基于网络药理学和分子对接揭示熊果酸治疗肺动脉高压的分子机制
Revealing the Mechanism of Ursolic Acid in Treating Pulmonary Hypertension Based on Network Pharmacology and Molecular Docking
DOI: 10.12677/acm.2025.1561710, PDF, HTML, XML,    科研立项经费支持
作者: 黎艳妙, 寇紫微:青岛大学青岛医学院,山东 青岛;孙书芳:青岛市中心血站业务科,山东 青岛;于新娟:青岛市市立医院临床研究中心,山东 青岛;袁杉杉:潍坊医学院临床医学院,山东 潍坊;郝万明*:青岛市市立医院呼吸与危重症医学科,山东 青岛
关键词: 熊果酸肺动脉高压网络药理学作用机制Ursolic Acid Pulmonary Hypertension Network Pharmacology Mechanism
摘要: 目的:采用网络药理学和分子对接探究熊果酸治疗肺动脉高压的潜在作用靶点及信号通路。方法:检索PubChem数据库获得熊果酸的作用靶点,利用GeneCards数据库得到肺动脉高压相关疾病靶点,绘制韦恩图获取两者的交集靶点,String数据库构建交集靶点蛋白相互作用网络图,并导入Cytoscape3.10.1软件使网络可视化,然后筛选关键靶点。利用DAVID数据库和在线工具对熊果酸和肺动脉高压的交集靶点进行GO功能和KEGG通路富集分析。最后利用AutoDock和Pymol软件对熊果酸与核心靶点进行分子对接并对结果进行可视化分析。结果:获得熊果酸作用靶点75个,通过PPI图得到过氧化物酶体增殖物激活受体γ基因(peroxisome proliferator-activated receptor gamma, PPARG)、前列腺素内过氧化物合酶2 (prostaglandin-endoperoxide synthase-2, PTGS2)、雌激素受体1基因(estrogen receptor 1, ESR1)、丝裂原活化蛋白激酶3 (mitogen-activated protein kinase 3, MAPK3)、核受体亚家族3组成员1 (nuclear receptor subfamily 3 group C member 1, NR3C1)等关键蛋白。富集分析显示,参与的通路主要集中在花生四烯酸代谢通路、肿瘤相关通路、5-羟色胺能突触信号通路、PPAR信号通路等。分子对接验证亦显示熊果酸与核心靶点的结合活性较好。结论:熊果酸治疗肺动脉高压通过多靶点、多通路发挥作用,但具体作用机制尚需要动物实验与临床试验的进一步验证。
Abstract: Objective: To explore the potential targets and signal pathway of ursolic acid in treating pulmonary hypertension with network pharmacology and molecular docking technology. Methods: Pubchem was used to retrieve the potential targets of ursolic acid. The related targets of PH were collected by GeneCards. The intersection targets of ursolic acid and pulmonary hypertension were determined by the Wayne diagram. The protein interaction network of intersection targets was constructed by using the String database, and the network was visualized by Cytoscape3.10.1 software to screen key targets. The enrichment analysis of GO function and KEGG pathway was analyzed by the DAVID database and online tools. The molecular docking of ursolic acid and the core targets was performed by AutoDock and Pymol software, and the results were visualized. Results: Seventy-five ursolic acid action targets were obtained, and key proteins such as peroxisome proliferator-activated receptor gamma (PPARG), prostaglandin-endoperoxide synthase-2 (PTGS2), estrogen receptor 1 (ESR1), mitogen-activated protein kinase 3 (MAPK3) and nuclear receptor subfamily 3 group C member 1 (NR3C1) were obtained by PPI map. Enrichment analysis showed that the pathways of ursolic acid treatment for pulmonary hypertension mainly focused on arachidonic acid metabolism pathways, pathways in cancer, serotonergic synaptic signaling pathway, PPAR signalling pathway and so on. The molecular docking validation also showed that ursolic acid had better binding activity with the core targets. Conclusion: ursolic acid plays a role in the treatment of pulmonary hypertension through multiple targets and multiple pathways, but the specific mechanism needs further verification by animal experiments and clinical trials.
文章引用:黎艳妙, 孙书芳, 于新娟, 寇紫微, 袁杉杉, 郝万明. 基于网络药理学和分子对接揭示熊果酸治疗肺动脉高压的分子机制[J]. 临床医学进展, 2025, 15(6): 148-159. https://doi.org/10.12677/acm.2025.1561710

1. 引言

肺动脉高压(pulmonary hypertension, PH)是一种进行性慢性肺血管疾病,其形成与免疫炎症、基因突变、血管活性物质失衡等多种因素相关,PH能够导致右心衰竭,大多预后较差。而目前PH的临床治疗十分有限,因此,开发一种多靶点、安全、低成本的治疗方法至关重要。天然化合物副作用少且越来越多的证据表明其在PH的治疗中发挥重要作用[1]-[3]

熊果酸(ursolic acid)是一种广泛存在于蔬菜、水果和中草药中的天然五环三萜酸类化合物,具有广泛的药理作用,如抗炎、抗菌,抗肿瘤,抗糖尿病,保护心脏、肝,治疗骨质疏松、改善学习记忆等[4]-[6],不仅如此,已有大量研究表明熊果酸在呼吸系统疾病中具有治疗作用,如肺癌、肺炎、哮喘、肺气肿、矽肺、PH等[7]-[12]。如Gao等[7]发现熊果酸可通过调节过氧化物酶体增殖物激活受体α (peroxisome proliferator-activated receptor α, PPARα)依赖性脂肪酸代谢从而减轻PH引起的右心室功能障碍和重塑,但熊果酸治疗PH相关文章较少,而且只关注单一靶点或信号通路,而忽略了靶点之间潜在的协同作用,这种方法可能不足以揭示相关药物的确切机制。为了阐明熊果酸在PH治疗中的作用,我们进行了网络药理学分析。

网络药理学是一种通过构建生物医学相互作用网络来评估药物分子机制的重要研究方法,可用于探究来源于多种天然资源的小分子生物效应。分子对接技术能深入阐述分子间相互作用,以图形化方式阐明作用机制,在药物研发中具有同等重要的应用价值[13] [14]。天然植物活性成分多、功效强,具有广泛的药用价值,但是其作用机理仍需进一步探究,运用网络药理学和分子对接技术可以实现化合物–靶点–信号通路的可视化分析[15],从而为天然植物的活性成分及相关疾病的作用机制提供更多依据。Chen等[16]通过网络药理学探讨白藜芦醇治疗PH的作用机制,结果表明白藜芦醇可能与丝裂原活化蛋白激酶3 (mitogen-activated protein kinase 3, MAPK3)、蛋白激酶B亚型1、细胞衰老相关蛋白1等靶点以及炎症相关反应、细胞增殖和氧化还原平衡等生物学过程密切相关。因此,本研究运用网络药理学研究熊果酸治疗PH的作用机制,为熊果酸作为PH的治疗提供了新的依据。

2. 资料和方法

2.1. 熊果酸的作用靶点预测

在PubChem (https://pubchem.ncbi.nlm.nih.gov/)数据库中下载熊果酸的2D结构并保存为SDF文件,再使用Swiss Target Prediction (http://www.swisstargetprediction.ch/)分析熊果酸的作用靶点。

2.2. 肺动脉高压疾病靶点预测

在Gene Cards (https://www.genecards.Org)数据库输入关键词“Pulmonary Hypertension”“Pulmonary Arterial Hypertension”,检索PH基因靶点,收集相关性分值(Relevance score) > 10的相关靶点,删除重复项。再利用Venny2.1.0绘制熊果酸靶点和PH靶点的交集靶点图。

2.3. PPI蛋白互作网络及核心靶点获取

将上述获取的交集靶点上传至String (http://string-db.org)数据库中,将物种限定于“Homo sapiens”,置信度设置为≥0.4,构建靶蛋白–靶蛋白相互作用(Protein Protein Interaction, PPI)网络,获得PPI分析结果并以TSV的格式导出,再通过Cytoscape 3.10.1软件对结果进行可视化,利用该软件中的CytoNCA插件进一步筛选核心靶点。

2.4. 富集分析

将熊果酸与PH的交集靶点导入DAVID (https://david.ncifcrf.gov)数据库中,设置物种为“Homo sapiens (智人)”、标识符(identifier)为“official gene symbol (官方名称)”,保留校正后P值小于0.05的条目,进行基因本体论(GO)功能富集分析和京都基因与基因组百科全书(KEGG)通路分析,并筛选排名前20的结果导入微生信(https://www.bioinformatics.com.cn)平台进行可视化分析。分析包括生物过程(Biological Process, BP)、分子功能(Molecular Function, MF)和细胞组分(Cellular Component, CC)及KEGG通路信息。

2.5. 药物–靶点–通路–疾病网络的构建

选择KEGG分析结果中富集基因数量排名在前20的信号通路,与熊果酸和PH的共有靶点结合,导入Cytoscape3.10.1软件去构建药物–靶点–通路–疾病网络图。

2.6. 分子对接

通过PubChem数据库搜索熊果酸并下载其sdf格式的三维结构,利用OpenBabel 3.1.1转换为pdb格式,再应用PDB (https://www.rcsb.org/)数据库搜索核心靶点并下载相应的三维结构。通过PyMOL2.4.0软件对受体和配体进行去水、加氢等处理,然后利用AutoDock Tools将靶蛋白和其配体分离,添加氢原子、计算电荷、确定对接盒子的大小和中心,最后借助AutoDock Vina对受体和配体进行分子对接,将结果再导入PyMOL2.4.0进行可视化处理。

3. 结果

3.1. 熊果酸作用靶点

从PubChem数据库中获取熊果酸的2D结构图,并将熊果酸的SMILES结构式上传至Swiss Target Prediction数据库,获得熊果酸的潜在作用靶点,剔除无效靶点后获得有效靶点75个(筛选标准为 Probability > 0)。

3.2. 肺动脉高压的靶点

通过Gene Cards 数据库检索获得PH疾病相关基因靶点7441个,以相关性分值(Relevance score > 10)作为筛选条件,获得符合条件的肺动脉高压候选靶点1287个。将上述获得的熊果酸潜在作用靶点与PH相关靶点进行相互映射,共得到两者的交集靶点37个,见图1所示。

Figure 1. Venn diagram of overlapping targets between ursolic acid and PH

1. 熊果酸与PH的交集靶点韦恩图

3.3. PPI蛋白互作网络及核心靶点获取

将熊果酸与PH的37个交集靶点导入String数据库构建PPI网络图并通过Cytoscape 3.10.1软件进行可视化,删除不参与蛋白质相互作用的靶点后如图2所示,构建的网络由37个节点,170条边组成,根据节点的度值设置其大小和颜色,并绘制同心圆图:度值越高,节点越大且颜色越深,最终我们根据Degree筛选出的前5个核心靶点分别是过氧化物酶体增殖物激活受体γ基因(peroxisome proliferator-activated receptor gamma, PPARG)、前列腺素内过氧化物合酶2 (prostaglandin-endoperoxide synthase-2, PTGS2)、雌激素受体1基因(estrogen receptor 1, ESR1)、MAPK3、核受体亚家族3组成员1 (nuclear receptor subfamily 3 group C member 1, NR3C1),属性值见表1

Figure 2. PPI network and Cytoscape visualization of ursolic acid’s therapeutic targets for pulmonary hypertension

2. 熊果酸治疗PH靶点的PPI网络及Cytoscape可视化

Table 1. Top 5 hub targets ranked by degree value and their attribute scores

1. 度值Top 5的核心靶点属性值

Target

Degree Centrality

Betweenness Centrality

Closeness

PPARG

23.0

202.59105

0.72

PTGS2

22.0

245.9363

0.72

ESR1

20.0

99.7777

0.6792453

MAPK3

19.0

92.976776

0.6666667

NR3C1

16.0

70.629585

0.6315789

3.4. GO功能和KEGG信号通路富集分析

为进一步探究熊果酸治疗PH的分子机制,我们对37个交集基因进行了GO和KEGG富集分析。GO富集分析结果如图3显示,共有130个条目,BP有79个条目,主要涉及:RNA聚合酶Ⅱ启动子转录的正调控、细胞内类固醇激素受体信号通路、炎症反应、基因表达的正调控、对外源性刺激的反应;CC共有10个条目,主要涉及:内质网膜、核质、细胞质、胞质溶胶、核;MF共有41个条目,主要涉及:类固醇结合、RNA聚合酶II转录因子活性,配体激活的序列特异性DNA结合、酶结合、锌离子结合。KEGG分析结果显示有22条信号通路(P < 0.05),其中包括花生四烯酸代谢通路、肿瘤相关通路、5-羟色胺能突触信号通路、类固醇同源物生物合成、催乳素信号传导通路、PPAR信号通路,选取P值较小的前20个与肺动脉高压有关的通路进行可视化分析,见图4。此外,我们运用Cytoscape3.10.0构建熊果酸治疗PH的药物–靶点–通路–疾病间的作用关系图以便更好地将药物与疾病联系起来,见图5

Figure 3. GO enrichment analysis bar plot of ursolic acid for PH treatment

3. 熊果酸治疗PH的GO富集分析条形图

Figure 4. KEGG pathway enrichment analysis (bubble plot) of ursolic acid for PH treatment

4. 熊果酸治疗PH的KEGG富集分析气泡图

注:紫色三角形代表熊果酸,蓝色长方形代表靶点,粉红色椭圆形代表信号通路,黄色菱形代表PH。

Figure 5. Drug-target-pathway-disease network diagram

5. 药物–靶点–通路–疾病网络图

3.5. 核心靶点的分子对接验证

通过网络药理学预测,我们筛选了5个核心靶点:PPARG、PTGS2、ESR1、MAPK3、NR3C1,并进一步与熊果酸进行分子对接验证,计算对接结合能,结合能用于反映配体与受体蛋白的结合能力,能量值低于−5.0 kcal/mol表明两者存在显著亲和力,具体的结合能见表2。从表中可以看出,熊果酸与核心靶点结合能均 ≤ −5.0 kcal/mol,表明都具有较强的结合活性。最后采用PyMOL2.4.0软件对化合物进行分子三维展示,结果见图6

注:A:熊果酸与NR3C1蛋白对接图;B:熊果酸与MAPK3蛋白对接图;C:熊果酸与PPARG蛋白对接图;D:熊果酸与PTGS2蛋白对接图;E:熊果酸与ESR1蛋白对接图。

Figure 6. Molecular docking visualization

6. 分子对接展示图

Table 2. Docking table of ursolic acid and core targets

2. 熊果酸与核心靶点对接表

化合物

靶点

蛋白(PDB ID)

结合能(kcal/mol)

熊果酸

NR3CI

1M2Z

−8.68

MAPK3

6GES

−8.07

PPARG

6KOT

−7.9

PTGS2

5F19

−7.54

ESR1

3OCB

−6.93

4. 讨论

PH是一种进行性慢性肺血管疾病,肺血管重塑在促进PH的发生和发展中起着至关重要的作用,PH的肺动脉重塑过程涉及多个关键环节:包括受损的肺动脉内皮细胞发生功能障碍并过度增殖,肺动脉平滑肌细胞(pulmonary artery smooth muscle cells, PASMCs)异常增生及表型转化,同时伴随血管周围炎症细胞浸润增加以及钙调节紊乱,共同促进血管重构。这些病理改变最终引起血管壁增厚、管腔狭窄,随着病情的发展,最终可导致心力衰竭甚至死亡[17] [18]

PH目前的药物治疗主要通过靶向一氧化氮、内皮素等信号通路的药物进行联合治疗,尽管这些药物可通过舒张肺动脉、抑制肺血管重构等途径缓解PH,但其单靶点作用机制存在局限性,因此需要开发一种多靶点、安全、低成本的PH治疗方法。而天然药物具有多靶点、多途径的特点,可以在减少药物剂量的同时减轻不良反应,越来越多的研究表明其可以应用于临床。此外,已有文献表明中药单体在治疗PH上发挥重要作用[19] [20]。熊果酸是一种天然存在的五环三萜羧酸,广泛存在于蔬菜、水果和中草药中,熊果酸的药理作用广泛,可在多种疾病中发挥治疗作用。同时,熊果酸还可显着改善野百合碱引起的PH [7],但是目前有关熊果酸治疗PH的相关文章较少,考虑到潜在的基因相互作用,我们旨在通过网络药理学分析探索熊果酸的抗PH作用,为熊果酸防治PH提供分子理论基础。

基于PPI网络,我们发现PPARG、PTGS2、ESR1、MAPK3、NR3C1等蛋白节点度值较高,推测这些蛋白可能是熊果酸治疗PH的重要靶点。进一步行GO功能分析和KEGG通路分析发现熊果酸可通过花生四烯酸代谢通路、肿瘤相关通路、5-羟色胺能突触信号通路、类固醇同源物生物合成、催乳素信号传导通路、PPAR信号通路调节PH。

AA通路在肺、心、肾等器官系统的炎症介导与级联反应中发挥核心作用。AA代谢产物(统称为类二十烷酸)具有促炎、抗炎等多样化生物学功能。AA可由环氧化酶途径生成不同生物活性介质,如前列腺素E与前列环素,从而调控血管平滑肌细胞的收缩或舒张[21]。前列环素及其类似物在维持肺循环稳态平衡方面发挥重要作用,它们可以对抗PH中活跃的血管收缩介质,从而能够松弛肺动脉血管系统[22] [23],PTGS2是前列腺素生物合成的关键酶,它是一种有效的血管扩张剂,被认为是治疗PH最有效的药物之一,不仅如此,研究发现,PTGS2敲除小鼠在慢性缺氧下会出现严重的PH,提示上调PTGS2可以作为治疗PH的方向[24]

PASMC增殖参与形成肺血管重塑,在人和动物PH模型中,都观察到PASMC代谢异常,基于这个特征,有人提出该疾病与癌症相似,研究发现,PH中线粒体代谢异常可激活HIF-1α,进而增强有氧糖酵解并触发细胞增殖。同时,另有文献表明,肿瘤相关通路如磷脂酰肌醇3-激酶/蛋白激酶B (protein kinase B, AKT)可以调节PASMCs的增殖和凋亡间的平衡来改善肺血管重构[25]-[27]

类固醇激素如睾酮、雌激素和糖皮质激素等具有较强的抗炎活性,ESR1通过调控与生长、代谢、生殖等功能相关的基因发挥作用。研究显示,女性PH患者PASMCs中雌激素受体的表达水平显著高于男性患者[28] [29],雌激素受体αβ都被发现对PH具有保护作用,并可能通过协同效应改善病情,雌激素抑制剂为PH的治疗提供更多选择性[30] [31]。同时,另有研究表明,NR3C1是编码糖皮质激素受体,糖皮质激素调控的基因表达直接受NR3C1 基因的影响,参与靶组织的炎症反应、细胞增殖与分化过程[32] [33]

PPAR属于核激素受体超家族,目前已知有三种不同亚型:PPARα、PPARβ/δ和PPARγ。它们负责调节细胞发育、细胞增殖、分化、炎症和分化等生物过程。现有研究发现PPAR与肿瘤的发生发展及血管生成密切相关[34]。PPARγ在血管重构中发挥重要作用,血管组织内多种细胞均存在PPARγ功能性表达,激活后可改善内皮细胞功能、抑制细胞凋亡、增殖及细胞外基质释放,从而抑制血管重塑,PPARγ由PPARG基因编码,该基因缺陷与PH的发病机制有关,已知PPARG功能的治疗恢复可在临床前模型中缓解PH,故PPARγ激动剂可以逆转肺血管重塑[35] [36]。Li等[37]研究发现,PPARγ的激活可以作用于组蛋白脱乙酰基酶1途径抑制PASMC增殖。已有确切研究表明,骨形态发生蛋白受体2型-PPARγ轴受损是PH形成的重要机制,PPARγ的激活可改善该机制,从而抑制血管重塑[38]。Seng等[39]也指出,PPARγ的降低与PH的形成密切相关,PPARγ的不足可以通过减少抗氧化酶的表达、增加活性氧(reactive oxygen species, ROS)产生来促进血管收缩、过度增殖和基质硬化进而共同驱动PH的形成。

内皮功能障碍是由于血管扩张剂和血管收缩剂之间的不平衡引起的,5-HT能系统被发现与调控内皮功能障碍有关,从而在PH发挥越来越重要的作用。研究表明,G蛋白偶联受体激酶(G protein-coupled receptor kinase 2, GRK2)是PH引起的右心室心肌功能障碍的一个有吸引力的治疗靶点,选择性5-HT再摄取抑制剂被发现是一种强效且高选择性的GRK2抑制剂,从而缓解PH引起的大鼠右心室功能障碍和衰竭的发展[40]。Kloza等[41]指出5-HT转运体进入PASMCs,激活活性氧(ROS),介导血管收缩,不仅如此,该转运体还能刺激转录因子(如NF-κB、STAT3),引发细胞增殖与血管壁重构。

催乳素(Prolactin, PRL)是一种主要由垂体前叶分泌的肽激素,与其受体结合诱导下游信号传导,包括Janus激酶–信号转导和转录激活因子、AKT和MAPK通路,导致细胞增殖、迁移、细胞凋亡抑制和化疗耐药性增加,多种癌症的发生与两者结合相关。MAPK相关信号通路被发现参与肺血管的形成和重塑,而MAPK3是MAPK信号通路的重要成员,Tao等[42]研究发现通过激活MAPK3信号传导的分子相互作用钙离子依赖型接头蛋白2可抑制肺血管平滑肌的增殖。PRL还可通过p21激活激酶1介导的机制激活ERα,从而规避抗雌激素治疗的作用机制[43]

本研究通过整合网络药理学、分子对接,系统揭示了熊果酸抗PH作用的潜在分子机制。GO分析明确了熊果酸抗PH作用的关键BP、CC及MF。KEGG/DAVID通路富集分析鉴定了熊果酸治疗中的核心信号通路。PPI网络分析筛选出5个核心靶点:PPARG、PTGS2、ESR1、MAPK3、NR3C1,分子对接结果显示,熊果酸对网络药理学筛选出的关键靶点具有高亲和力;分子动力学模拟进一步表明,熊果酸与上述靶点的结合均更加稳定,证实前述假定的核心蛋白确是熊果酸治疗PH的关键环节。可为后续熊果酸治疗PH的药理学研究和临床实验提供理论依据。但是本研究存在一些局限性。网络药理学、分子对接依赖于数据和算法,由于数据库和软件的限制,其结果可能与实际结果不同。同时由于时间和其他限制,我们没有进行动物和细胞实验进行验证。只是初步探讨了熊果酸治疗PH的机制,我们希望未来能够通过实验进一步去验证相关机制。

基金项目

青岛市医药科研指导计划(2021-WJZD014)。

NOTES

*通讯作者。

参考文献

[1] Thenappan, T., Ormiston, M.L., Ryan, J.J. and Archer, S.L. (2018) Pulmonary Arterial Hypertension: Pathogenesis and Clinical Management. BMJ, 360, j5492.
https://doi.org/10.1136/bmj.j5492
[2] Xue, Z., Li, Y., Zhou, M., Liu, Z., Fan, G., Wang, X., et al. (2021) Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Frontiers in Pharmacology, 12, Article 720873.
https://doi.org/10.3389/fphar.2021.720873
[3] Yu, Z., Xiao, J., Chen, X., Ruan, Y., Chen, Y., Zheng, X., et al. (2022) Bioactivities and Mechanisms of Natural Medicines in the Management of Pulmonary Arterial Hypertension. Chinese Medicine, 17, Article No 13.
https://doi.org/10.1186/s13020-022-00568-w
[4] Namdeo, P., Gidwani, B., Tiwari, S., Jain, V., Joshi, V., Shukla, S.S., et al. (2023) Therapeutic Potential and Novel Formulations of Ursolic Acid and Its Derivatives: An Updated Review. Journal of the Science of Food and Agriculture, 103, 4275-4292.
https://doi.org/10.1002/jsfa.12423
[5] Chen, C., Ai, Q., Shi, A., Wang, N., Wang, L. and Wei, Y. (2022) Oleanolic Acid and Ursolic Acid: Therapeutic Potential in Neurodegenerative Diseases, Neuropsychiatric Diseases and Other Brain Disorders. Nutritional Neuroscience, 26, 414-428.
https://doi.org/10.1080/1028415x.2022.2051957
[6] Sandhu, S.S., Rouz, S.K., Kumar, S., Swamy, N., Deshmukh, L., Hussain, A., et al. (2023) Ursolic Acid: A Pentacyclic Triterpenoid That Exhibits Anticancer Therapeutic Potential by Modulating Multiple Oncogenic Targets. Biotechnology and Genetic Engineering Reviews, 39, 729-759.
https://doi.org/10.1080/02648725.2022.2162257
[7] Gao, X., Zhang, Z., Li, X., Wei, Q., Li, H., Li, C., et al. (2020) Ursolic Acid Improves Monocrotaline-Induced Right Ventricular Remodeling by Regulating Metabolism. Journal of Cardiovascular Pharmacology, 75, 545-555.
https://doi.org/10.1097/fjc.0000000000000815
[8] Kornel, A., Nadile, M. and Tsiani, E. (2022) Evidence of the Beneficial Effects of Ursolic Acid against Lung Cancer. Molecules, 27, Article 7466.
https://doi.org/10.3390/molecules27217466
[9] Al-kuraishy, H.M., Al-Gareeb, A.I. and El-Saber Batiha, G. (2022) The Possible Role of Ursolic Acid in Covid-19: A Real Game Changer. Clinical Nutrition ESPEN, 47, 414-417.
https://doi.org/10.1016/j.clnesp.2021.12.030
[10] He, Q., Liu, C., Shen, L., Zeng, L., Wang, T., Sun, J., et al. (2021) Theory of the Exterior-Interior Relationship between the Lungs and the Large Intestine to Explore the Mechanism of Eriobotrya Japonica Leaf Water Extract in the Treatment of Cough Variant Asthma. Journal of Ethnopharmacology, 281, Article ID: 114482.
https://doi.org/10.1016/j.jep.2021.114482
[11] Lin, L., Yin, Y., Hou, G., Han, D., Kang, J. and Wang, Q. (2017) Ursolic Acid Attenuates Cigarette Smoke-Induced Emphysema in Rats by Regulating PERK and Nrf2 Pathways. Pulmonary Pharmacology & Therapeutics, 44, 111-121.
https://doi.org/10.1016/j.pupt.2017.03.014
[12] 彭海兵, 王永恒, 曹福源, 等. 熊果酸抑制矽肺大鼠转化生长因子β1、白介素1的表达及其作用机制[J]. 环境与职业医学, 2016, 33(6): 567-570.
[13] Jiao, W., Mi, S., Sang, Y., Jin, Q., Chitrakar, B., Wang, X., et al. (2022) Integrated Network Pharmacology and Cellular Assay for the Investigation of an Anti-Obesity Effect of 6-Shogaol. Food Chemistry, 374, Article ID: 131755.
https://doi.org/10.1016/j.foodchem.2021.131755
[14] Xia, Q., Xun, Y., Lu, J., Lu, Y., Yang, Y., Zhou, P., et al. (2020) Network Pharmacology and Molecular Docking Analyses on Lianhua Qingwen Capsule Indicate Akt1 Is a Potential Target to Treat and Prevent Covid‐19. Cell Proliferation, 53, e12949.
https://doi.org/10.1111/cpr.12949
[15] 解静, 高杉, 李琳, 等. 网络药理学在中药领域中的研究进展与应用策略[J]. 中草药, 2019, 50(10): 2257-2265.
[16] Chen, Y., Yuan, T., Chen, D., Liu, S., Guo, J., Fang, L., et al. (2020) Systematic Analysis of Molecular Mechanism of Resveratrol for Treating Pulmonary Hypertension Based on Network Pharmacology Technology. European Journal of Pharmacology, 888, Article ID: 173466.
https://doi.org/10.1016/j.ejphar.2020.173466
[17] Hemnes, A.R. and Humbert, M. (2017) Pathobiology of Pulmonary Arterial Hypertension: Understanding the Roads Less Travelled. European Respiratory Review, 26, Article ID: 170093.
https://doi.org/10.1183/16000617.0093-2017
[18] Tuder, R.M., Archer, S.L., Dorfmüller, P., Erzurum, S.C., Guignabert, C., Michelakis, E., et al. (2013) Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. Journal of the American College of Cardiology, 62, D4-D12.
https://doi.org/10.1016/j.jacc.2013.10.025
[19] Mullen, E., McCullagh, B., Gaine, S. and Quadery, S.R. (2025) Recent Advances in the Diagnosis and Management of Pulmonary Arterial Hypertension. British Journal of Hospital Medicine, 86, 1-13.
https://doi.org/10.12968/hmed.2024.0635
[20] Yang, X., Yang, Y., Liu, K. and Zhang, C. (2023) Traditional Chinese Medicine Monomers: Targeting Pulmonary Artery Smooth Muscle Cells Proliferation to Treat Pulmonary Hypertension. Heliyon, 9, e14916.
https://doi.org/10.1016/j.heliyon.2023.e14916
[21] Aradhyula, V., Breidenbach, J.D., Khatib-Shahidi, B.Z., Slogar, J.N., Eyong, S.A., Faleel, D., et al. (2024) Transcriptomic Analysis of Arachidonic Acid Pathway Genes Provides Mechanistic Insight into Multi-Organ Inflammatory and Vascular Diseases. Genes, 15, Article 954.
https://doi.org/10.3390/genes15070954
[22] Ruan, C.H., Dixon, R.A., Willerson, J.T., et al. (2010) Prostacyclin Therapy for Pulmonary Arterial Hypertension. The Texas Heart Institute Journal, 37, 391-399.
[23] Alqarni, A.A., Brand, O.J., Pasini, A., Alahmari, M., Alghamdi, A. and Pang, L. (2022) Imbalanced Prostanoid Release Mediates Cigarette Smoke-Induced Human Pulmonary Artery Cell Proliferation. Respiratory Research, 23, Article No. 136.
https://doi.org/10.1186/s12931-022-02056-z
[24] Xing, Y., Zhao, S., Wei, Q., Gong, S., Zhao, X., Zhou, F., et al. (2018) A Novel Piperidine Identified by Stem Cell-Based Screening Attenuates Pulmonary Arterial Hypertension by Regulating BMP2 and PTGS2 Levels. European Respiratory Journal, 51, Article ID: 1702229.
https://doi.org/10.1183/13993003.02229-2017
[25] Xu, W., Janocha, A.J. and Erzurum, S.C. (2021) Metabolism in Pulmonary Hypertension. Annual Review of Physiology, 83, 551-576.
https://doi.org/10.1146/annurev-physiol-031620-123956
[26] Luo, C., Yi, B., Bai, L., Xia, Y., Wang, G., Qian, G., et al. (2010) Suppression of Akt1 Phosphorylation by Adenoviral Transfer of the PTEN Gene Inhibits Hypoxia-Induced Proliferation of Rat Pulmonary Arterial Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 397, 486-492.
https://doi.org/10.1016/j.bbrc.2010.05.140
[27] Liu, X., Zhang, L. and Zhang, W. (2022) Metabolic Reprogramming: A Novel Metabolic Model for Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 9, Article 957524.
https://doi.org/10.3389/fcvm.2022.957524
[28] Wright, A.F., Ewart, M., Mair, K., Nilsen, M., Dempsie, Y., Loughlin, L., et al. (2015) Oestrogen Receptor Alpha in Pulmonary Hypertension. Cardiovascular Research, 106, 206-216.
https://doi.org/10.1093/cvr/cvv106
[29] Nguyen, H.D., Vu, G.H. and Kim, W. (2025) The Molecular Mechanisms of Steroid Hormone Effects on Cognitive Function. Archives of Gerontology and Geriatrics, 129, Article ID: 105684.
https://doi.org/10.1016/j.archger.2024.105684
[30] Frump, A.L., Goss, K.N., Vayl, A., Albrecht, M., Fisher, A., Tursunova, R., et al. (2015) Estradiol Improves Right Ventricular Function in Rats with Severe Angioproliferative Pulmonary Hypertension: Effects of Endogenous and Exogenous Sex Hormones. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308, L873-L890.
https://doi.org/10.1152/ajplung.00006.2015
[31] Chen, X., Austin, E.D., Talati, M., Fessel, J.P., Farber-Eger, E.H., Brittain, E.L., et al. (2017) Oestrogen Inhibition Reverses Pulmonary Arterial Hypertension and Associated Metabolic Defects. European Respiratory Journal, 50, Article ID: 1602337.
https://doi.org/10.1183/13993003.02337-2016
[32] Hochberg, I., Harvey, I., Tran, Q.T., Stephenson, E.J., Barkan, A.L., Saltiel, A.R., et al. (2015) Gene Expression Changes in Subcutaneous Adipose Tissue Due to Cushing's Disease. Journal of Molecular Endocrinology, 55, 81-94.
https://doi.org/10.1530/jme-15-0119
[33] Russcher, H., Smit, P., van den Akker, E.L.T., van Rossum, E.F.C., Brinkmann, A.O., de Jong, F.H., et al. (2005) Two Polymorphisms in the Glucocorticoid Receptor Gene Directly Affect Glucocorticoid-Regulated Gene Expression. The Journal of Clinical Endocrinology & Metabolism, 90, 5804-5810.
https://doi.org/10.1210/jc.2005-0646
[34] Wang, Y., Lei, F., Lin, Y., Han, Y., Yang, L. and Tan, H. (2023) Peroxisome Proliferator‐activated Receptors as Therapeutic Target for Cancer. Journal of Cellular and Molecular Medicine, 28, e17931.
https://doi.org/10.1111/jcmm.17931
[35] Tseng, V., Sutliff, R.L. and Hart, C.M. (2019) Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxidants & Redox Signaling, 31, 874-897.
https://doi.org/10.1089/ars.2018.7695
[36] Ameshima, S., Golpon, H., Cool, C.D., Chan, D., Vandivier, R.W., Gardai, S.J., et al. (2003) Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Expression Is Decreased in Pulmonary Hypertension and Affects Endothelial Cell Growth. Circulation Research, 92, 1162-1169.
https://doi.org/10.1161/01.res.0000073585.50092.14
[37] Li, F., Zhu, Y., Wan, Y., Xie, X., Ke, R., Zhai, C., et al. (2017) Activation of PPARγ Inhibits HDAC1-Mediated Pulmonary Arterial Smooth Muscle Cell Proliferation and Its Potential Mechanisms. European Journal of Pharmacology, 814, 324-334.
https://doi.org/10.1016/j.ejphar.2017.08.045
[38] Kökény, G., Calvier, L., Legchenko, E., Chouvarine, P., Mózes, M.M. and Hansmann, G. (2020) PPARγ Is a Gatekeeper for Extracellular Matrix and Vascular Cell Homeostasis: Beneficial Role in Pulmonary Hypertension and Renal/Cardiac/Pulmonary Fibrosis. Current Opinion in Nephrology and Hypertension, 29, 171-179.
https://doi.org/10.1097/mnh.0000000000000580
[39] Tseng, V., Sutliff, R.L. and Hart, C.M. (2019) Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxidants & Redox Signaling, 31, 874-897.
https://doi.org/10.1089/ars.2018.7695
[40] Thal, D.M., Homan, K.T., Chen, J., Wu, E.K., Hinkle, P.M., Huang, Z.M., et al. (2012) Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility. ACS Chemical Biology, 7, 1830-1839.
https://doi.org/10.1021/cb3003013
[41] Kloza, M., Baranowska-Kuczko, M., Pędzińska-Betiuk, A., Jackowski, K. and Kozłowska, H. (2014) Serotonin Hypothesis and Pulmonary Artery Hypertension. Postępy Higieny i Medycyny Doświadczalnej, 68, 738-748.
https://doi.org/10.5604/17322693.1107860
[42] Tao, W., Sun, W., Zhu, H. and Zhang, J. (2019) MiR-205-5p Suppresses Pulmonary Vascular Smooth Muscle Cell Proliferation by Targeting MICAL2-Mediated Erk1/2 Signaling. Microvascular Research, 124, 43-50.
https://doi.org/10.1016/j.mvr.2019.03.001
[43] Oladimeji, P., Skerl, R., Rusch, C. and Diakonova, M. (2016) Synergistic Activation of ERα by Estrogen and Prolactin in Breast Cancer Cells Requires Tyrosyl Phosphorylation of PAK1. Cancer Research, 76, 2600-2611.
https://doi.org/10.1158/0008-5472.can-15-1758