|
[1]
|
Thenappan, T., Ormiston, M.L., Ryan, J.J. and Archer, S.L. (2018) Pulmonary Arterial Hypertension: Pathogenesis and Clinical Management. BMJ, 360, j5492. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xue, Z., Li, Y., Zhou, M., Liu, Z., Fan, G., Wang, X., et al. (2021) Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Frontiers in Pharmacology, 12, Article 720873. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yu, Z., Xiao, J., Chen, X., Ruan, Y., Chen, Y., Zheng, X., et al. (2022) Bioactivities and Mechanisms of Natural Medicines in the Management of Pulmonary Arterial Hypertension. Chinese Medicine, 17, Article No 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Namdeo, P., Gidwani, B., Tiwari, S., Jain, V., Joshi, V., Shukla, S.S., et al. (2023) Therapeutic Potential and Novel Formulations of Ursolic Acid and Its Derivatives: An Updated Review. Journal of the Science of Food and Agriculture, 103, 4275-4292. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, C., Ai, Q., Shi, A., Wang, N., Wang, L. and Wei, Y. (2022) Oleanolic Acid and Ursolic Acid: Therapeutic Potential in Neurodegenerative Diseases, Neuropsychiatric Diseases and Other Brain Disorders. Nutritional Neuroscience, 26, 414-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sandhu, S.S., Rouz, S.K., Kumar, S., Swamy, N., Deshmukh, L., Hussain, A., et al. (2023) Ursolic Acid: A Pentacyclic Triterpenoid That Exhibits Anticancer Therapeutic Potential by Modulating Multiple Oncogenic Targets. Biotechnology and Genetic Engineering Reviews, 39, 729-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gao, X., Zhang, Z., Li, X., Wei, Q., Li, H., Li, C., et al. (2020) Ursolic Acid Improves Monocrotaline-Induced Right Ventricular Remodeling by Regulating Metabolism. Journal of Cardiovascular Pharmacology, 75, 545-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kornel, A., Nadile, M. and Tsiani, E. (2022) Evidence of the Beneficial Effects of Ursolic Acid against Lung Cancer. Molecules, 27, Article 7466. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Al-kuraishy, H.M., Al-Gareeb, A.I. and El-Saber Batiha, G. (2022) The Possible Role of Ursolic Acid in Covid-19: A Real Game Changer. Clinical Nutrition ESPEN, 47, 414-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
He, Q., Liu, C., Shen, L., Zeng, L., Wang, T., Sun, J., et al. (2021) Theory of the Exterior-Interior Relationship between the Lungs and the Large Intestine to Explore the Mechanism of Eriobotrya Japonica Leaf Water Extract in the Treatment of Cough Variant Asthma. Journal of Ethnopharmacology, 281, Article ID: 114482. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lin, L., Yin, Y., Hou, G., Han, D., Kang, J. and Wang, Q. (2017) Ursolic Acid Attenuates Cigarette Smoke-Induced Emphysema in Rats by Regulating PERK and Nrf2 Pathways. Pulmonary Pharmacology & Therapeutics, 44, 111-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
彭海兵, 王永恒, 曹福源, 等. 熊果酸抑制矽肺大鼠转化生长因子β1、白介素1的表达及其作用机制[J]. 环境与职业医学, 2016, 33(6): 567-570.
|
|
[13]
|
Jiao, W., Mi, S., Sang, Y., Jin, Q., Chitrakar, B., Wang, X., et al. (2022) Integrated Network Pharmacology and Cellular Assay for the Investigation of an Anti-Obesity Effect of 6-Shogaol. Food Chemistry, 374, Article ID: 131755. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xia, Q., Xun, Y., Lu, J., Lu, Y., Yang, Y., Zhou, P., et al. (2020) Network Pharmacology and Molecular Docking Analyses on Lianhua Qingwen Capsule Indicate Akt1 Is a Potential Target to Treat and Prevent Covid‐19. Cell Proliferation, 53, e12949. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
解静, 高杉, 李琳, 等. 网络药理学在中药领域中的研究进展与应用策略[J]. 中草药, 2019, 50(10): 2257-2265.
|
|
[16]
|
Chen, Y., Yuan, T., Chen, D., Liu, S., Guo, J., Fang, L., et al. (2020) Systematic Analysis of Molecular Mechanism of Resveratrol for Treating Pulmonary Hypertension Based on Network Pharmacology Technology. European Journal of Pharmacology, 888, Article ID: 173466. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hemnes, A.R. and Humbert, M. (2017) Pathobiology of Pulmonary Arterial Hypertension: Understanding the Roads Less Travelled. European Respiratory Review, 26, Article ID: 170093. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tuder, R.M., Archer, S.L., Dorfmüller, P., Erzurum, S.C., Guignabert, C., Michelakis, E., et al. (2013) Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. Journal of the American College of Cardiology, 62, D4-D12. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mullen, E., McCullagh, B., Gaine, S. and Quadery, S.R. (2025) Recent Advances in the Diagnosis and Management of Pulmonary Arterial Hypertension. British Journal of Hospital Medicine, 86, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yang, X., Yang, Y., Liu, K. and Zhang, C. (2023) Traditional Chinese Medicine Monomers: Targeting Pulmonary Artery Smooth Muscle Cells Proliferation to Treat Pulmonary Hypertension. Heliyon, 9, e14916. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Aradhyula, V., Breidenbach, J.D., Khatib-Shahidi, B.Z., Slogar, J.N., Eyong, S.A., Faleel, D., et al. (2024) Transcriptomic Analysis of Arachidonic Acid Pathway Genes Provides Mechanistic Insight into Multi-Organ Inflammatory and Vascular Diseases. Genes, 15, Article 954. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ruan, C.H., Dixon, R.A., Willerson, J.T., et al. (2010) Prostacyclin Therapy for Pulmonary Arterial Hypertension. The Texas Heart Institute Journal, 37, 391-399.
|
|
[23]
|
Alqarni, A.A., Brand, O.J., Pasini, A., Alahmari, M., Alghamdi, A. and Pang, L. (2022) Imbalanced Prostanoid Release Mediates Cigarette Smoke-Induced Human Pulmonary Artery Cell Proliferation. Respiratory Research, 23, Article No. 136. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xing, Y., Zhao, S., Wei, Q., Gong, S., Zhao, X., Zhou, F., et al. (2018) A Novel Piperidine Identified by Stem Cell-Based Screening Attenuates Pulmonary Arterial Hypertension by Regulating BMP2 and PTGS2 Levels. European Respiratory Journal, 51, Article ID: 1702229. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xu, W., Janocha, A.J. and Erzurum, S.C. (2021) Metabolism in Pulmonary Hypertension. Annual Review of Physiology, 83, 551-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Luo, C., Yi, B., Bai, L., Xia, Y., Wang, G., Qian, G., et al. (2010) Suppression of Akt1 Phosphorylation by Adenoviral Transfer of the PTEN Gene Inhibits Hypoxia-Induced Proliferation of Rat Pulmonary Arterial Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 397, 486-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liu, X., Zhang, L. and Zhang, W. (2022) Metabolic Reprogramming: A Novel Metabolic Model for Pulmonary Hypertension. Frontiers in Cardiovascular Medicine, 9, Article 957524. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wright, A.F., Ewart, M., Mair, K., Nilsen, M., Dempsie, Y., Loughlin, L., et al. (2015) Oestrogen Receptor Alpha in Pulmonary Hypertension. Cardiovascular Research, 106, 206-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Nguyen, H.D., Vu, G.H. and Kim, W. (2025) The Molecular Mechanisms of Steroid Hormone Effects on Cognitive Function. Archives of Gerontology and Geriatrics, 129, Article ID: 105684. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Frump, A.L., Goss, K.N., Vayl, A., Albrecht, M., Fisher, A., Tursunova, R., et al. (2015) Estradiol Improves Right Ventricular Function in Rats with Severe Angioproliferative Pulmonary Hypertension: Effects of Endogenous and Exogenous Sex Hormones. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308, L873-L890. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, X., Austin, E.D., Talati, M., Fessel, J.P., Farber-Eger, E.H., Brittain, E.L., et al. (2017) Oestrogen Inhibition Reverses Pulmonary Arterial Hypertension and Associated Metabolic Defects. European Respiratory Journal, 50, Article ID: 1602337. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Hochberg, I., Harvey, I., Tran, Q.T., Stephenson, E.J., Barkan, A.L., Saltiel, A.R., et al. (2015) Gene Expression Changes in Subcutaneous Adipose Tissue Due to Cushing's Disease. Journal of Molecular Endocrinology, 55, 81-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Russcher, H., Smit, P., van den Akker, E.L.T., van Rossum, E.F.C., Brinkmann, A.O., de Jong, F.H., et al. (2005) Two Polymorphisms in the Glucocorticoid Receptor Gene Directly Affect Glucocorticoid-Regulated Gene Expression. The Journal of Clinical Endocrinology & Metabolism, 90, 5804-5810. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Y., Lei, F., Lin, Y., Han, Y., Yang, L. and Tan, H. (2023) Peroxisome Proliferator‐activated Receptors as Therapeutic Target for Cancer. Journal of Cellular and Molecular Medicine, 28, e17931. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Tseng, V., Sutliff, R.L. and Hart, C.M. (2019) Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxidants & Redox Signaling, 31, 874-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ameshima, S., Golpon, H., Cool, C.D., Chan, D., Vandivier, R.W., Gardai, S.J., et al. (2003) Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Expression Is Decreased in Pulmonary Hypertension and Affects Endothelial Cell Growth. Circulation Research, 92, 1162-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Li, F., Zhu, Y., Wan, Y., Xie, X., Ke, R., Zhai, C., et al. (2017) Activation of PPARγ Inhibits HDAC1-Mediated Pulmonary Arterial Smooth Muscle Cell Proliferation and Its Potential Mechanisms. European Journal of Pharmacology, 814, 324-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kökény, G., Calvier, L., Legchenko, E., Chouvarine, P., Mózes, M.M. and Hansmann, G. (2020) PPARγ Is a Gatekeeper for Extracellular Matrix and Vascular Cell Homeostasis: Beneficial Role in Pulmonary Hypertension and Renal/Cardiac/Pulmonary Fibrosis. Current Opinion in Nephrology and Hypertension, 29, 171-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tseng, V., Sutliff, R.L. and Hart, C.M. (2019) Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxidants & Redox Signaling, 31, 874-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Thal, D.M., Homan, K.T., Chen, J., Wu, E.K., Hinkle, P.M., Huang, Z.M., et al. (2012) Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility. ACS Chemical Biology, 7, 1830-1839. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kloza, M., Baranowska-Kuczko, M., Pędzińska-Betiuk, A., Jackowski, K. and Kozłowska, H. (2014) Serotonin Hypothesis and Pulmonary Artery Hypertension. Postępy Higieny i Medycyny Doświadczalnej, 68, 738-748. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tao, W., Sun, W., Zhu, H. and Zhang, J. (2019) MiR-205-5p Suppresses Pulmonary Vascular Smooth Muscle Cell Proliferation by Targeting MICAL2-Mediated Erk1/2 Signaling. Microvascular Research, 124, 43-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Oladimeji, P., Skerl, R., Rusch, C. and Diakonova, M. (2016) Synergistic Activation of ERα by Estrogen and Prolactin in Breast Cancer Cells Requires Tyrosyl Phosphorylation of PAK1. Cancer Research, 76, 2600-2611. [Google Scholar] [CrossRef] [PubMed]
|