早产儿发生听力损失的危险因素研究进展
Research Progress on Risk Factors for Hearing Loss in Preterm Infants
DOI: 10.12677/acm.2025.1561713, PDF, HTML, XML,    国家科技经费支持
作者: 王心怡, 史 源*:重庆医科大学附属儿童医院新生儿诊治中心,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 早产儿听力损失危险因素Preterm Infants Hearing Loss Risk Factors
摘要: 听力损失作为先天性缺陷的高发类型,在新生儿群体中具有显著的临床意义。若听力损失没有得到早期干预,不仅对患儿的语言能力发展造成阻碍,更可能对其未来的学习成效及社会融入产生持续性影响。相较于足月儿,早产儿因听觉神经系统发育不完善,其听力损失发生率显著增高,且更易受到多种致病因素的影响。本研究通过系统综述早产儿听力损失的相关危险因素,旨在深入探讨其听觉影响机制,为临床早期诊断和适时干预提供理论依据。
Abstract: Hearing loss, as a prevalent congenital disorder, holds significant clinical implications in neonates. Without early intervention, it not only impedes language development but also exerts enduring impacts on future academic performance and social integration. Preterm infants demonstrate markedly higher incidence of hearing impairment compared to term infants, attributable to the immaturity of the auditory nervous system and heightened vulnerability to multifactorial pathogenic influences. This study systematically reviews identified risk factors for hearing loss in preterm populations to investigate the underlying auditory pathway mechanisms and provide a theoretical foundation for early clinical diagnosis and timely intervention.
文章引用:王心怡, 史源. 早产儿发生听力损失的危险因素研究进展[J]. 临床医学进展, 2025, 15(6): 175-181. https://doi.org/10.12677/acm.2025.1561713

1. 引言

作为新生儿期高发的先天性功能障碍,听力损失(Hearing Loss, HL)在早产群体中尤为普遍[1] [2]。随着围产期医学领域的迅猛发展以及新生儿重症监护水平的不断提升,早产儿的存活率得到了显著改善,重度感音神经性耳聋(Sensorineural Hearing Loss, SNHL)的发生比例也有所下降,但SNHL的总体发病率仍维持在较高水平[3]。未经及时诊断及干预的听力损失可能引发一系列发育问题,包括言语发育迟缓、社会适应障碍以及认知行为异常等。相较于体重正常的足月儿,早产儿更易受到多种致病因素的影响,如遗传性疾病、宫内感染、巨细胞病毒感染、化脓性脑膜炎、耳毒性药物暴露、病理性黄疸、环境噪声污染以及长期机械通气等[4] [5]。临床指南建议,对于围产期听力损伤应在出生后3个月内明确诊断,并在6月龄前实施干预措施[6]。因此,系统研究听力损失的危险因素对于提高疾病预测准确性和降低漏诊率具有重要意义。本文通过综述早产儿听力损伤的相关危险因素,旨在为临床防治提供新的理论依据和实践指导。

2. 早产儿听力损失的危险因素

2.1. 遗传因素

在我国,遗传因素导致的新生儿先天性听力损失约占病例总数的60% [7]。相关研究证实,常染色体遗传是遗传性听力损失的主要传递方式,其中隐性遗传约占77%,显性遗传约占22% [8]。此外,X染色体连锁遗传和母系线粒体基因突变也被证实与遗传性听力损失密切相关[9]。从临床分型来看,遗传性听力损失可分为综合征型(Syndromic Hearing Loss, SHL)和非综合征型(Nonsyndromic Hearing Loss, NSHL)两类。SHL约占遗传性听力损失的30%,其特征是听力损失仅为全身性遗传综合征的表现之一,常伴有眼部、骨骼、肾脏及皮肤等多系统病变[8]。这类疾病具有显著的遗传异质性,其致病基因突变类型多样,临床表现各异。NSHL则占遗传性听力损失的70%,表现为单纯性听力损伤,多数患者呈现中重度听力损失。目前已鉴定出70余个与NSHL相关的基因位点[10],在我国听力损失的遗传学研究中,GJB2、GJB3、SLC26A4基因以及线粒体MT-RNR1基因被证实是主要的致病遗传因素,大多数病例均由这四个热点基因的突变引起。不对称性双侧听力损失的发生率高于单侧听力损失,且两者均与遗传因素相关[11]。其中,颅面部发育异常是单侧听力损失的主要危险因素,而家族遗传史则是不对称双侧听力损失最常见的危险因素[12]。深入理解听力损失的相关基因,对于实现早期诊断和预防迟发性听力损失具有重要意义。

2.2. 非遗传因素

2.2.1. 产前因素

产前因素主要包括感染性因素和药物性因素两大类。其中,先天性巨细胞病毒感染(Congenital CMV, cCMV)是最常见的胎儿病毒感染类型,全球范围内cCMV感染率约占活产婴儿的0.2%~2.5% [13],其临床表现具有显著异质性。约10%~15%的cCMV感染患儿在出生时即表现出临床症状,典型表现包括黄疸、血小板减少、肝脾肿大、小头畸形、宫内发育迟缓、脉络膜视网膜炎及肺炎等[14]。以孤立性听力损失为唯一表现的无症状cCMV感染构成了一个特殊的诊断类别[15]。研究表明,有症状cCMV感染患儿中听力损失发生率可达75%,其中10%~15%出现永久性听力损伤,且多数幸存者伴有严重的神经系统后遗症[14]。然而,部分cCMV感染新生儿在出生时并无明显症状,但其中5%~20%可能发展为迟发性听力损失[16]。cCMV相关听力损伤可表现为单侧或双侧听力筛查未通过,以单侧或不对称性听力损失较为常见。此外,部分患儿可呈现进行性听力下降或迟发性听力损失,这一现象常被临床忽视[17]。目前,cCMV导致听力损失的具体机制尚未完全阐明,现有研究提示其可能通过病毒对内耳的直接损伤以及诱发免疫/炎症反应双重途径发挥作用。一项动物研究显示,小鼠感染巨细胞病毒后发生心房变性,引起耳蜗电位异常,这可能与听力阈值降低有关。在早产儿群体中,由于其免疫系统发育不成熟和血脑屏障功能不全,感染cCMV后发展为听力损失的概率明显高于足月儿。研究表明,cCMV感染可通过影响内耳结构而导致听力功能障碍[18]。除CMV外,先天性感染如梅毒和风疹也可引起听力损失。其中,风疹病毒感染曾是导致先天性感音神经性耳聋最常见的病毒性病因,但随着疫苗接种的普及,其发病率已显著降低。

母体妊娠期并发症,特别是羊膜腔感染和/或炎症反应,与早产发生密切相关,但其对听力损失的影响机制尚未完全阐明。极早产及极低出生体重新生儿中,羊膜腔感染与听觉功能障碍呈现显著相关性。其病理机制可能涉及病原微生物经污染羊水垂直传播,诱发胎儿菌血症,继而引起内耳微循环障碍和组织缺血性损伤。对高危孕妇进行产前抗感染治疗并采取羊膜腔感染预防措施,可能有效降低早产儿听力损失的发生率[19]。胎儿对宫内感染的炎症反应是导致听力损失的重要危险因素,而母体在产前接受适当治疗可显著降低极低出生体重儿的听力损失发生率,这提示神经炎症干预的最佳时机可能是在分娩前[4]。然而,部分抗感染药物如氨基糖苷类抗生素、万古霉素、替考拉宁等药物由于存在耳毒性,可能导致药物性听力损失,在临床上并不用作抗感染一线用药。临床研究证实,产前应用倍他米松具有神经保护作用,可有效降低早产儿听力损失风险[20]。此外,血管炎被认为是听力损失的独立危险因素,而产前使用皮质类固醇可显著降低新生儿听力筛查异常的发生率,但有研究认为,产前使用皮质类固醇激素可能与新生儿迟发性听力损失有关[21]

2.2.2. 围产期因素

研究表明,听力损失的发生率与早产密切相关,随着胎龄和出生体重的增加而降低,同时随着并发症的增多而升高。NICU相关听力损失的发生风险与多种因素相关,包括新生儿高胆红素血症、脓毒症、细菌性结肠炎、坏死性小肠结肠炎、长期机械通气、耳毒性药物使用以及体外膜肺氧合(ECMO)治疗等[22]。低出生体重本身不会直接损害听觉通路,出生体重与听力损失发生风险负相关的原因可能是,出生体重越低,耳蜗和听觉神经的成熟度不足,更容易受不利因素影响,同时暴露于缺氧、感染的风险越高,这些都增加了听力损失发生的风险[23]-[25]

缺氧可能对耳蜗造成不可逆的细胞损伤,耳蜗维持正常功能需要足够的氧合[26] [27],因此,缺氧与听力损失的发生密切相关。Ellen等学者[28]于2014年开展的队列研究证实,5分钟Apgar评分1~2分的新生儿发生双侧听力损失的风险较10分者显著升高近10倍。机械通气时间和氧疗也被认为是缺氧损伤的代表,机械通气可能进一步减少耳蜗和听觉通路的氧合和灌注,从而导致听力损失。机械通气和氧疗具有更多与听力损失相关的危险因素,例如相关疾病(如感染或BPD)的存在以及相关的治疗手段等。过度氧合对听力也有一定影响。有研究发现,患有BPD特别是重度BPD的早产儿在出生后第一年发生持续性听力损失的风险较未患BPD的患儿更高[29]。同时Sthella等人[30]的一项研究表明患有BPD的早产儿发生迟发性听力损失比没有BPD的婴儿更常见。BPD与听力损失的作用机制目前尚不明确,这可能与患儿的神经发育障碍有关[31],围产期和新生儿期发生的全身炎症对肺和神经系统的发育有着重要影响,长期需氧或机械通气产生自由基等又会再次影响神经系统的发育[32] [33],从而导致听觉通路或听觉神经的异常。同时BPD治疗过程中药物的使用如地塞米松的疗程、剂量等可能对患儿的长期神经系统发育结局造成影响,但其对于听力的影响目前还未达成共识[34]-[36]

高胆红素血症是新生儿常见疾病,包括生理性和病理性,通常预后良好。但若血清胆红素水平没有得到及时的控制,可能导致听力损失。由于生理发育不成熟,早产儿对胆红素的代谢能力相对较弱,易出现代谢失衡、缺血缺氧性事件及感染等并发症,这些因素可导致血脑屏障通透性增加,使神经系统中胆红素水平升高,直接引起神经元损伤。同时,胆红素介导的氧化应激反应进一步加重了神经细胞的损害程度[37]。高胆红素血症可对脑干听觉核造成选择性损伤,也可能损伤听觉神经和螺旋神经细胞节细胞。听觉传导通路对胆红素毒性具有高度敏感性,其神经功能损伤程度与胆红素浓度呈正相关。随着血清胆红素水平的升高,听觉功能障碍的发生风险及其严重程度也相应增加,呈现出明显的剂量–效应关系[38]

2.2.3. 产后因素

新生儿感染往往呈现非特异性临床表现,病情进展迅速且死亡率较高。在临床实践中,针对具有感染高危因素或呈现疑似感染症状的早产新生儿,普遍采用出生后立即启动经验性抗菌药物治疗的方案[39]。氨基糖苷类抗生素作为强效抗菌药物,在革兰氏阴性杆菌感染的治疗中具有重要地位。在新生儿重症监护病房中,这类药物主要应用于早产儿和危重新生儿的治疗,但其潜在的耳毒性风险值得关注。在当前的临床治疗中,广泛应用的氨基糖苷类抗菌药物主要包括阿米卡星、庆大霉素、新霉素以及妥布霉素等,其主要不良反应为肾毒性和不可逆性听力损伤[40]。氨基糖苷类抗生素引起听力损失的作用机制涉及多个方面:首先,这类药物可促进毛细胞凋亡,这一过程与氧化应激反应和蛋白质合成抑制密切相关;其次,内质网应激在细胞损伤中也发挥重要作用。氨基糖苷类抗菌药物通过与细胞膜磷酸肌醇特异性结合,触发花生四烯酸代谢级联反应,促进脂质过氧化进程并产生大量活性氧自由基,这一系列病理生理改变最终引发细胞凋亡[27] [40]。以庆大霉素为例,其作为铁螯合剂可与铁离子形成复合物,催化自由基产生,从而损伤毛细胞[41]。临床实践中,尽管通过定期监测血清药物峰谷浓度以确保血药浓度维持在推荐范围内,但氨基糖苷类药物的耳毒性仍难以完全避免[27]。研究表明,此类药物的耳毒性与累积用药时间呈正相关,后者可作为耳毒性的预测指标[41]。即使在使用低剂量或单次给药的情况下,部分携带线粒体DNA突变的新生儿仍可能出现感音神经性耳聋,这与个体对氨基糖苷类药物的遗传易感性有关。通过线粒体基因组测序分析,已鉴定出多个与药物性耳聋相关的12S rRNA突变位点,其中以A1555G突变最为常见,其次为C1494T突变[41]。因此,在临床应用中,除常规监测血药浓度外,还应重视短期治疗方案的实施以降低耳毒性风险。同时,鉴于个体遗传易感性的差异,在用药期间进行听力监测比单纯的听力筛查更具临床意义[41]

在NICU中,利尿剂常被用于改善早产儿肺部液体潴留,以促进气体交换功能[42]。其中,呋塞米作为首选利尿剂被广泛应用于NICU中。其作用机制主要涉及抑制血管纹中的Na-K-Cl共转运体,干扰内耳淋巴液平衡。此外,利尿剂还可引起小动脉收缩,造成血–迷路屏障短暂性破坏[42] [43]。虽然利尿剂引起的听力损失多为暂时性,但在严重肾功能不全或与其他耳毒性药物联用时,可能导致永久性听力损伤[42] [43]。研究表明,利尿剂可加剧氨基糖苷类药物所致的外毛细胞损伤,增加听力损失风险[44] [45]。动物实验证实,与单独使用卡那霉素相比,卡那霉素–呋塞米联合用药可导致小鼠全频段听阈升高,并出现更严重的毛细胞缺失[44]。除上述药物外,临床研究还发现大环内酯类、氯霉素、万古霉素、多粘菌素以及乙酰水杨酸等药物也可能导致听力损失[40]

极早产儿及大多数早产儿通常需要在NICU接受短期或长期治疗。由于其未成熟的中枢神经系统,这些患儿对环境刺激异常敏感[46]。子宫内环境可将外界声音降低至约28分贝(dB),而NICU的环境噪音通常高达70~80 dB [47]。主要噪音来源包括医护人员谈话、设备报警声、暖箱运行声等,此外,日常医疗操作如洗手水流声、暖箱门关闭声以及NCPAP气流声等都会进一步增加环境噪音水平[48]。过强的听觉刺激可诱发新生儿出现呼吸暂停、氧合障碍以及心率和血氧饱和度的显著波动,这些生理改变可能进一步导致患儿表现出倦怠、易激惹、持续哭吵,严重者甚至出现颅内压增高的临床表现[47] [48]。尽管美国儿科学会建议NICU环境噪音不应超过45分贝,但实际监测显示大多数NICU的噪音水平均超出这一推荐值。

3. 小结

听觉功能的正常发育与儿童身心健康发展密切相关,系统识别听力损失的危险因素对于实现早期诊断和及时转诊干预具有重要意义。对于病因明确的听力损失,应及时采取针对性治疗措施,包括抗病毒治疗、抗感染治疗或必要的手术干预。然而,临床上多数听力损失病例往往难以确定确切病因。值得注意的是,早产儿群体作为听力损失的高危人群,目前尚缺乏统一的筛查共识和临床指南。因此,临床工作者应高度重视相关危险因素的识别,通过建立早期发现和干预机制,为早产儿听觉功能发育制定系统化的管理策略和个体化干预方案。

基金项目

国家重点研发计划资助(2022YFC2704803)。

NOTES

*通讯作者。

参考文献

[1] Malas, M., Aboalfaraj, A., Alamoudi, H., Kurdi, A., Alahmadi, T. and Zawawi, F. (2022) Pediatricians’ Knowledge and Attitude toward Hearing Loss and Newborn Hearing Screening Programs. International Journal of Pediatric Otorhinolaryngology, 161, Article 111265.
https://doi.org/10.1016/j.ijporl.2022.111265
[2] van Dommelen, P., Verkerk, P.H., van Straaten, H.L.M., Baerts, W., von Weissenbruch, M., Duijsters, C., et al. (2015) Hearing Loss by Week of Gestation and Birth Weight in Very Preterm Neonates. The Journal of Pediatrics, 166, 840-843.E1.
https://doi.org/10.1016/j.jpeds.2014.12.041
[3] Duan, M., Xie, W., Persson, L., Hellstrom, S. and Uhlén, I. (2021) Postnatal Hearing Loss: A Study of Children Who Passed Neonatal TEOAE Hearing Screening Bilaterally. Acta Oto-Laryngologica, 142, 61-66.
https://doi.org/10.1080/00016489.2021.2017476
[4] Martínez-Cruz, C.F., García Alonso-Themann, P., Poblano, A. and Ochoa-López, J.M. (2012) Hearing Loss, Auditory Neuropathy, and Neurological Co-Morbidity in Children with Birthweight <750 G. Archives of Medical Research, 43, 457-463.
https://doi.org/10.1016/j.arcmed.2012.08.007
[5] van Noort‐van der Spek, I.L., Goedegebure, A., Hartwig, N.G., Kornelisse, R.F., Franken, M.J.P. and Weisglas‐Kuperus, N. (2017) Normal Neonatal Hearing Screening Did Not Preclude Sensorineural Hearing Loss in Two‐Year‐Old Very Preterm Infants. Acta Paediatrica, 106, 1569-1575.
https://doi.org/10.1111/apa.13960
[6] American Academy of Pediatrics and Joint Committee on Infant Hearing (2007) Year 2007 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs. Pediatrics, 120, 898-921.
https://doi.org/10.1542/peds.2007-2333
[7] Moore, M., Fitzgibbons, E.J., Driscoll, C. and Beswick, R. (2022) Neonatal Bacterial Meningitis: Hearing Screening and Audiological Monitoring Outcomes. International Journal of Audiology, 62, 1101-1107.
https://doi.org/10.1080/14992027.2022.2145514
[8] 赵明慧. 重症监护病房新生儿听力筛查结果及高危因素分析[D]: [硕士学位论文]. 杭州: 浙江中医药大学, 2023.
[9] Wu, H., Feng, Y., Jiang, L., Pan, Q., Liu, Y., Liu, C., et al. (2016) Application of a New Genetic Deafness Microarray for Detecting Mutations in the Deaf in China. PLOS ONE, 11, e0151909.
https://doi.org/10.1371/journal.pone.0151909
[10] Hao, Z., Fu, D., Ming, Y., Yang, J., Huang, Q., Lin, W., et al. (2018) Large Scale Newborn Deafness Genetic Screening of 142,417 Neonates in Wuhan, China. PLOS ONE, 13, e0195740.
https://doi.org/10.1371/journal.pone.0195740
[11] Gouveia, F.N., Jacob-Corteletti, L.C.B., Silva, B.C.S., Araújo, E.S., Amantini, R.C.B., Oliveira, E.B., et al. (2020) Perda auditiva unilateral e assimétrica na infância. CoDAS, 32, 201-208.
https://doi.org/10.1590/2317-1782/20192018280
[12] Howell, J.B., Appelbaum, E.N., Armstrong, M.F., Chapman, D. and Dodson, K.M. (2019) An Analysis of Risk Factors in Unilateral versus Bilateral Hearing Loss. Ear, Nose & Throat Journal, 98, 330-333.
https://doi.org/10.1177/0145561319840578
[13] Goderis, J., De Leenheer, E., Smets, K., et al. (2014) Hearing Loss and Congenital CMV Infection: A Systematic Review. Pediatrics, 134, 972-982.
https://doi.org/10.1542/peds.2014-1173
[14] Dedhia, K., Graham, E. and Park, A. (2018) Hearing Loss and Failed Newborn Hearing Screen. Clinics in Perinatology, 45, 629-643.
https://doi.org/10.1016/j.clp.2018.07.004
[15] Leung, J.C., Cifra, C.L., Agthe, A.G., Sun, C.J. and Viscardi, R.M. (2015) Antenatal Factors Modulate Hearing Screen Failure Risk in Preterm Infants. Archives of Disease in Childhood-Fetal and Neonatal Edition, 101, 56-61.
https://doi.org/10.1136/archdischild-2014-307843
[16] Fowler, K.B. and Boppana, S.B. (2018) Congenital Cytomegalovirus Infection. Seminars in Perinatology, 42, 149-154.
https://doi.org/10.1053/j.semperi.2018.02.002
[17] Peterson, J., Nishimura, C. and Smith, R.J.H. (2020) Genetic Testing for Congenital Bilateral Hearing Loss in the Context of Targeted Cytomegalovirus Screening. The Laryngoscope, 130, 2714-2718.
https://doi.org/10.1002/lary.28536
[18] Foulon, I., Vleurinck, L., Kerkhofs, K. and Gordts, F. (2015) Hearing Configuration in Children with cCMV Infection and Proposal of a Flow Chart for Hearing Evaluation. International Journal of Audiology, 54, 714-719.
https://doi.org/10.3109/14992027.2015.1046506
[19] Jung, E.Y., Choi, B.Y., Rhee, J., Park, J., Cho, S. and Park, K.H. (2017) Relation between Amniotic Fluid Infection or Cytokine Levels and Hearing Screen Failure in Infants at 32 WK Gestation or Less. Pediatric Research, 81, 349-355.
https://doi.org/10.1038/pr.2016.219
[20] Lutgendorf, M.A., Ippolito, D.L., Mesngon, M.T., Tinnemore, D., Dehart, M.J., Dolinsky, B.M., et al. (2014) Effect of Dexamethasone Administered with Magnesium Sulfate on Inflammation-Mediated Degradation of the Blood—Brain Barrier Using an in Vitro Model. Reproductive Sciences, 21, 483-491.
https://doi.org/10.1177/1933719113503410
[21] Kim, S.H., Choi, B.Y., Park, J., Jung, E.Y., Cho, S. and Park, K.H. (2017) Maternal and Placental Factors Associated with Congenital Hearing Loss in Very Preterm Neonates. Pediatrics & Neonatology, 58, 236-244.
https://doi.org/10.1016/j.pedneo.2016.05.003
[22] Can, E., Verim, A., Başer, E., et al. (2015) Auditory Neuropathy in Late Preterm Infants Treated with Phototherapy for Hyperbiliru-Binemia. International Journal of Audiology, 54, 89-95.
[23] Hille, E.T., Van Straaten, H. and Verkerk, P.H. (2007) Prevalence and Independent Risk Factors for Hearing Loss in NICU Infants. Acta Paediatrica, 96, 1155-1158.
https://doi.org/10.1111/j.1651-2227.2007.00398.x
[24] Leslie, G., Kalaw, M., Bowen, J. and Arnold, J. (1995) Risk Factors for Sensorineural Hearing Loss in Extremely Premature Infants. Journal of Paediatrics and Child Health, 31, 312-316.
https://doi.org/10.1111/j.1440-1754.1995.tb00818.x
[25] Kim, S.Y., Choi, B.Y., Jung, E.Y., Park, H., Yoo, H. and Park, K.H. (2018) Risk Factors for Failure in the Newborn Hearing Screen Test in Very Preterm Twins. Pediatrics & Neonatology, 59, 586-594.
https://doi.org/10.1016/j.pedneo.2018.01.014
[26] Duncan, A.F. and Matthews, M.A. (2018) Neurodevelopmental Outcomes in Early Childhood. Clinics in Perinatology, 45, 377-392.
https://doi.org/10.1016/j.clp.2018.05.001
[27] Cristobal, R. and Oghalai, J.S. (2008) Hearing Loss in Children with Very Low Birth Weight: Current Review of Epidemiology and Pathophysiology. Archives of Disease in Childhood-Fetal and Neonatal Edition, 93, F462-F468.
https://doi.org/10.1136/adc.2007.124214
[28] Kvestad, E., Lie, K.K., Eskild, A. and Engdahl, B. (2014) Sensorineural Hearing Loss in Children: The Association with Apgar Score. A Registry-Based Study of 392371 Children in Norway. International Journal of Pediatric Otorhinolaryngology, 78, 1940-1944.
https://doi.org/10.1016/j.ijporl.2014.08.032
[29] Gray, P., Sarkar, S., Young, J. and Rogers, Y. (2001) Conductive Hearing Loss in Preterm Infants with Bronchopulmonary Dysplasia. Journal of Paediatrics and Child Health, 37, 278-282.
https://doi.org/10.1046/j.1440-1754.2001.00690.x
[30] Zanchetta, S., Resende, L.A.d.L., Bentlin, M.R., Rugulo, L.M. and Trindade, C.E.P. (2010) Conductive Hearing Loss in Children with Bronchopulmonary Dysplasia: A Longitudinal Follow-Up Study in Children Aged between 6 and 24 Months. Early Human Development, 86, 385-389.
https://doi.org/10.1016/j.earlhumdev.2010.05.006
[31] Baud, O. and Lehert, P. (2024) Bronchopulmonary Dysplasia to Predict Neurodevelopmental Impairment in Infants Born Extremely Preterm. Pediatric Research.
https://doi.org/10.1038/s41390-024-03601-w
[32] Higgins, R.D., Jobe, A.H., Koso-Thomas, M., Bancalari, E., Viscardi, R.M., Hartert, T.V., et al. (2018) Bronchopulmonary Dysplasia: Executive Summary of a Workshop. The Journal of Pediatrics, 197, 300-308.
https://doi.org/10.1016/j.jpeds.2018.01.043
[33] Baud, O., Laughon, M. and Lehert, P. (2021) Survival without Bronchopulmonary Dysplasia of Extremely Preterm Infants: A Predictive Model at Birth. Neonatology, 118, 385-393.
https://doi.org/10.1159/000515898
[34] Doyle, L.W., Cheong, J.L., Hay, S., Manley, B.J., Halliday, H.L. and Soll, R. (2021) Early (<7 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Database of Systematic Reviews, No. 10, CD001146.
https://doi.org/10.1002/14651858.cd001146.pub6
[35] Doyle, L.W., Cheong, J.L., Hay, S., Manley, B.J. and Halliday, H.L. (2021) Late (≥7 Days) Systemic Postnatal Corticosteroids for Prevention of Bronchopulmonary Dysplasia in Preterm Infants. Cochrane Database of Systematic Reviews, No. 11, CD001145.
https://doi.org/10.1002/14651858.cd001145.pub5
[36] van de Loo, M., van Kaam, A., Offringa, M., Doyle, L.W., Cooper, C. and Onland, W. (2024) Corticosteroids for the Prevention and Treatment of Bronchopulmonary Dysplasia: An Overview of Systematic Reviews. Cochrane Database of Systematic Reviews, No. 4, CD013271.
https://doi.org/10.1002/14651858.cd013271.pub2
[37] Xoinis, K., Weirather, Y., Mavoori, H., Shaha, S.H. and Iwamoto, L.M. (2007) Extremely Low Birth Weight Infants Are at High Risk for Auditory Neuropathy. Journal of Perinatology, 27, 718-723.
https://doi.org/10.1038/sj.jp.7211803
[38] Singh, A., Francis, H.W., Smith, P.B., Clark, R.H. and Greenberg, R.G. (2021) Association between Hyperbilirubinemia and Hearing Screen Failure in the Neonatal Intensive Care Unit in Infants Born Preterm. The Journal of Pediatrics, 231, 68-73.
https://doi.org/10.1016/j.jpeds.2020.12.059
[39] Fuchs, A., Zimmermann, L., Bickle Graz, M., Cherpillod, J., Tolsa, J., Buclin, T., et al. (2016) Gentamicin Exposure and Sensorineural Hearing Loss in Preterm Infants. PLOS ONE, 11, e0158806.
https://doi.org/10.1371/journal.pone.0158806
[40] Guo, J., Chai, R., Li, H. and Sun, S. (2019) Protection of Hair Cells from Ototoxic Drug-Induced Hearing Loss. In: Li, H. and Chai, R., Eds., Advances in Experimental Medicine and Biology, Springer Singapore, 17-36.
https://doi.org/10.1007/978-981-13-6123-4_2
[41] Nguyen, T. and Jeyakumar, A. (2019) Genetic Susceptibility to Aminoglycoside Ototoxicity. International Journal of Pediatric Otorhinolaryngology, 120, 15-19.
https://doi.org/10.1016/j.ijporl.2019.02.002
[42] Wang, L.A., Smith, P.B., Laughon, M., Goldberg, R.N., Ku, L.C., Zimmerman, K.O., et al. (2018) Prolonged Furosemide Exposure and Risk of Abnormal Newborn Hearing Screen in Premature Infants. Early Human Development, 125, 26-30.
https://doi.org/10.1016/j.earlhumdev.2018.08.009
[43] Ding, D., Liu, H., Qi, W., Jiang, H., Li, Y., Wu, X., et al. (2016) Ototoxic Effects and Mechanisms of Loop Diuretics. Journal of Otology, 11, 145-156.
https://doi.org/10.1016/j.joto.2016.10.001
[44] Hirose, K. and Sato, E. (2011) Comparative Analysis of Combination Kanamycin-Furosemide versus Kanamycin Alone in the Mouse Cochlea. Hearing Research, 272, 108-116.
https://doi.org/10.1016/j.heares.2010.10.011
[45] Xiong, H., Chu, H., Zhou, X., Huang, X., Cui, Y., Zhou, L., et al. (2011) Conservation of Endocochlear Potential in Mice with Profound Hearing Loss Induced by Co-Administration of Kanamycin and Furosemide. Laboratory Animals, 45, 95-102.
https://doi.org/10.1258/la.2010.009142
[46] Almadhoob, A. and Ohlsson, A. (2020) Sound Reduction Management in the Neonatal Intensive Care Unit for Preterm or Very Low Birth Weight Infants. Cochrane Database of Systematic Reviews, No. 1, CD010333.
https://doi.org/10.1002/14651858.cd010333.pub3
[47] Pugliesi, R.R., Campillos, M.S., Calado Orsi, K.C.S., Avena, M.J., Pradella-Hallinan, M.L.D.C., Tsunemi, M.H., et al. (2018) Correlation of Premature Infant Sleep/Wakefulness and Noise Levels in the Presence or Absence of “Quiet Time”. Advances in Neonatal Care, 18, 393-399.
https://doi.org/10.1097/anc.0000000000000549
[48] Brown, G. (2009) NICU Noise and the Preterm Infant. Neonatal Network, 28, 165-173.
https://doi.org/10.1891/0730-0832.28.3.165