|
[1]
|
Wang, Y., Li, L., Hou, C., Lai, Y., Long, J., Liu, J., et al. (2016) Snare-Mediated Membrane Fusion in Autophagy. Seminars in Cell & Developmental Biology, 60, 97-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tábara, L., Segawa, M. and Prudent, J. (2024) Molecular Mechanisms of Mitochondrial Dynamics. Nature Reviews Molecular Cell Biology, 26, 123-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Daumke, O. and Unger, V.M. (2016) Protein-Mediated Membrane Remodeling. Journal of Structural Biology, 196, 1-2. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ramachandran, R. and Schmid, S.L. (2018) The Dynamin Superfamily. Current Biology, 28, R411-R416. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Praefcke, G.J.K. and McMahon, H.T. (2004) The Dynamin Superfamily: Universal Membrane Tubulation and Fission Molecules? Nature Reviews Molecular Cell Biology, 5, 133-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Pletan, M., Liu, X., Cha, G., Chen, Y., Knupp, J. and Tsai, B. (2023) The Atlastin ER Morphogenic Proteins Promote Formation of a Membrane Penetration Site during Non-Enveloped Virus Entry. Journal of Virology, 97, e00756-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Moss, T.J., Daga, A. and McNew, J.A. (2011) Fusing a Lasting Relationship between ER Tubules. Trends in Cell Biology, 21, 416-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hu, J., Shibata, Y., Zhu, P., Voss, C., Rismanchi, N., Prinz, W.A., et al. (2009) A Class of Dynamin-Like GTPases Involved in the Generation of the Tubular ER Network. Cell, 138, 549-561. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Anwar, K., Klemm, R.W., Condon, A., Severin, K.N., Zhang, M., Ghirlando, R., et al. (2012) The Dynamin-Like GTPases Sey1p Mediates Homotypic ER Fusion in s. Cerevisiae. Journal of Cell Biology, 197, 209-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bian, X., Klemm, R.W., Liu, T.Y., Zhang, M., Sun, S., Sui, X., et al. (2011) Structures of the Atlastin GTPases Provide Insight into Homotypic Fusion of Endoplasmic Reticulum Membranes. Proceedings of the National Academy of Sciences of the United States of America, 108, 3976-3981. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Byrnes, L.J. and Sondermann, H. (2011) Structural Basis for the Nucleotide-Dependent Dimerization of the Large G Protein Atlastin-1/SPG3A. Proceedings of the National Academy of Sciences of the United States of America, 108, 2216-2221. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Crosby, D., Mikolaj, M.R., Nyenhuis, S.B., Bryce, S., Hinshaw, J.E. and Lee, T.H. (2021) Reconstitution of Human Atlastin Fusion Activity Reveals Autoinhibition by the C Terminus. Journal of Cell Biology, 221, e202107070. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Neufeldt, C.J., Cortese, M., Scaturro, P., Cerikan, B., Wideman, J.G., Tabata, K., et al. (2019) ER-Shaping Atlastin Proteins Act as Central Hubs to Promote Flavivirus Replication and Virion Assembly. Nature Microbiology, 4, 2416-2429. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
McNew, J.A., Sondermann, H., Lee, T., Stern, M. and Brandizzi, F. (2013) GTP-Dependent Membrane Fusion. Annual Review of Cell and Developmental Biology, 29, 529-550. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liang, J.R., Lingeman, E., Ahmed, S. and Corn, J.E. (2018) Atlastins Remodel the Endoplasmic Reticulum for Selective Autophagy. Journal of Cell Biology, 217, 3354-3367. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Byrnes, L.J., Singh, A., Szeto, K., Benvin, N.M., O’Donnell, J.P., Zipfel, W.R., et al. (2013) Structural Basis for Conformational Switching and GTP Loading of the Large G Protein Atlastin. The EMBO Journal, 32, 369-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, T.Y., Bian, X., Sun, S., Hu, X., Klemm, R.W., Prinz, W.A., et al. (2012) Lipid Interaction of the C Terminus and Association of the Transmembrane Segments Facilitate Atlastin-Mediated Homotypic Endoplasmic Reticulum Fusion. Proceedings of the National Academy of Sciences of the United States of America, 109, E2146-E2154. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Faust, J.E., Desai, T., Verma, A., Ulengin, I., Sun, T., Moss, T.J., et al. (2015) The Atlastin C-Terminal Tail Is an Amphipathic Helix That Perturbs the Bilayer Structure during Endoplasmic Reticulum Homotypic Fusion. Journal of Biological Chemistry, 290, 4772-4783. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Betancourt-Solis, M.A., Desai, T. and McNew, J.A. (2018) The Atlastin Membrane Anchor Forms an Intramembrane Hairpin That Does Not Span the Phospholipid Bilayer. Journal of Biological Chemistry, 293, 18514-18524. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wiseman, R.L., Mesgarzadeh, J.S. and Hendershot, L.M. (2022) Reshaping Endoplasmic Reticulum Quality Control through the Unfolded Protein Response. Molecular Cell, 82, 1477-1491. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Foronda, H., Fu, Y., Covarrubias-Pinto, A., Bocker, H.T., González, A., Seemann, E., et al. (2023) Heteromeric Clusters of Ubiquitinated ER-Shaping Proteins Drive ER-Phagy. Nature, 618, 402-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shibata, Y., Voeltz, G.K. and Rapoport, T.A. (2006) Rough Sheets and Smooth Tubules. Cell, 126, 435-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Baumann, O. and Walz, B. (2001) Endoplasmic Reticulum of Animal Cells and Its Organization into Structural and Functional Domains. International Review of Cytology, 205, 149-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Friedman, J.R. and Voeltz, G.K. (2011) The ER in 3D: A Multifunctional Dynamic Membrane Network. Trends in Cell Biology, 21, 709-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Friedman, J.R., Webster, B.M., Mastronarde, D.N., Verhey, K.J. and Voeltz, G.K. (2010) ER Sliding Dynamics and Er–mitochondrial Contacts Occur on Acetylated Microtubules. Journal of Cell Biology, 190, 363-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Orso, G., Pendin, D., Liu, S., Tosetto, J., Moss, T.J., Faust, J.E., et al. (2009) Homotypic Fusion of ER Membranes Requires the Dynamin-Like GTPases Atlastin. Nature, 460, 978-983. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jang, E., Moon, Y., Yoon, S.Y., Diaz, J.A.R., Lee, M., Ko, N., et al. (2023) Human Atlastins Are Sufficient to Drive the Fusion of Liposomes with a Physiological Lipid Composition. Journal of Cell Biology, 222, e202109090. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, G., Zhu, P., Renvoisé, B., Maldonado-Báez, L., Park, S.H. and Blackstone, C. (2016) Mammalian Knock Out Cells Reveal Prominent Roles for Atlastin GTPasess in ER Network Morphology. Experimental Cell Research, 349, 32-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jiang, X., Wang, X., Ding, X., Du, M., Li, B., Weng, X., et al. (2020) fam 134B Oligomerization Drives Endoplasmic Reticulum Membrane Scission for ER‐Phagy. The EMBO Journal, 39, e102608. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lamb, C.A., Yoshimori, T. and Tooze, S.A. (2013) The Autophagosome: Origins Unknown, Biogenesis Complex. Nature Reviews Molecular Cell Biology, 14, 759-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mochida, K., Oikawa, Y., Kimura, Y., Kirisako, H., Hirano, H., Ohsumi, Y., et al. (2015) Receptor-Mediated Selective Autophagy Degrades the Endoplasmic Reticulum and the Nucleus. Nature, 522, 359-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Dikic, I. (2017) Proteasomal and Autophagic Degradation Systems. Annual Review of Biochemistry, 86, 193-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Khaminets, A., Heinrich, T., Mari, M., Grumati, P., Huebner, A.K., Akutsu, M., et al. (2015) Regulation of Endoplasmic Reticulum Turnover by Selective Autophagy. Nature, 522, 354-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Fumagalli, F., Noack, J., Bergmann, T.J., Cebollero, E., Pisoni, G.B., Fasana, E., et al. (2016) Translocon Component Sec62 Acts in Endoplasmic Reticulum Turnover during Stress Recovery. Nature Cell Biology, 18, 1173-1184. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Grumati, P., Morozzi, G., Hölper, S., Mari, M., Harwardt, M.I., Yan, R., et al. (2017) Full Length RTN3 Regulates Turnover of Tubular Endoplasmic Reticulum via Selective Autophagy. eLife, 6, e25555. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Smith, M.D., Harley, M.E., Kemp, A.J., Wills, J., Lee, M., Arends, M., et al. (2018) CCPG1 Is a Non-Canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Developmental Cell, 44, 217-232.e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, Q., Xiao, Y., Chai, P., Zheng, P., Teng, J. and Chen, J. (2019) ATL3 Is a Tubular ER-Phagy Receptor for Gabarap-Mediated Selective Autophagy. Current Biology, 29, 846-855.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pendin, D., McNew, J.A. and Daga, A. (2011) Balancing ER Dynamics: Shaping, Bending, Severing, and Mending Membranes. Current Opinion in Cell Biology, 23, 435-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, S., Tukachinsky, H., Romano, F.B. and Rapoport, T.A. (2016) Cooperation of the ER-Shaping Proteins Atlastin, Lunapark, and Reticulons to Generate a Tubular Membrane Network. eLife, 5, e18605. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lü, L., Niu, L. and Hu, J. (2020) “At Last In” the Physiological Roles of the Tubular ER Network. Biophysics Reports, 6, 105-114. [Google Scholar] [CrossRef]
|
|
[41]
|
Zhao, Y.G. and Zhang, H. (2018) Autophagosome Maturation: An Epic Journey from the ER to Lysosomes. Journal of Cell Biology, 218, 757-770. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, N., Zhao, H., Zhao, Y.G., Hu, J. and Zhang, H. (2021) Atlastin 2/3 Regulate ER Targeting of the ULK1 Complex to Initiate Autophagy. Journal of Cell Biology, 220, e202012091. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, J., Ahat, E. and Wang, Y. (2019) Golgi Structure and Function in Health, Stress, and Diseases. In: Kloc, M., Ed., The Golgi Apparatus and Centriole, Springer, 441-485. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Carlton, J.G., Jones, H. and Eggert, U.S. (2020) Membrane and Organelle Dynamics during Cell Division. Nature Reviews Molecular Cell Biology, 21, 151-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wong, Y.C., Kim, S., Peng, W. and Krainc, D. (2019) Regulation and Function of Mitochondria-Lysosome Membrane Contact Sites in Cellular Homeostasis. Trends in Cell Biology, 29, 500-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Stefano, G., Renna, L., Moss, T., McNew, J.A. and Brandizzi, F. (2011) In Arabidopsis, the Spatial and Dynamic Organization of the Endoplasmic Reticulum and Golgi Apparatus Is Influenced by the Integrity of the C‐Terminal Domain of RHD3, a Non‐Essential GTPases. The Plant Journal, 69, 957-966. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Namekawa, M., Muriel, M., Janer, A., Latouche, M., Dauphin, A., Debeir, T., et al. (2007) Mutations in the SPG3A Gene Encoding the GTPases Atlastin Interfere with Vesicle Trafficking in the ER/Golgi Interface and Golgi Morphogenesis. Molecular and Cellular Neuroscience, 35, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chen, J., Stefano, G., Brandizzi, F. and Zheng, H. (2011) Arabidopsis RHD3 Mediates the Generation of the Tubular ER Network and Is Required for Golgi Distribution and Motility in Plant Cells. Journal of Cell Science, 124, 2241-2252. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Rismanchi, N., Soderblom, C., Stadler, J., Zhu, P. and Blackstone, C. (2008) Atlastin GTPasess Are Required for Golgi Apparatus and ER Morphogenesis. Human Molecular Genetics, 17, 1591-1604. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Welte, M.A. and Gould, A.P. (2017) Lipid Droplet Functions Beyond Energy Storage. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1862, 1260-1272. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bosch, M., Parton, R.G. and Pol, A. (2020) Lipid Droplets, Bioenergetic Fluxes, and Metabolic Flexibility. Seminars in Cell & Developmental Biology, 108, 33-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Le Guillou, S., Laubier, J., Péchoux, C., Aujean, E., Castille, J., Leroux, C., et al. (2019) Defects of the Endoplasmic Reticulum and Changes to Lipid Droplet Size in Mammary Epithelial Cells Due to miR-30b-5p Overexpression Are Correlated to a Reduction in Atlastin 2 Expression. Biochemical and Biophysical Research Communications, 512, 283-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Matsunaga, K., Tsugami, Y., Kumai, A., Suzuki, T., Nishimura, T. and Kobayashi, K. (2018) IL-1β Directly Inhibits Milk Lipid Production in Lactating Mammary Epithelial Cells Concurrently with Enlargement of Cytoplasmic Lipid Droplets. Experimental Cell Research, 370, 365-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Klemm, R.W., Norton, J.P., Cole, R.A., Li, C.S., Park, S.H., Crane, M.M., et al. (2013) A Conserved Role for Atlastin GTPasess in Regulating Lipid Droplet Size. Cell Reports, 3, 1465-1475. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., et al. (2011) Differentiation of Mesenchymal Stem Cells Derived from Pancreatic Islets and Bone Marrow into Islet-Like Cell Phenotype. PLOS ONE, 6, e28175. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Lundbäck, V., Kulyté, A., Arner, P., Strawbridge, R.J. and Dahlman, I. (2020) Genome-Wide Association Study of Diabetogenic Adipose Morphology in the Genetics of Adipocyte Lipolysis (Genial) Cohort. Cells, 9, Article 1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Rivellese, F., Lobasso, A., Barbieri, L., Liccardo, B., de Paulis, A. and Rossi, F.W. (2019) Novel Therapeutic Approaches in Rheumatoid Arthritis: Role of Janus Kinases Inhibitors. Current Medicinal Chemistry, 26, 2823-2843. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Deane, K.D. and Holers, V.M. (2020) Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis & Rheumatology, 73, 181-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Liu, S., Wang, K., Li, J., Liu, Y., Zhang, Z. and Meng, D. (2022) MiR-30e-5p Deficiency Exerts an Inhibitory Effect on Inflammation in Rheumatoid Arthritis via Regulating Atl2 Expression. Archives of Rheumatology, 38, 119-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Smyth, E.C., Nilsson, M., Grabsch, H.I., van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. The Lancet, 396, 635-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zhong, S., Wang, J., Hou, J., Zhang, Q., Xu, H., Hu, J., et al. (2018) Circular RNA Hsa_circ_0000993 Inhibits Metastasis of Gastric Cancer Cells. Epigenomics, 10, 1301-1313. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yu, W., Jin, H. and Huang, Y. (2021) Mitochondria-Associated Membranes (MAMs): A Potential Therapeutic Target for Treating Alzheimer’s Disease. Clinical Science, 135, 109-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Han, J., Park, H., Maharana, C., Gwon, A., Park, J., Baek, S.H., et al. (2021) Alzheimer’s Disease-Causing Presenilin-1 Mutations Have Deleterious Effects on Mitochondrial Function. Theranostics, 11, 8855-8873. [Google Scholar] [CrossRef] [PubMed]
|