鼠模型中发现,粒细胞–巨噬细胞集落刺激因子(GM-CSF)不仅具有神经保护特性,还可以改善外周白细胞数量、外周细胞因子反应,降低早期肺部细菌感染机会,并可以改善长期功能结果[49]。有临床证据表明中性粒细胞集落刺激因子(G-CSF)可能改善大面积梗死急性卒中患者的预后[50],且G-CSF诱导的功能性白细胞升高及免疫调节作用,可能会通过增强免疫能力和改善炎症状态降低感染风险。有针对免疫功能缺陷患者的临床试验表明,接受非格司亭治疗的HIV感染患者的细菌感染发生率明显降低[51],因此对于急性卒中的患者SAP的预防,是一种潜在的治疗方式。大部分研究表明免疫增强剂在神经保护作用与感染风险增加之间仍存在矛盾。虽可能降低SAP风险,但卒中急性期内免疫增强剂可能通过促进中性粒细胞浸润、破坏血脑屏障及放大炎症反应,加重脑水肿和神经损伤[52] [53]。有研究还发现低剂量普萘洛尔可以通过抑制交感神经过度激活,减少淋巴细胞凋亡,改善卒中后免疫抑制状态,但可能干扰神经修复[54]。且在临床实践中,大面积半球梗死或脑干梗死的患者免疫抑制更明显,但免疫调节治疗可能因脑水肿风险更高所以不能适用;老年或糖尿病患者免疫衰老可能削弱治疗反应,同时增加不良反应风险。

卒中后免疫治疗未来还需更多探索,在风险和获益之间获得平衡,确定获益时间窗,如急性期抑制炎症,恢复期增强免疫修复;寻找更加特异、精准的免疫通路进行干预。未来研究应聚焦于更精准的免疫调节策略,并根据卒中后免疫动态变化选择最佳干预时机,需在“抗感染”与“神经保护”间找到平衡,避免“一刀切”策略。

7. 结论

早期识别高风险患者、尽早干预,改善卒中患者管理对于急性卒中患者预防SAP来说尤为重要。目前临床仍存在一些争议,如是否需要启用免疫调节治疗及预防性抗生素的时机等。建议结合患者风险分层及动态评估,更加个体化和灵活调整预防性抗生素使用时间窗口和时长,而不是“一刀切”的策略。未来通过改善患者免疫功能来改善和优化SAP的治疗方案,可能是一种选择。然而对此观点应采取谨慎态度,未来需要通过高质量研究验证新型干预策略的临床价值。神经科医师在SAP管理中需“早筛查、严防控、准诊断”,预防上聚焦吞咽功能与免疫状态,避免过度依赖抗生素;诊断上,警惕非典型表现,整合影像与实验室检查证据;治疗上,建立神经科主导的SAP多学科管理团队,呼吸科侧重通气支持与抗生素调整,康复科侧重主导吞咽训练,营养科根据需求开展早期肠内营养等,加强合作,优化单元护理流程,尽最大可能减轻患者负担。

NOTES

*通讯作者。

参考文献

[1] Hilker, R., Poetter, C., Findeisen, N., Sobesky, J., Jacobs, A., Neveling, M., et al. (2003) Nosocomial Pneumonia after Acute Stroke: Implications for Neurological Intensive Care Medicine. Stroke, 34, 975-981.
https://doi.org/10.1161/01.str.0000063373.70993.cd
[2] Smith, C.J., Kishore, A.K., Vail, A., Chamorro, A., Garau, J., Hopkins, S.J., et al. (2015) Diagnosis of Stroke-Associated Pneumonia: Recommendations from the Pneumonia in Stroke Consensus Group. Stroke, 46, 2335-2340.
https://doi.org/10.1161/strokeaha.115.009617
[3] Teh, W.H., Smith, C.J., Barlas, R.S., Wood, A.D., Bettencourt-Silva, J.H., Clark, A.B., et al. (2018) Impact of Stroke-Associated Pneumonia on Mortality, Length of Hospitalization, and Functional Outcome. Acta Neurologica Scandinavica, 138, 293-300.
https://doi.org/10.1111/ane.12956
[4] Liu, L., Xiong, X., Zhang, Q., Fan, X. and Yang, Q. (2016) The Efficacy of Prophylactic Antibiotics on Post-Stroke Infections: An Updated Systematic Review and Meta-Analysis. Scientific Reports, 6, Article No. 36656.
https://doi.org/10.1038/srep36656
[5] Learoyd, A.E., Woodhouse, L., Shaw, L., Sprigg, N., Bereczki, D., Berge, E., et al. (2017) Infections up to 76 Days after Stroke Increase Disability and Death. Translational Stroke Research, 8, 541-548.
https://doi.org/10.1007/s12975-017-0553-3
[6] Labeit, B., Michou, E., Hamdy, S., Trapl-Grundschober, M., Suntrup-Krueger, S., Muhle, P., et al. (2023) The Assessment of Dysphagia after Stroke: State of the Art and Future Directions. The Lancet Neurology, 22, 858-870.
https://doi.org/10.1016/s1474-4422(23)00153-9
[7] Hoffmann, S., Harms, H., Ulm, L., Nabavi, D.G., Mackert, B., Schmehl, I., et al. (2016) Stroke-Induced Immunodepression and Dysphagia Independently Predict Stroke-Associated Pneumonia—The PREDICT Study. Journal of Cerebral Blood Flow & Metabolism, 37, 3671-3682.
https://doi.org/10.1177/0271678x16671964
[8] Prass, K., Meisel, C., Höflich, C., Braun, J., Halle, E., Wolf, T., et al. (2003) Stroke-Induced Immunodeficiency Promotes Spontaneous Bacterial Infections and Is Mediated by Sympathetic Activation Reversal by Poststroke T Helper Cell Type 1-Like Immunostimulation. The Journal of Experimental Medicine, 198, 725-736.
https://doi.org/10.1084/jem.20021098
[9] Chamorro, Á., Meisel, A., Planas, A.M., Urra, X., van de Beek, D. and Veltkamp, R. (2012) The Immunology of Acute Stroke. Nature Reviews Neurology, 8, 401-410.
https://doi.org/10.1038/nrneurol.2012.98
[10] Meisel, C., Schwab, J.M., Prass, K., Meisel, A. and Dirnagl, U. (2005) Central Nervous System Injury-Induced Immune Deficiency Syndrome. Nature Reviews Neuroscience, 6, 775-786.
https://doi.org/10.1038/nrn1765
[11] Winek, K., Engel, O., Koduah, P., Heimesaat, M.M., Fischer, A., Bereswill, S., et al. (2016) Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome after Murine Stroke. Stroke, 47, 1354-1363.
https://doi.org/10.1161/strokeaha.115.011800
[12] Yamashiro, Y. (2017) Gut Microbiota in Health and Disease. Annals of Nutrition and Metabolism, 71, 242-246.
https://doi.org/10.1159/000481627
[13] Xie, Q., Li, Q., Fang, H., Zhang, R., Tang, H. and Chen, L. (2024) Gut-Derived Short-Chain Fatty Acids and Macrophage Modulation: Exploring Therapeutic Potentials in Pulmonary Fungal Infections. Clinical Reviews in Allergy & Immunology, 66, 316-327.
https://doi.org/10.1007/s12016-024-08999-z
[14] Ghelani, D.P., Kim, H.A., Zhang, S.R., Drummond, G.R., Sobey, C.G. and De Silva, T.M. (2021) Ischemic Stroke and Infection: A Brief Update on Mechanisms and Potential Therapies. Biochemical Pharmacology, 193, Article ID: 114768.
https://doi.org/10.1016/j.bcp.2021.114768
[15] Zhang, Y., Chen, Y., Xia, J., Li, L., Chang, L., Luo, H., et al. (2024) Rifaximin Ameliorates Influenza a Virus Infection-Induced Lung Barrier Damage by Regulating Gut Microbiota. Applied Microbiology and Biotechnology, 108, Article No. 469.
https://doi.org/10.1007/s00253-024-13280-6
[16] Lyons, M., Smith, C., Boaden, E., Brady, M.C., Brocklehurst, P., Dickinson, H., et al. (2018) Oral Care after Stroke: Where Are We Now? European Stroke Journal, 3, 347-354.
https://doi.org/10.1177/2396987318775206
[17] Sarmiento, R.J.C., Diestro, J.D.B., Espiritu, A.I. and San Jose, M.C.Z. (2019) Safety and Efficacy of Repeated Thrombolysis with Alteplase in Early Recurrent Ischemic Stroke: A Systematic Review. Journal of Stroke and Cerebrovascular Diseases, 28, Article ID: 104290.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.07.006
[18] Xie, X., Wang, L., Dong, S., Ge, S. and Zhu, T. (2023) Immune Regulation of the Gut-Brain Axis and Lung-Brain Axis Involved in Ischemic Stroke. Neural Regeneration Research, 19, 519-528.
https://doi.org/10.4103/1673-5374.380869
[19] Rashid, M.H., Kabir, A., Waris, M.U., Salman, U. and Zain, S. (2020) Role of Prophylactic Antibiotics in Critical Care of Stroke Patients—A Preventive Approach to Post-Stroke Infections? Cureus, 12, e7158.
https://doi.org/10.7759/cureus.7158
[20] Wästfelt, M., Cao, Y. and Ström, J.O. (2018) Predictors of Post-Stroke Fever and Infections: A Systematic Review and Meta-Analysis. BMC Neurology, 18, Article No. 49.
https://doi.org/10.1186/s12883-018-1046-z
[21] Ahmad, M., Ayaz, Z., Sinha, T., Soe, T.M., Tutwala, N., Alrahahleh, A.A., et al. (2024) Risk Factors for the Development of Pneumonia in Stroke Patients: A Systematic Review and Meta-Analysis. Cureus, 16, e57077.
https://doi.org/10.7759/cureus.57077
[22] Li, Y., Zhao, L., Liu, Y., Lu, Y., Yao, J., Li, C., et al. (2022) Novel Predictors of Stroke-Associated Pneumonia: A Single Center Analysis. Frontiers in Neurology, 13, Article 857420.
https://doi.org/10.3389/fneur.2022.857420
[23] Huang, L., Zhang, R., Ji, J., Long, F., Wang, Y., Lu, J., et al. (2022) Hypersensitive C‐Reactive Protein‐Albumin Ratio Is Associated with Stroke‐Associated Pneumonia and Early Clinical Outcomes in Patients with Acute Ischemic Stroke. Brain and Behavior, 12, e2675.
https://doi.org/10.1002/brb3.2675
[24] Shi, G., Li, M., Zhou, R., Wang, X., Xu, W., Yang, F., et al. (2021) Procalcitonin Related to Stroke-Associated Pneumonia and Clinical Outcomes of Acute Ischemic Stroke after IV Rt-Pa Treatment. Cellular and Molecular Neurobiology, 42, 1419-1427.
https://doi.org/10.1007/s10571-020-01031-w
[25] Cheng, H., Song, J., Zhang, Y., Chen, Y., Lin, G., Huang, G., et al. (2020) High Monocyte-to-Lymphocyte Ratio Is Associated with Stroke-Associated Pneumonia. Frontiers in Neurology, 11, Article 575809.
https://doi.org/10.3389/fneur.2020.575809
[26] Gong, S., Zhou, Z., Zhou, M., Lei, Z., Guo, J., Chen, N., et al. (2016) Validation of Risk Scoring Models for Predicting Stroke-Associated Pneumonia in Patients with Ischaemic Stroke. Stroke and Vascular Neurology, 1, 122-126.
https://doi.org/10.1136/svn-2016-000025
[27] Wang, J., Yang, C., Zhang, R., Hu, W., Yang, P., Jiang, Y., et al. (2024) Development and Validation of a Predictive Model for Stroke Associated Pneumonia in Patients after Thrombectomy for Acute Ischemic Stroke. Frontiers in Medicine, 11, Article 1370986.
https://doi.org/10.3389/fmed.2024.1370986
[28] Jitpratoom, P. and Boonyasiri, A. (2024) Factors Associated with an Increased Risk of Developing Pneumonia during Acute Ischemic Stroke Hospitalization. PLOS ONE, 19, e0296938.
https://doi.org/10.1371/journal.pone.0296938
[29] Goyal, M., Menon, B.K., van Zwam, W.H., Dippel, D.W.J., Mitchell, P.J., Demchuk, A.M., et al. (2016) Endovascular Thrombectomy after Large-Vessel Ischaemic Stroke: A Meta-Analysis of Individual Patient Data from Five Randomised Trials. The Lancet, 387, 1723-1731.
https://doi.org/10.1016/s0140-6736(16)00163-x
[30] Albers, G.W., Marks, M.P., Kemp, S., Christensen, S., Tsai, J.P., Ortega-Gutierrez, S., et al. (2018) Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England Journal of Medicine, 378, 708-718.
https://doi.org/10.1056/nejmoa1713973
[31] Hannawi, Y., Hannawi, B., Rao, C.P.V., Suarez, J.I. and Bershad, E.M. (2013) Stroke-Associated Pneumonia: Major Advances and Obstacles. Cerebrovascular Diseases, 35, 430-443.
https://doi.org/10.1159/000350199
[32] Bateman, R.M., Sharpe, M.D., Jagger, J.E., Ellis, C.G., Solé-Violán, J., López-Rodríguez, M., et al. (2016) 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15-18 March 2016. Critical Care, 20, Article No. 94.
https://doi.org/10.1186/s13054-016-1208-6
[33] El-Solh, A.A., Pietrantoni, C., Bhat, A., Aquilina, A.T., Okada, M., Grover, V., et al. (2003) Microbiology of Severe Aspiration Pneumonia in Institutionalized Elderly. American Journal of Respiratory and Critical Care Medicine, 167, 1650-1654.
https://doi.org/10.1164/rccm.200212-1543oc
[34] Powers, W.J., Rabinstein, A.A., Ackerson, T., Adeoye, O.M., Bambakidis, N.C., Becker, K., et al. (2019) Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 50, e344-e418.
https://doi.org/10.1161/str.0000000000000211
[35] Mancl, E.E. and Gidal, B.E. (2009) The Effect of Carbapenem Antibiotics on Plasma Concentrations of Valproic Acid. Annals of Pharmacotherapy, 43, 2082-2087.
https://doi.org/10.1345/aph.1m296
[36] Nakajima, Y., Mizobuchi, M., Nakamura, M., Takagi, H., Inagaki, H., Kominami, G., et al. (2004) Mechanism of the Drug Interaction between Valproic Acid and Carbapenem Antibiotics in Monkeys and Rats. Drug Metabolism and Disposition, 32, 1383-1391.
https://doi.org/10.1124/dmd.104.000661
[37] Westendorp, W.F., Vermeij, J., Zock, E., Hooijenga, I.J., Kruyt, N.D., Bosboom, H.J.L.W., et al. (2015) The Preventive Antibiotics in Stroke Study (PASS): A Pragmatic Randomised Open-Label Masked Endpoint Clinical Trial. The Lancet, 385, 1519-1526.
https://doi.org/10.1016/s0140-6736(14)62456-9
[38] Kalra, L., Irshad, S., Hodsoll, J., Simpson, M., Gulliford, M., Smithard, D., et al. (2015) Prophylactic Antibiotics after Acute Stroke for Reducing Pneumonia in Patients with Dysphagia (STROKE-INF): A Prospective, Cluster-Randomised, Open-Label, Masked Endpoint, Controlled Clinical Trial. The Lancet, 386, 1835-1844.
https://doi.org/10.1016/s0140-6736(15)00126-9
[39] Harms, H., Prass, K., Meisel, C., Klehmet, J., Rogge, W., Drenckhahn, C., et al. (2008) Preventive Antibacterial Therapy in Acute Ischemic Stroke: A Randomized Controlled Trial. PLOS ONE, 3, e2158.
https://doi.org/10.1371/journal.pone.0002158
[40] Westendorp, W.F., Nederkoorn, P.J., Vermeij, J., Dijkgraaf, M.G. and de Beek, D.V. (2011) Post-Stroke Infection: A Systematic Review and Meta-Analysis. BMC Neurology, 11, Article No. 110.
https://doi.org/10.1186/1471-2377-11-110
[41] Schwarz, S. (2016) Prophylactic Antibiotic Therapy for Preventing Poststroke Infection. Neurotherapeutics, 13, 783-790.
https://doi.org/10.1007/s13311-016-0466-y
[42] Vogelgesang, A., Lange, C., Blümke, L., Laage, G., Rümpel, S., Langner, S., et al. (2017) Ischaemic Stroke and the Recanalization Drug Tissue Plasminogen Activator Interfere with Antibacterial Phagocyte Function. Journal of Neuroinflammation, 14, Article No. 140.
https://doi.org/10.1186/s12974-017-0914-6
[43] Westendorp, W.F., Dames, C., Nederkoorn, P.J. and Meisel, A. (2022) Immunodepression, Infections, and Functional Outcome in Ischemic Stroke. Stroke, 53, 1438-1448.
https://doi.org/10.1161/strokeaha.122.038867
[44] Wirz, Y., Meier, M.A., Bouadma, L., Luyt, C.E., Wolff, M., Chastre, J., et al. (2018) Effect of Procalcitonin-Guided Antibiotic Treatment on Clinical Outcomes in Intensive Care Unit Patients with Infection and Sepsis Patients: A Patient-Level Meta-Analysis of Randomized Trials. Critical Care, 22, Article No. 191.
https://doi.org/10.1186/s13054-018-2125-7
[45] Ulm, L., Ohlraun, S., Harms, H., Hoffmann, S., Klehmet, J., Ebmeyer, S., et al. (2012) Stroke Adverse Outcome Is Associated with Nosocomial Infections (STRAWINSKI): Procalcitonin Ultrasensitive-Guided Antibacterial Therapy in Severe Ischaemic Stroke Patients—Rationale and Protocol for a Randomized Controlled Trial. International Journal of Stroke, 8, 598-603.
https://doi.org/10.1111/j.1747-4949.2012.00858.x
[46] Huang, C., Xiong, H., Li, W., Peng, L., Zheng, Y., Liao, W., et al. (2023) T Cell Activation Profiles Can Distinguish Gram Negative/Positive Bacterial Sepsis and Are Associated with ICU Discharge. Frontiers in Immunology, 13, Article 1058606.
https://doi.org/10.3389/fimmu.2022.1058606
[47] Iadecola, C. and Anrather, J. (2011) The Immunology of Stroke: From Mechanisms to Translation. Nature Medicine, 17, 796-808.
https://doi.org/10.1038/nm.2399
[48] Kerkis, I., Silva, Á.P.d. and Araldi, R.P. (2024) The Impact of Interleukin-6 (IL-6) and Mesenchymal Stem Cell-Derived IL-6 on Neurological Conditions. Frontiers in Immunology, 15, Article 1400533.
https://doi.org/10.3389/fimmu.2024.1400533
[49] Dames, C., Winek, K., Beckers, Y., Engel, O., Meisel, A. and Meisel, C. (2018) Immunomodulatory Treatment with Systemic GM-CSF Augments Pulmonary Immune Responses and Improves Neurological Outcome after Experimental Stroke. Journal of Neuroimmunology, 321, 144-149.
https://doi.org/10.1016/j.jneuroim.2018.03.005
[50] Schäbitz, W.R., Laage, R., Vogt, G., Koch, W., Kollmar, R., Schwab, S., et al. (2010) AXIS: A Trial of Intravenous Granulocyte Colony-Stimulating Factor in Acute Ischemic Stroke. Stroke, 41, 2545-2551.
https://doi.org/10.1161/strokeaha.110.579508
[51] Kuritzkes, D.R. (2000) Neutropenia, Neutrophil Dysfunction, and Bacterial Infection in Patients with Human Immunodeficiency Virus Disease: The Role of Granulocyte Colony-Stimulating Factor. Clinical Infectious Diseases, 30, 256-270.
https://doi.org/10.1086/313642
[52] Schäbitz, W.-R., Kollmar, R., Schwaninger, M., Juettler, E., Bardutzky, J., Schölzke, M.N., et al. (2003) Neuroprotective Effect of Granulocyte Colony-Stimulating Factor after Focal Cerebral Ischemia. Stroke, 34, 745-751.
https://doi.org/10.1161/01.str.0000057814.70180.17
[53] Gelderblom, M., Weymar, A., Bernreuther, C., Velden, J., Arunachalam, P., Steinbach, K., et al. (2012) Neutralization of the IL-17 Axis Diminishes Neutrophil Invasion and Protects from Ischemic Stroke. Blood, 120, 3793-3802.
https://doi.org/10.1182/blood-2012-02-412726
[54] Shim, R. and Wong, C.H.Y. (2018) Complex Interplay of Multiple Biological Systems That Contribute to Post-Stroke Infections. Brain, Behavior, and Immunity, 70, 10-20.
https://doi.org/10.1016/j.bbi.2018.03.019