[1]
|
Malard, F., Neri, P., Bahlis, N.J., Terpos, E., Moukalled, N., Hungria, V.T.M., et al. (2024) Multiple Myeloma. Nature Reviews Disease Primers, 10, Article No. 45. https://doi.org/10.1038/s41572-024-00529-7
|
[2]
|
Saghchy Khorasani, A.B., Soufizomorrod, M. and Bashash, D. (2024) Unleashing the Impact of Exosomes Derived from Human Placental Mesenchymal Stem Cells (hPMSCs) on U-266 Myeloma Cell Line. International Journal of Hematology-Oncology and Stem Cell Research, 18, 274-284. https://doi.org/10.18502/ijhoscr.v18i3.16109
|
[3]
|
Rafae, A., van Rhee, F. and Al Hadidi, S. (2023) Perspectives on the Treatment of Multiple Myeloma. The Oncologist, 29, 200-212. https://doi.org/10.1093/oncolo/oyad306
|
[4]
|
Zhuang, H., Yu, B., Tao, D., Xu, X., Xu, Y., Wang, J., et al. (2023) The Role of m6A Methylation in Therapy Resistance in Cancer. Molecular Cancer, 22, Article No. 91. https://doi.org/10.1186/s12943-023-01782-2
|
[5]
|
Cui, J., Wang, L., Ren, X., Zhang, Y. and Zhang, H. (2019) LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Frontiers in Physiology, 10, Article 595. https://doi.org/10.3389/fphys.2019.00595
|
[6]
|
Singh, V., Moran, J.C., Itoh, Y., Soto, I.C., Fontanesi, F., Couvillion, M., et al. (2024) Structural Basis of LRPPRC-SLIRP-Dependent Translation by the Mitoribosome. Nature Structural & Molecular Biology, 31, 1838-1847. https://doi.org/10.1038/s41594-024-01365-9
|
[7]
|
Ge, Y., Janson, V. and Liu, H. (2024) Comprehensive Review on Leucine-Rich Pentatricopeptide Repeat-Containing Protein (LRPPRC, PPR Protein): A Burgeoning Target for Cancer Therapy. International Journal of Biological Macromolecules, 282, Article ID: 136820. https://doi.org/10.1016/j.ijbiomac.2024.136820
|
[8]
|
Wu, Z., Liu, X., Xie, F., Ma, C., Lam, E.W., Kang, N., et al. (2024) Comprehensive Pan-Cancer Analysis Identifies the RNA-Binding Protein LRPPRC as a Novel Prognostic and Immune Biomarker. Life Sciences, 343, Article ID: 122527. https://doi.org/10.1016/j.lfs.2024.122527
|
[9]
|
Wang, H., Tang, A., Cui, Y., Gong, H. and Li, H. (2023) LRPPRC Facilitates Tumor Progression and Immune Evasion through Upregulation of m6A Modification of PD-L1 mRNA in Hepatocellular Carcinoma. Frontiers in Immunology, 14, Article 1144774. https://doi.org/10.3389/fimmu.2023.1144774
|
[10]
|
Sun, Y., Chen, X., Shi, Y., Teng, F., Dai, C., Ge, L., et al. (2024) Hsa_circ_0020093 Suppresses Ovarian Cancer Progression by Modulating LRPPRC Activity and miR-107/LATS2 Signaling. Biology Direct, 19, Article No. 69. https://doi.org/10.1186/s13062-024-00520-y
|
[11]
|
Zhang, X., Yang, Y., Tian, Z., et al. (2025) Programmable Loading of a Multivalent LRPPRC Aptamer onto a Rectangular DNA Tile Inhibits the Proliferation of Lung Adenocarcinoma Cells. ACS Applied Materials & Interfaces, 17, 23722-23730. https://doi.org/10.1021/acsami.5c02782
|
[12]
|
Deng, L., Deng, W., Fan, S., Chen, M., Qi, M., Lyu, W., et al. (2022) m6A Modification: Recent Advances, Anticancer Targeted Drug Discovery and Beyond. Molecular Cancer, 21, Article No. 52. https://doi.org/10.1186/s12943-022-01510-2
|
[13]
|
Wei, G. (2024) RNA m6A Modification, Signals for Degradation or Stabilisation? Biochemical Society Transactions, 52, 707-717. https://doi.org/10.1042/bst20230574
|
[14]
|
Qiao, Y., Sun, Q., Chen, X., He, L., Wang, D., Su, R., et al. (2023) Nuclear m6A Reader YTHDC1 Promotes Muscle Stem Cell Activation/Proliferation by Regulating mRNA Splicing and Nuclear Export. eLife, 12, e82703. https://doi.org/10.7554/elife.82703
|
[15]
|
Zhang, X., Su, T., Wu, Y., Cai, Y., Wang, L., Liang, C., et al. (2024) N6-Methyladenosine Reader YTHDF1 Promotes Stemness and Therapeutic Resistance in Hepatocellular Carcinoma by Enhancing NOTCH1 Expression. Cancer Research, 84, 827-840. https://doi.org/10.1158/0008-5472.can-23-1916
|
[16]
|
Chen, J., Lu, T., Wang, T., Yan, W., Zhong, F., Qu, X., et al. (2024) The m6A Reader HNRNPC Promotes Glioma Progression by Enhancing the Stability of IRAK1 mRNA through the MAPK Pathway. Cell Death & Disease, 15, Article No. 390. https://doi.org/10.1038/s41419-024-06736-0
|
[17]
|
Zhou, W., Lu, Q., Li, Q., Wang, L., Ding, S., Zhang, A., et al. (2017) PPR-SMR Protein SOT1 Has RNA Endonuclease Activity. Proceedings of the National Academy of Sciences of the United States of America, 114, E1554-E1563. https://doi.org/10.1073/pnas.1612460114
|
[18]
|
McDowell, R., Small, I. and Bond, C.S. (2022) Synthetic PPR Proteins as Tools for Sequence-Specific Targeting of RNA. Methods, 208, 19-26. https://doi.org/10.1016/j.ymeth.2022.10.003
|
[19]
|
Weißenberger, S., Soll, J. and Carrie, C. (2016) The PPR Protein SLOW GROWTH 4 Is Involved in Editing of NAD4 and Affects the Splicing of NAD2 Intron 1. Plant Molecular Biology, 93, 355-368. https://doi.org/10.1007/s11103-016-0566-4
|
[20]
|
Rovira, A.G. and Smith, A.G. (2019) PPR Proteins—Orchestrators of Organelle RNA Metabolism. Physiologia Plantarum, 166, 451-459. https://doi.org/10.1111/ppl.12950
|
[21]
|
Yu, Y., Deng, H., Wang, W., Xiao, S., Zheng, R., Lv, L., et al. (2024) LRPPRC Promotes Glycolysis by Stabilising LDHA mRNA and Its Knockdown Plus Glutamine Inhibitor Induces Synthetic Lethality via m6A Modification in Triple‐negative Breast Cancer. Clinical and Translational Medicine, 14, e1583. https://doi.org/10.1002/ctm2.1583
|
[22]
|
Hu, Y., Cui, J., Jin, L., Su, Y. and Zhang, X. (2021) LRPPRC Contributes to the Cisplatin Resistance of Lung Cancer Cells by Regulating MDR1 Expression. Oncology Reports, 45, Article No. 4. https://doi.org/10.3892/or.2021.7955
|
[23]
|
Zhao, Z., Xu, H., Wei, Y., Sun, L. and Song, Y. (2023) Deubiquitylase PSMD14 Inhibits Autophagy to Promote Ovarian Cancer Progression via Stabilization of Lrpprc. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1869, Article ID: 166594. https://doi.org/10.1016/j.bbadis.2022.166594
|
[24]
|
Zhou, W., Wang, W., Liang, Y., Jiang, R., Qiu, F., Shao, X., et al. (2023) The RNA-Binding Protein LRPPRC Promotes Resistance to CDK4/6 Inhibition in Lung Cancer. Nature Communications, 14, Article No. 4212. https://doi.org/10.1038/s41467-023-39854-y
|
[25]
|
Niinuma, T., Kitajima, H., Sato, T., Ogawa, T., Ishiguro, K., Kai, M., et al. (2024) LINC02154 Promotes Cell Cycle and Mitochondrial Function in Oral Squamous Cell Carcinoma. Cancer Science, 116, 393-405. https://doi.org/10.1111/cas.16379
|
[26]
|
Zeng, L., Li, Y., He, S., Xu, H., Zhang, R., Chen, K., et al. (2024) The Deubiquitinase USP44 Enhances Cisplatin Chemosensitivity through Stabilizing STUB1 to Promote LRPPRC Degradation in Neuroblastoma. Neuro-Oncology, 27, 492-507. https://doi.org/10.1093/neuonc/noae175
|
[27]
|
Li, D. and Wang, M. (2024) An LRPPRC-HAPSTR1-PSMD14 Interaction Regulates Tumor Progression in Ovarian Cancer. Aging, 16, 6773-6795. https://doi.org/10.18632/aging.205713
|
[28]
|
Zou, J., Yue, F., Li, W., et al. (2014) Autophagy Inhibitor LRPPRC Suppresses Mitophagy through Interaction with Mitophagy Initiator Parkin. PLOS ONE, 9, e94903. https://doi.org/10.1371/journal.pone.0094903
|
[29]
|
Yan, G., Li, H., Zhang, Y., Xia, C., Wang, M., Jia, Y., et al. (2022) Renal Insufficiency Predicts Worse Prognosis in Newly Diagnosed IgD Multiple Myeloma Patients. Frontiers in Oncology, 12, Article 1012889. https://doi.org/10.3389/fonc.2022.1012889
|
[30]
|
Han, F., Sheng, N., Sheng, C. and Meng, J. (2023) The Diagnostic and Prognostic Value of Haematologic Parameters in Multiple Myeloma Patients. Hematology, 28, Article ID: 2240145. https://doi.org/10.1080/16078454.2023.2240145
|
[31]
|
Li, J., Arsang-Jang, S., Cheng, Y., Sun, F., D’Souza, A., Dhakal, B., et al. (2024) Enhancing Prognostic Power in Multiple Myeloma Using a Plasma Cell Signature Derived from Single-Cell RNA Sequencing. Blood Cancer Journal, 14, Article No. 38. https://doi.org/10.1038/s41408-024-01024-8
|