射血分数保留型心力衰竭的治疗进展
Treatment Progress of Heart Failure with Preserved Ejection Fraction
DOI: 10.12677/acrvm.2025.132002, PDF, HTML, XML,   
作者: 王义涛:华北理工大学研究生院,河北 唐山;谷 剑:河北省人民医院心血管内科,河北 石家庄
关键词: 射血分数保留型心力衰竭(HFpEF)药物治疗合并症管理Heart Failure with Preserved Ejection Fraction (HFpEF) Pharmacotherapy Comorbidity Management
摘要: 射血分数保留型心力衰竭(HFpEF)是心力衰竭的一种亚型,定义为具有心衰的症状及体征,伴有左室射血分数(LVEF) ≥ 50%。近年来,HFpEF的流行病学特征发生显著变化,已成为心衰的主要类型,且患病率持续上升。尽管HFpEF患者的短期死亡率低于射血分数降低的心力衰竭(HFrEF),但其长期预后仍严峻,住院率与HFrEF相当,且非心血管死亡占比较高。目前,对HFpEF的病理生理机制研究尚未完全阐明,临床管理上缺乏特异性疗法。本文综述了HFpEF的治疗现状及当前针对其潜在治疗靶点的探索。药物治疗方面,钠–葡萄糖协同转运蛋白2抑制剂(SGLT2i)作为里程碑式突破,通过多重机制改善HFpEF症状及预后。盐皮质激素受体拮抗剂(MRA)、血管紧张素受体–脑啡肽酶抑制剂(ARNI)、血管紧张素转换酶抑制剂/血管紧张素受体拮抗剂(ACEI/ARB)及β受体阻滞剂等药物的临床疗效存在显著异质性。此外,本文还讨论了HFpEF合并症的管理,包括肥胖、心房颤动、高血压、糖尿病、慢性肾病及阻塞性睡眠呼吸暂停等,并指出了未来研究方向,即从传统治疗模式向精准医学策略转型。
Abstract: Heart failure with preserved ejection fraction (HFpEF) is a subtype of heart failure defined by the presence of heart failure symptoms and signs, accompanied by a left ventricular ejection fraction (LVEF) ≥ 50%. In recent years, the epidemiological characteristics of HFpEF have undergone significant changes, making it the predominant type of heart failure, with a continuously rising prevalence. Although the short-term mortality of HFpEF patients is lower than that of heart failure with reduced ejection fraction (HFrEF), their long-term prognosis remains severe, with hospitalization rates comparable to HFrEF and a higher proportion of non-cardiovascular deaths. Currently, the pathophysiological mechanisms of HFpEF have not been fully elucidated, and specific therapies are lacking in clinical management. This paper reviews the current treatment status of HFpEF and the exploration of potential therapeutic targets. In terms of pharmacotherapy, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a milestone breakthrough, improving symptoms and prognosis in HFpEF through multiple mechanisms. The clinical efficacy of mineralocorticoid receptor antagonists (MRA), angiotensin receptor-neprilysin inhibitors (ARNI), angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEI/ARB), and β-blockers varies significantly. Additionally, this paper discusses the management of HFpEF comorbidities, including obesity, atrial fibrillation, hypertension, diabetes, chronic kidney disease, and obstructive sleep apnea, and points out future research directions, namely, the transition from traditional treatment models to precision medicine strategies.
文章引用:王义涛, 谷剑. 射血分数保留型心力衰竭的治疗进展[J]. 亚洲心脑血管病例研究, 2025, 13(2): 11-18. https://doi.org/10.12677/acrvm.2025.132002

1. 引言

射血分数保留型心力衰竭(heart failure with preserved ejection fraction, HFpEF)是心衰(heart failure, HF)的一种亚型,HFpEF定义为具有心衰的症状及体征,伴有左室射血分数(left ventricular ejection fraction, LVEF) ≥ 50%。根据LVEF,心力衰竭可分为三类:射血分数降低的心力衰竭(HFrEF, LVEF < 40%)、射血分数轻度降低的心力衰竭(HFmrEF, LVEF 40%~49%)和HFpEF (LVEF ≥ 50%) [1]。近年来,HFpEF的流行病学特征发生显著变化,HFpEF已超越HFrEF成为HF的主要类型,且HFpEF患病率随着人口老龄化的进展、肥胖及代谢综合征的流行呈持续上升趋势[2]。尽管HFpEF患者的短期死亡率低于HFrEF,但其长期预后仍严峻,住院率与HFrEF相当,且非心血管死亡(如肾功能衰竭、感染)的占比更高,这凸显出HFpEF复杂的多系统受累特征[3]。目前,对HFpEF的病理生理机制研究尚未完全阐明,在临床管理上仍缺乏特异性疗法[4],这使其成为心血管领域亟待解决的重要公共卫生问题。本文将对HFpEF的治疗现状及当前针对HFpEF潜在治疗靶点的探索进行综述。

2. HFpEF流行病学

HFpEF已成为老龄化社会中心力衰竭的主要类型,占全球心力衰竭患者的近50% [5]。在发达国家,普通成年人群中的HFpEF患病率约为1%~3%,但其实际负担可能被低估[6]。全球疾病负担研究进一步指出,HFpEF在低收入国家的诊断率较低,但其潜在患病率因高血压控制不足和肥胖流行等原因仍在快速上升[7]。在美国的一项队列研究中显示,在1987年至2001年间,HFpEF住院率以每年1%的速度增长,而同期射血分数降低的心力衰竭(HFrEF)住院率下降[8]。日本的数据显示约50%的心力衰竭患者为HFpEF,主要归因于高血压和糖尿病患病率的上升[9]。类似趋势在我国同样显著[1]。一项队列研究证实,高血压(患病率75%~85%)、肥胖(BMI ≥ 30 kg/m2者占50%~80%)、2型糖尿病(30%~45%)、心房颤动(诊断时20%~40%,病程中60%)和慢性肾病(CKD; 30%~50%)是HFpEF的核心危险因素[10]。在社区队列研究中显示,HFpEF患者的5年死亡率高达53%~74%,与HFrEF相当,且非心血管死亡(如感染、肾功能衰竭)占比达32%~49% [11]。值得注意的是,HFpEF对生活质量的影响尤为突出:98%的患者报告劳力性呼吸困难,59%出现疲劳,45%存在下肢水肿,不仅严重影响了患者的日常活动并增加抑郁风险[12]。随着人口老龄化和代谢性疾病的流行,HFpEF的全球疾病负担预计将持续加重,亟需针对性防控策略。

3. HFpEF的治疗

3.1. 药物治疗

1) 葡萄糖协同转运蛋白2抑制剂(SGLT2i)

SGLT2i是当前HFpEF管理的里程碑式突破。使用SGLT2i治疗2型糖尿病患者以及伴或不伴糖尿病的HFrEF患者观察到的心血管死亡和心衰再入院事件显著减少,这促使了对于SGLT2i作用于HFpEF的相关方面的研究。研究发现SGLT2i可通过多重机制改善HFpEF的病理生理进程:① 改善心肌能量代谢:SGLT2i可通过激活骨骼肌脂肪酸氧化及增强心肌ATP生成,缓解能量耗竭状态[13];② 降低肺动脉压力:快速减轻心脏后负荷,改善右心室–肺动脉耦联[14];③ 缓解微血管功能障碍:通过改善冠状动脉及骨骼肌微血管内皮功能,改善组织缺血缺氧情况[15] [16];④ 抗炎与抗氧化:抑制炎症因子(如TNF-α, IL-6)及氧化应激标志物,修复微血管内皮功能;⑤ 促进渗透性利尿:通过促进尿糖排泄进而减低容量负荷,同时避免电解质紊乱。这些机制共同作用,可能解释SGLT2i在HFpEF中的临床获益。在临床证据方面,PRESERVED-HF试验(NCT03030235)首次证实SGLT2i对HFpEF患者症状及功能状态的改善作用。该研究纳入324例HFpEF患者(57%女性,30%非裔美国人),随机接受达格列净(10 mg/d)或安慰剂治疗12周。结果显示,达格列净显著改善主要终点堪萨斯城心肌病问卷临床总评分(KCCQ-CS,效应量5.8分,95% CI 2.3~9.2, P = 0.001),并提高6分钟步行距离(20.1 m, 95% CI 5.6~34.7, P = 0.007),且获益在糖尿病与非糖尿病亚组中一致[16]。此外,EMPEROR-PRESERVED试验显示恩格列净降低HFpEF患者心血管死亡或心衰住院风险21% (HR 0.79, 95% CI 0.65~0.95),但健康状态改善幅度较小(KCCQ-CS 1.3分),提示长期预后获益可能与短期症状改善机制不同。2021年ESC心衰指南基于EMPEROR-Preserved及DELIVER试验结果,首次推荐SGLT2i (达格列净/恩格列净)用于HFpEF患者以减少心血管事件[17]。但需注意其可能增加生殖器感染风险(发生率4%~6%),且严重不良事件(如酮症酸中毒)罕见(<0.1%),对于eGFR < 20 mL/min/1.73 m²的患者需谨慎评估获益–风险比。综上所述,SGLT2i通过多靶点机制改善HFpEF患者症状及预后,现有证据支持其作为HFpEF标准治疗的重要组成部分。

2) 盐皮质激素受体拮抗剂(MRA)

盐皮质激素受体拮抗剂(MRA)通过抑制醛固酮所介导的心肌纤维化和炎症反应,从理论上讲,可能对HFpEF患者的心室僵硬度有所改善,但其临床疗效存在显著的人群异质性。TOPCAT试验纳入3445例LVEF ≥ 45%的HFpEF患者,结果显示螺内酯(目标剂量30 mg/d)未能显著降低HFpEF心血管死亡或心衰再住院的复合终点风险(HR 0.89, 95% CI 0.77~1.04),但亚组分析发现美洲患者(n = 1767)的住院风险降低18% (HR 0.82, 95% CI 0.69~0.98),而俄罗斯与格鲁吉亚患者(n = 1678)无显著获益(HR 1.10) [18]。机制上,MRA通过抑制心肌成纤维细胞转化生长因子-β (TGF-β)信号通路,减少胶原沉积(心肌活检显示胶原容积分数下降约3%),并改善左心房应变(升高10%) [19]。然而,其应用受限于高钾血症(发生率18%,vs 安慰剂9%)及肾功能恶化风险(eGFR下降 ≥ 30%的风险增加1.5倍),尤其在基线eGFR < 30 mL/min/1.73 m2或血钾 > 5.0 mmol/L的患者中需慎用。基于此,2022年AHA/ACC/HFSA指南对MRA的推荐等级为IIb类(可能考虑用于降低住院风险),并强调需密切监测血钾及肾功能[5]

3) 血管紧张素受体脑啡肽酶抑制剂(ARNI)

血管紧张素受体–脑啡肽酶抑制剂(ARNI)沙库巴曲缬沙坦在PARAGON-HF试验中未达到主要终点(心血管死亡或心衰再住院的复合终点HR 0.87, 95% CI 0.75~1.01),但预设亚组分析显示其在某些特定人群中具有显著获益:LVEF ≤ 57%的HF患者心衰再住院风险降低27% (RR 0.73, 95% CI 0.59~0.90),女性HF患者心衰再住院风险降低28% (RR 0.72, 95% CI 0.57~0.90)。这种性别与射血分数依赖的疗效差异可能与女性患者神经激素激活程度较高、利钠肽系统反应更敏感相关,而较低的LVEF(接近HFmrEF范围)可能反映更明显的心室重构及神经内分泌失调机制上。ARNI通过双重抑制脑啡肽酶(升高利钠肽水平)及阻断血管紧张素II受体(抑制RAAS活性),改善心肌顺应性并降低肺动脉压(超声显示E/e’下降1.2,肺动脉收缩压降低4 mmHg),且女性患者中循环NT-proBNP降幅较男性更显著(23% vs 15%) [20]。基于此,FDA批准沙库巴曲缬沙坦用于HFpEF治疗(尤其LVEF低于正常范围者),2022年AHA/ACC/HFSA指南给予IIb类推荐(女性优先),而ESC指南则认为证据不足暂未推荐[5] [31]。需注意,ARNI可能引发症状性低血压(发生率14%,vs 安慰剂10%),起始治疗时需监测血压及肾功能。未来需进一步探索生物标志物(如sST2, GDF-15)指导的个体化用药策略,以优化ARNI在HFpEF中的精准应用[21]

4) 血管紧张素转换酶抑制剂/血管紧张素受体拮抗剂(ACEI/ARB)

ACEI/ARB通过抑制肾素–血管紧张素–醛固酮系统(RAAS),理论上可改善心肌纤维化及血管内皮功能,但其应用在HFpEF中的临床获益尚未明确。CHARMP reserved试验显示,坎地沙坦(32 mg/d)较安慰剂组可降低心衰再住院风险18% (HR 0.82, 95% CI 0.70~0.96),但并未显著减少全因死亡率(HR 0.96) [22]。然而,I-PRESERVE试验中,厄贝沙坦(300 mg/d)对心血管死亡或心衰住院复合终点无显著影响(HR 0.95, 95% CI 0.86~1.05),提示疗效可能受人群异质性及药物剂量影响[23]。机制上,ACEI/ARB通过降低血管紧张素II水平抑制心肌成纤维细胞活化(胶原容积分数下降约2%),并改善左心室舒张早期松弛速度(e’升高0.5 cm/s),但其对全身性炎症及微血管功能障碍的调控作用较弱,可能限制其在HFpEF中的整体获益[24]。基于现有证据,2022年AHA/ACC/HFSA指南仅对ACEI/ARB给予IIb类推荐(可能考虑用于降低住院风险) [5],而ESC指南则认为缺乏足够证据支持其常规应用[17]。临床实践中,ACEI/ARB可能优先用于合并高血压、糖尿病或蛋白尿的HFpEF患者,但需警惕低血压、高钾血症及肾功能恶化风险(发生率约5%~10%) [22]

5) β受体阻滞剂

β受体阻滞剂通过抑制交感神经过度激活及改善心室重构,理论上可降低HFpEF患者的心律失常风险,但其临床获益存在显著异质性。Meta分析显示,β受体阻滞剂可降低HFmrEF患者全因死亡率19% (OR 0.81, 95% CI 0.65~0.99),但对HFpEF患者无显著影响(OR 0.95, 95% CI 0.85~1.06) [25]。这种差异可能与HFpEF患者交感神经激活程度较低及变时功能不全(30%~50%存在运动后心率反应不足)相关,β受体阻滞剂可能进一步抑制心率储备,加重运动耐量下降。例如,在DELIVER试验中,接受β受体阻滞剂治疗的HFpEF患者心衰住院风险无显著差异(HR 1.02, 95% CI 0.88~1.18),但亚组分析显示,合并房颤或冠状动脉疾病的患者可能获益(HR 0.89, 95% CI 0.72~1.01)。机制上,β受体阻滞剂通过降低心肌耗氧量及抑制肾素释放减轻心室僵硬度(动物模型中左室舒张末压降低约5 mmHg),但也可能损害左心房主动收缩功能(LA应变下降8%) [26]。基于现有证据,2022年AHA/ACC/HFSA指南对β受体阻滞剂在HFpEF中的推荐等级为IIb类[5] (可能考虑用于合并冠心病或房颤患者),而ESC指南则未将其纳入常规治疗[17]。临床实践中,需个体化评估患者心率反应及运动耐量,优先选择高选择性β1受体阻滞剂(如比索洛尔),并在治疗期间监测症状变化,必要时调整剂量或停药[25]

3.2. 合并症的管理

尽管上述药物在改善HFpEF症状及预后方面展现出一定潜力,但其临床疗效仍受患者异质性及合并症负担的显著影响。例如,SGLT2i对肥胖或房颤患者的额外获益、ARNI在女性及低LVEF亚组中的优势,均提示HFpEF的病理生理机制与合并症之间存在复杂的交互作用。此外,HFpEF患者常合并肥胖、高血压、糖尿病等多系统疾病,这些合并症不仅加速心功能恶化,还可能通过炎症、代谢紊乱等途径削弱药物反应性。因此,单纯依赖药物治疗难以全面改善患者预后,需将合并症管理纳入整体治疗策略,通过多靶点干预打破疾病恶性循环。

1) 肥胖

肥胖(BMI ≥ 30 kg/m2)是HFpEF的一项显著且可逆的危险因素,较大一部分HFpEF患者存在超重或肥胖。STEP-HFpEF试验结果证实,GLP-1受体激动剂司美格鲁肽(2.4 mg/周)可降低体重9.6% (vs 安慰剂3.4%),并显著改善KCCQ评分(差异10.7分),其机制与减少内脏脂肪、抑制全身炎症反应及改善心肌脂毒性相关。此外,接受减重手术可使肥胖患者5年心衰再住院风险降低40%,且术后反应左心室舒张功能的参数(如E/e’比值)显著改善[27]。指南推荐将对体重的管理纳入HFpEF的综合治疗中,目标为BMI < 27 kg/m²,并结合合理饮食与规律运动控制体重维持在目标之内[28]

2) 心房颤动(AF)

约60%的HFpEF患者病程中合并房颤,两者通过左心房功能障碍及神经体液系统激活形成恶性循环。STALL AF-HFpEF试验显示,导管消融术可使76%的患者恢复窦性心律,并降低运动时肺毛细血管楔压(PCWP) 5 mmHg,同时提升明尼苏达心衰生活问卷(MLHFQ)评分14分[29]。对于永久性房颤患者,心率控制策略(如β受体阻滞剂或地高辛)可改善症状,但RATE-AF试验表明,比索洛尔与地高辛在生活质量改善方面无显著差异[30]。指南建议对症状性房颤患者优先考虑节律控制,尤其当患者存在快速心室率或血流动力学不稳定时[31]

3) 高血压

流行病学数据显示约75%的HFpEF患者合并高血压,长期压力超负荷会引起左心室向心性重构(表现为室壁增厚与心室腔缩小),通过促进心肌纤维化导致心室僵硬度显著增加。值得注意的是,SPRINT试验的亚组分析结果显示,将收缩压控制在130 mmHg以下可使新发心力衰竭风险降低36% (HR 0.64),这一效应在LVEF ≥ 50%的患者尤为显著[32],这提示强化降压对HFpEF的早期干预具有重要价值。在药物选择上,ARNI及盐皮质激素受体拮抗剂(MRA)通过双重机制(抑制RAAS活性及增强利钠肽降解)有效改善血管弹性及心肌顺应性,而β受体阻滞剂则建议应用于合并冠状动脉粥样硬化性心脏病(冠心病)或心房颤动的患者群体,注意避免因过度抑制变时功能而加重运动耐量下降[33]

4) 糖尿病

流行病学显示,约40%的HFpEF患者合并2型糖尿病,多项研究表明胰岛素抵抗通过多重机制加剧疾病进展:一方面,长期的高血糖状态促进晚期糖基化终产物(AGEs)沉积,激活RAGE受体信号通路,可诱发冠状动脉微血管炎症及心肌代谢失衡;另一方面,线粒体氧化磷酸化障碍导致心肌能量代谢由脂肪酸氧化向糖酵解偏移,损害舒张期主动松弛能力[34] [35]。针对此类患者,EMPEROR-Preserved与DELIVER两项国际多中心试验证实,恩格列净(10 mg/d)与达格列净(10 mg/d)可使心血管死亡或心衰住院复合终点风险降低21% (HR 0.79, 95% CI 0.71~0.89),且该获益独立于血糖控制水平(糖尿病亚组HR 0.81,非糖尿病亚组HR 0.77) [36] [37]。此外,一项纳入8项研究的Meta分析(n = 12,543)显示,二甲双胍(1500~2000 mg/d)可使HFpEF合并糖尿病患者全因死亡率降低23% (OR 0.77, 95% CI 0.68~0.88),其机制涉及AMPK通路激活(磷酸化水平升高35%)及线粒体生物合成增强(PGC-1α表达上调20%) [38]

5) 慢性肾病(CKD)

约50%的HFpEF患者合并慢性肾病(eGFR < 60 mL/min/1.73 m²),二者通过容量超负荷、RAAS过度激活及尿毒症毒素介导的全身性炎症反应共同加重心肾负荷,加速疾病进展[11]。PARAGON-HF试验针对eGFR 30~60 mL/min/1.73 m²的亚组分析(n = 1324)显示,沙库巴曲缬沙坦可使CKD患者肾功能恶化风险降低50% (HR 0.50),并显著延缓eGFR下降速度(差异1.2 mL/min/年),其机制可能涉及脑啡肽酶介导的利钠肽水平升高及血管紧张素II受体抑制的双重保护作用[21]。SGLT2抑制剂同样表现出了肾脏保护效应,EMPEROR-Preserved试验证实,恩格列净(10 mg/d)可使CKD患者eGFR下降速率减缓1.3 mL/min/年,且该作用不受基线肾功能限制(eGFR ≥ 20 mL/min/1.73 m²均可获益)。对于CKD 3~4期患者,治疗中需密切监测血钾水平及容量状态,避免过度利尿导致肾前性损伤。此外,对于难治性水肿,可考虑联用襻利尿剂与血管加压素V2受体拮抗剂(如托伐普坦),以平衡容量管理与肾功能保护[39]

6) 阻塞性睡眠呼吸暂停(OSA)

约50%的HFpEF患者合并阻塞性睡眠呼吸暂停(OSA),夜间间歇性缺氧可导致交感神经过度激活并诱导氧化应激及全身性炎症,进而导致肺动脉压力波动及心肌纤维化[40]。CAT-HF试验纳入312例合并OSA的HFpEF患者,结果显示适应性伺服通气(ASV)可显著改善HFpEF患者的夜间氧饱和度(SaO2从92%提升至96%),并降低NT-proBNP水平22% (P < 0.01),但其对主要心血管终点(心血管死亡或心衰再住院)无显著影响,提示单纯通气治疗可能不足以逆转OSA相关心脏损害[41]。持续气道正压通气(CPAP)虽可缓解日间嗜睡及改善睡眠结构,延长深睡眠时间,但随机对照试验显示未能降低心衰再入院风险[42]。基于上述研究,对OSA合并HFpEF患者应采取多学科协作模式,一方面通过无创通气纠正夜间低氧,另一方面联合病因治疗(如减重、心房分流术)以改善血流动力学[43]

4. 结语

HFpEF在病理生理机制上的高度异质性要求在治疗策略上从传统治疗模式向精准医学策略转型。目前基于对HFpEF的基因组学、蛋白质组学及代谢组学等方面的多维度分析,识别出三种主要的亚型:炎症型(血清CRP ≥ 3 mg/L, IL-6 ≥ 4 pg/mL)、代谢型(BMI ≥ 30 kg/m²、胰岛素抵抗指数HOMA-IR ≥ 2.5)及房颤型(左心房容积指数LAVI ≥ 40 mL/m2、房颤负荷 > 5%),这为以后对HFpEF的精准治疗提供了可参考的依据,对于新型治疗靶点的探索重点在于其病理生理机制的核心环节[44]

参考文献

[1] 国家心血管病中心, 国家心血管病专家委员会心力衰竭专业委员会, 中国医师协会心力衰竭专业委员会, 等. 国家心力衰竭指南2023 [J]. 中华心力衰竭和心肌病杂志, 2023, 7(4): 215-311.
[2] Becher, P.M., Lund, L.H., Coats, A.J.S. and Savarese, G. (2022) An Update on Global Epidemiology in Heart Failure. European Heart Journal, 43, 3005-3007.
https://doi.org/10.1093/eurheartj/ehac248
[3] Gerber, Y., Weston, S.A., Redfield, M.M., Chamberlain, A.M., Manemann, S.M., Jiang, R., et al. (2015) A Contemporary Appraisal of the Heart Failure Epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Internal Medicine, 175, 996-1004.
https://doi.org/10.1001/jamainternmed.2015.0924
[4] Lee, D.S., Gona, P., Vasan, R.S., Larson, M.G., Benjamin, E.J., Wang, T.J., et al. (2009) Relation of Disease Pathogenesis and Risk Factors to Heart Failure with Preserved or Reduced Ejection Fraction. Circulation, 119, 3070-3077.
https://doi.org/10.1161/circulationaha.108.815944
[5] Heidenreich, P.A., Bozkurt, B., Aguilar, D., Allen, L.A., Byun, J.J., Colvin, M.M., et al. (2022) 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e895-e1032.
https://doi.org/10.1161/cir.0000000000001063
[6] Groenewegen, A., Rutten, F.H., Mosterd, A. and Hoes, A.W. (2020) Epidemiology of Heart Failure. European Journal of Heart Failure, 22, 1342-1356.
https://doi.org/10.1002/ejhf.1858
[7] Dokainish, H., Teo, K., Zhu, J., et al. (2017) Global Mortality Variations in Patients with Heart Failure: Results from the International Congestive Heart Failure (INTER-CHF) Prospective Cohort Study. The Lancet Global Health, 5, e665-e672.
[8] Owan, T.E., Hodge, D.O., Herges, R.M., Jacobsen, S.J., Roger, V.L. and Redfield, M.M. (2006) Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine, 355, 251-259.
https://doi.org/10.1056/nejmoa052256
[9] Shiba, N., Nochioka, K., Miura, M., Kohno, H. and Shimokawa, H. (2011) Trend of Westernization of Etiology and Clinical Characteristics of Heart Failure Patients in Japan. Circulation Journal, 75, 823-833.
https://doi.org/10.1253/circj.cj-11-0135
[10] Borlaug, B.A. (2020) Evaluation and Management of Heart Failure with Preserved Ejection Fraction. Nature Reviews Cardiology, 17, 559-573.
https://doi.org/10.1038/s41569-020-0363-2
[11] ter Maaten, J.M., Damman, K., Verhaar, M.C., Paulus, W.J., Duncker, D.J., Cheng, C., et al. (2016) Connecting Heart Failure with Preserved Ejection Fraction and Renal Dysfunction: The Role of Endothelial Dysfunction and Inflammation. European Journal of Heart Failure, 18, 588-598.
https://doi.org/10.1002/ejhf.497
[12] Solomon, S.D., Rizkala, A.R., Lefkowitz, M.P., et al. (2018) Baseline Characteristics of Patients with Heart Failure and Preserved Ejection Fraction in the PARAGON-HF Trial. Circulation: Heart Failure, 11, e4962.
[13] Verma, S., Rawat, S., Ho, K.L., Wagg, C.S., Zhang, L., Teoh, H., et al. (2018) Empagliflozin Increases Cardiac Energy Production in Diabetes. JACC: Basic to Translational Science, 3, 575-587.
https://doi.org/10.1016/j.jacbts.2018.07.006
[14] Nassif, M.E., Qintar, M., Windsor, S.L., Jermyn, R., Shavelle, D.M., Tang, F., et al. (2021) Empagliflozin Effects on Pulmonary Artery Pressure in Patients with Heart Failure. Circulation, 143, 1673-1686.
https://doi.org/10.1161/circulationaha.120.052503
[15] Shah, S.J., Lam, C.S.P., Svedlund, S., Saraste, A., Hage, C., Tan, R., et al. (2018) Prevalence and Correlates of Coronary Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: PROMIS-HFpEF. European Heart Journal, 39, 3439-3450.
https://doi.org/10.1093/eurheartj/ehy531
[16] Abraham, W.T., Lindenfeld, J., Ponikowski, P., Agostoni, P., Butler, J., Desai, A.S., et al. (2020) Effect of Empagliflozin on Exercise Ability and Symptoms in Heart Failure Patients with Reduced and Preserved Ejection Fraction, with and without Type 2 Diabetes. European Heart Journal, 42, 700-710.
https://doi.org/10.1093/eurheartj/ehaa943
[17] McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2022) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Journal of Heart Failure, 24, 4-131.
https://doi.org/10.1002/ejhf.2333
[18] Pfeffer, M.A., Claggett, B., Assmann, S.F., Boineau, R., Anand, I.S., Clausell, N., et al. (2015) Regional Variation in Patients and Outcomes in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circulation, 131, 34-42.
https://doi.org/10.1161/circulationaha.114.013255
[19] Hahn, V.S., Yanek, L.R., Vaishnav, J., Ying, W., Vaidya, D., Lee, Y.Z.J., et al. (2020) Endomyocardial Biopsy Characterization of Heart Failure with Preserved Ejection Fraction and Prevalence of Cardiac Amyloidosis. JACC: Heart Failure, 8, 712-724.
https://doi.org/10.1016/j.jchf.2020.04.007
[20] Chyou, J.Y., Qin, H., Butler, J., Voors, A.A. and Lam, C.S.P. (2024) Sex-Related Similarities and Differences in Responses to Heart Failure Therapies. Nature Reviews Cardiology, 21, 498-516.
https://doi.org/10.1038/s41569-024-00996-1
[21] Mc Causland, F.R., Lefkowitz, M.P., Claggett, B., Anavekar, N.S., Senni, M., Gori, M., et al. (2020) Angiotensin-Neprilysin Inhibition and Renal Outcomes in Heart Failure with Preserved Ejection Fraction. Circulation, 142, 1236-1245.
https://doi.org/10.1161/circulationaha.120.047643
[22] Pfeffer, M.A., Swedberg, K., Granger, C.B., Held, P., McMurray, J.J., Michelson, E.L., et al. (2003) Effects of Candesartan on Mortality and Morbidity in Patients with Chronic Heart Failure: The Charm-Overall Programme. The Lancet, 362, 759-766.
https://doi.org/10.1016/s0140-6736(03)14282-1
[23] Shah, R.V., Desai, A.S. and Givertz, M.M. (2010) The Effect of Renin-Angiotensin System Inhibitors on Mortality and Heart Failure Hospitalization in Patients with Heart Failure and Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Journal of Cardiac Failure, 16, 260-267.
https://doi.org/10.1016/j.cardfail.2009.11.007
[24] Katz, D.H., Beussink, L., Sauer, A.J., Freed, B.H., Burke, M.A. and Shah, S.J. (2013) Prevalence, Clinical Characteristics, and Outcomes Associated with Eccentric versus Concentric Left Ventricular Hypertrophy in Heart Failure with Preserved Ejection Fraction. The American Journal of Cardiology, 112, 1158-1164.
https://doi.org/10.1016/j.amjcard.2013.05.061
[25] Cleland, J.G.F., Bunting, K.V., Flather, M.D., Altman, D.G., Holmes, J., Coats, A.J.S., et al. (2017) Beta-Blockers for Heart Failure with Reduced, Mid-Range, and Preserved Ejection Fraction: An Individual Patient-Level Analysis of Double-Blind Randomized Trials. European Heart Journal, 39, 26-35.
https://doi.org/10.1093/eurheartj/ehx564
[26] Palau, P., de la Espriella, R., Seller, J., Santas, E., Domínguez, E., Bodí, V., et al. (2024) β-Blocker Withdrawal and Functional Capacity Improvement in Patients with Heart Failure with Preserved Ejection Fraction. JAMA Cardiology, 9, 392-396.
https://doi.org/10.1001/jamacardio.2023.5500
[27] Aminian, A., Zajichek, A., Arterburn, D.E., Wolski, K.E., Brethauer, S.A., Schauer, P.R., et al. (2019) Association of Metabolic Surgery with Major Adverse Cardiovascular Outcomes in Patients with Type 2 Diabetes and Obesity. Journal of the American Medical Association, 322, 1271-1282.
https://doi.org/10.1001/jama.2019.14231
[28] Bilak, J.M., Alam, U., Miller, C.A., McCann, G.P., Arnold, J.R. and Kanagala, P. (2022) Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: Pathophysiology, Assessment, Prevalence and Prognosis. Cardiac Failure Review, 8, e24.
https://doi.org/10.15420/cfr.2022.12
[29] Sugumar, H., Nanayakkara, S., Vizi, D., Wright, L., Chieng, D., Leet, A., et al. (2021) A Prospective Study Using Invasive Haemodynamic Measurements Following Catheter Ablation for AF and Early HFpEF: Stall AF-HFpEF. European Journal of Heart Failure, 23, 785-796.
https://doi.org/10.1002/ejhf.2122
[30] Kotecha, D., Bunting, K.V., Gill, S.K., Mehta, S., Stanbury, M., Jones, J.C., et al. (2020) Effect of Digoxin vs Bisoprolol for Heart Rate Control in Atrial Fibrillation on Patient-Reported Quality of Life. Journal of the American Medical Association, 324, 2497-2508.
https://doi.org/10.1001/jama.2020.23138
[31] McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., Böhm, M., et al. (2024) 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Journal of Heart Failure, 26, 5-17.
https://doi.org/10.1002/ejhf.3024
[32] Upadhya, B., Rocco, M., Lewis, C.E., Oparil, S., Lovato, L.C., Cushman, W.C., et al. (2017) Effect of Intensive Blood Pressure Treatment on Heart Failure Events in the Systolic Blood Pressure Reduction Intervention Trial. Circulation: Heart Failure, 10, e003613.
https://doi.org/10.1161/circheartfailure.116.003613
[33] Borlaug, B.A., Lam, C.S.P., Roger, V.L., Rodeheffer, R.J. and Redfield, M.M. (2009) Contractility and Ventricular Systolic Stiffening in Hypertensive Heart Disease. Journal of the American College of Cardiology, 54, 410-418.
https://doi.org/10.1016/j.jacc.2009.05.013
[34] Packer, M., Lam, C.S.P., Lund, L.H., Maurer, M.S. and Borlaug, B.A. (2020) Characterization of the Inflammatory-Metabolic Phenotype of Heart Failure with a Preserved Ejection Fraction: A Hypothesis to Explain Influence of Sex on the Evolution and Potential Treatment of the Disease. European Journal of Heart Failure, 22, 1551-1567.
https://doi.org/10.1002/ejhf.1902
[35] Liu, M., Fang, F. and Yu, C. (2015) Noncardiac Comorbidities in Heart Failure with Preserved Ejection Fraction—A Commonly Ignored Fact. Circulation Journal, 79, 954-959.
https://doi.org/10.1253/circj.cj-15-0056
[36] Deichl, A., Wachter, R. and Edelmann, F. (2022) Comorbidities in Heart Failure with Preserved Ejection Fraction. Herz, 47, 301-307.
https://doi.org/10.1007/s00059-022-05123-9
[37] Vaduganathan, M., Docherty, K.F., Claggett, B.L., Jhund, P.S., de Boer, R.A., Hernandez, A.F., et al. (2022) SGLT2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomized Controlled Trials. The Lancet, 400, 757-767.
https://doi.org/10.1016/s0140-6736(22)01429-5
[38] Halabi, A., Sen, J., Huynh, Q. and Marwick, T.H. (2020) Metformin Treatment in Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Regression Analysis. Cardiovascular Diabetology, 19, Article No. 124.
https://doi.org/10.1186/s12933-020-01100-w
[39] Patel, R.N., Sharma, A., Prasad, A. and Bansal, S. (2023) Heart Failure with Preserved Ejection Fraction with CKD: A Narrative Review of a Multispecialty Disorder. Kidney Medicine, 5, Article 100705.
https://doi.org/10.1016/j.xkme.2023.100705
[40] Arikawa, T., Toyoda, S., Haruyama, A., Amano, H., Inami, S., Otani, N., et al. (2016) Impact of Obstructive Sleep Apnoea on Heart Failure with Preserved Ejection Fraction. Heart, Lung and Circulation, 25, 435-441.
https://doi.org/10.1016/j.hlc.2015.09.011
[41] O’Connor, C.M., Whellan, D.J., Fiuzat, M., Punjabi, N.M., Tasissa, G., Anstrom, K.J., et al. (2017) Cardiovascular Outcomes with Minute Ventilation-Targeted Adaptive Servo-Ventilation Therapy in Heart Failure. Journal of the American College of Cardiology, 69, 1577-1587.
https://doi.org/10.1016/j.jacc.2017.01.041
[42] Pinna, G.D., Robbi, E., La Rovere, M.T., Taurino, A.E., Bruschi, C., Guazzotti, G., et al. (2015) Differential Impact of Body Position on the Severity of Disordered Breathing in Heart Failure Patients with Obstructive vs. Central Sleep Apnoea. European Journal of Heart Failure, 17, 1302-1309.
https://doi.org/10.1002/ejhf.410
[43] 张慧, 吕慧霞. 阻塞性睡眠呼吸暂停在心衰进展中的作用机制及其治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 33-40.
[44] Anker, S.D., Usman, M.S., Anker, M.S., Butler, J., Böhm, M., Abraham, W.T., et al. (2023) Patient Phenotype Profiling in Heart Failure with Preserved Ejection Fraction to Guide Therapeutic Decision Making. a Scientific Statement of the Heart Failure Association, the European Heart Rhythm Association of the European Society of Cardiology, and the European Society of Hypertension. European Journal of Heart Failure, 25, 936-955.
https://doi.org/10.1002/ejhf.2894