Atl2 (Atlastin-2)在细胞中的功能及其作用机制
The Function and Mechanism of Atlastin-2 (Atl2) in Cells
摘要: Atl2 (Atlastin-2)是一种重要的跨膜GTP酶,作为Atlastin蛋白家族成员之一,参与多种细胞生物学过程。研究表明Atl2与细胞器正常形态和功能的维持密切相关,例如内质网、高尔基体、脂滴等。本文综述了Atl2的结构及其生物学特性,重点阐述了Atl2在细胞膜融合、高尔基体形态稳定、内质网自噬调控和脂滴合成的作用,同时阐述了其在细胞器稳态及部分疾病中的作用。可见Atl2作为潜在治疗靶点是一个具有应用前景的研究方向,因此本文综述为进一步探索Atl2的功能与机制提供了较全面的研究基础和思路。
Abstract: Atlastin-2 (Atl2), a critical transmembrane GTPase and member of the Atlastin protein family, participates in diverse cellular biological processes. Studies indicate that Atl2 plays a crucial role in maintaining the morphology and function of organelles, including the endoplasmic reticulum, Golgi apparatus, and lipid droplets. This paper reviews the structure and biological characteristics of Atl2, with a focus on elucidating its roles in cell membrane fusion, Golgi apparatus morphology maintenance, endoplasmic reticulum autophagy regulation, and lipid droplet synthesis. It also discusses the function of Atl2 in organelle homeostasis and its involvement in certain diseases. This review provides a comprehensive foundation and conceptual framework for further exploration of Atl2’s functions and mechanisms.
文章引用:范泽彦, 苏磊, 宋静, 张浩平. Atl2 (Atlastin-2)在细胞中的功能及其作用机制[J]. 生物过程, 2025, 15(2): 136-143. https://doi.org/10.12677/bp.2025.152019

1. 前言

细胞主动调控膜形状,进而完成自身必须的生理功能,这一过程称为膜重塑过程(membrane remodeling),包括膜融合过程[1]、膜分裂(如线粒体分裂) [2]、内吞作用(如病毒入侵) [3]等。细胞膜重塑过程依赖于多种蛋白的共同作用,其中动力蛋白(dynamin)超家族通过水解GTP提供能量,广泛参与细胞膜重塑过程[4]。真核细胞中具有多种动力蛋白,例如经典的动力蛋白、动力蛋白样蛋白和Atlastin蛋白等[5]

Atl2 (Atlastin-2)是Atlastin家族的成员之一,由于其具有膜融合活性,使其在膜重塑过程及细胞器稳态过程的研究中备受关注[6]。本文将从其分子结构、膜融合活性及细胞器稳态等方面综述Atl2的生物学活性,总结Atl2在部分生物过程中发挥的作用。首先,我们阐述了Atl2在膜融合过程中的机制及作用;其次,重点描述了Atl2在细胞器膜稳态过程中的作用,包括内质网、高尔基体和脂滴等。之后,我们阐述了Atl2与多种疾病相关,例如肥胖、炎症、癌症及神经退行性疾病的关联。最后,我们展望了Atl2的研究前景。Atl2调控细胞膜重塑的机制研究有望为相关疾病的预防或治疗打下基础。

2. Atl2在膜融合过程中的作用

2.1. Atl2促进膜融合的机制

生物膜的融合均需要特定的融合蛋白,或通过融合蛋白驱动[7]。内质网膜融合过程在后生动物中由Atlastin蛋白介导[8],酵母中为Sey1p介导这一过程[9]。Atlastin蛋白与Sey1p均定位于内质网膜,并且均具有膜结合GTP酶活性[8]

Atl2 (Atlastin-2)作为内质网核心膜融合蛋白,其功能的多样性与其结构的独特性密不可分。Atl2 (Atlastin-2)有558个氨基酸,由序列相对保守的一个N端GTP酶结构域、三螺旋束结构域(3HB)和两个紧密间隔的跨膜(TM)片段以及一个位于细胞质的短α-螺旋C端尾部组成[7] [10]-[12]。此外N末端还具有可变结构域(NVD) [13]。GTP酶结构域通过柔性接头与三螺旋束结构域(3HB)连接,跨膜(TM)片段由两个类似于REEP蛋白中发夹环的膜内发夹环组成[14]。在人体中Atlastin蛋白有三种亚型Atl1、Atl2、Atl3,并且序列高度相似,具有62%~65%的总蛋白同源性[14] [15]。但N末端可变结构域和短α-螺旋C端尾部几乎没有序列相似性,这表明N末端可变结构域和短α-螺旋C端尾部是Atl1、Atl2、Atl3功能差异的来源[13]

Atl2的GTP酶结构域与GTP结合后形成二聚体,GTP的水解导致三螺旋束结构域的构象变化[11] [16]。C端尾部中的短α-螺旋通过扰动脂质双层来促进脂质混合[17] [18]。Atl2的跨膜结构域聚集在同一膜中,并可能形成膜内发夹[17] [19]。在主要表达Atl2的细胞中,重塑内质网膜需要通过跨膜结构域的存在[15]

膜融合机制对细胞生命活动具有基础性作用,包括神经递质释放、囊泡运输和胞吞/胞吐过程。深入研究Atl2等融合蛋白的工作机理,将有助于揭示细胞内物质运输的分子基础,为相关疾病治疗提供理论依据。本文将进一步系统解析Atl2在膜融合中的动态作用机制。

2.2. Atl2在膜融合过程中的作用

内质网形态高度动态,需要不断重塑其膜形态以调节内质网的大小和活性,进而维持细胞内的稳态[20] [21]。在真核生物中,内质网具有标志性的外周网状结构,内质网小管通过不断产生三向连接维持外周网状结构的动态平衡[7] [22] [23]。外周内质网小管通过膜融合过程不断生长和收缩,与膜融合过程密切相关[14] [24] [25]

在后生动物中,Atl2促进内质网膜融合,Atl2通过GTP依赖性的方式自主驱动膜融合过程[26]。同时,在果蝇中Atlastin可驱动脂质体融合,进而被认为是同型内质网融合所需要的最小结构[27]。在HEK293T细胞系中Atl2促进了内质网融合,Atl3几乎没有促进内质网融合,且Atl3的主要作用是促进Atl2的内质网融合而非直接促进内质网融合[27]。在Hela细胞中通过siRNA同时沉默Atl2、Atl3时,细胞中的内质网形态受到破坏,同时也发现高尔基体碎片化,膜融合活性受损[8]。在NIH-3T3细胞中也出现类似改变,三重敲除Atl1、2、3后,高尔基体也有轻微的碎片化[28]

Atl2通过膜融合过程维持内质网动态结构,也为其他细胞器结构例如高尔基体等细胞器稳态提供结构基础。Atl2的功能涉及多种细胞器,这提示我们其可能调控细胞整体的稳态。因此本文将进一步系统解析Atl2在内质网自噬、高尔基体分泌及脂滴代谢中的多维调控作用,揭示其跨疾病病理机制。

3. Atl2在细胞器稳态中的作用

3.1. Atl2在内质网稳态中的作用

细胞器的动态平衡是维持细胞稳态的核心基础,其中内质网(ER)作为蛋白质合成、脂质代谢及钙储存的核心场所,其形态与功能高度依赖膜融合蛋白的精密调控[15]。内质网可以通过自噬途径降解异常蛋白的过程称为“内质网自噬(ER-phagy)”[29] [30]。内质网自噬是指饥饿等条件下,部分内质网片段被自噬体吞噬并酸化降解的过程[31] [32]。几种内质网自噬受体已被证明可以通过LC3相互作用区(LIR)促进内质网自噬,包括FAM134B和CCPG等[33]-[37]

内质网主要通过Atlastin、REEPs和RTNs三种蛋白维持自身的形态,缺乏这些蛋白内质网形态会被破坏,但只有缺乏Atlastin家族中的Atl2会导致内质网自噬受到抑制,这表明ATL2是内质网自噬过程中的关键蛋白[15] [38] [39]。过表达FAM134B可以诱导内质网自噬以及ATL2蛋白水平的下降,并且在过表达FAM134的同时敲除细胞中的ATL2时,内质网自噬消失[15]

内质网自噬过程中重塑内质网膜并分离目的成分的过程极为重要[40]。Atl2蛋白N端的GTPase结构域,通过跨膜(TM)结构对内质网进行定位,可对内质网膜进行重塑,Atl2的表达量减少,内质网自噬也随之减少,同时自噬体和溶酶体聚集在核周围,内质网自噬进程受阻[15] [41]。此外,在HEK293T细胞中敲低Atl2和Atl3时,细胞的自噬启动过程也明显被延缓[42]

3.2. Atl2在高尔基体稳态中的作用

Atl2的在高尔基体形态维持方面也发挥重要作用。作为分泌通路的中心枢纽,高尔基体不仅需要对内质网合成的蛋白质、脂质进一步加工,还需要将其打包到囊泡结构中运送至不同的目的地,这需要高尔基体自身具有完整的膜结构进行正常的细胞过程[43]。高尔基体结构的完整性以及功能的稳定性对于细胞的稳态发挥至关重要[44] [45]

在植物及部分哺乳动物的细胞中均有研究,缺乏Atlastin蛋白的情况下高尔基体的功能和形态都会受到影响[46]-[48]。在Hela细胞中沉默Atl2或Atl3后,高尔基体的形态变得碎片化,并且同时沉默Atl2和Atl3时,高尔基体碎片化的程度增大[49]。在NIH-3T3细胞中也出现相似改变,三重敲除Atl1、Atl2、Atl3后,能观察到高尔基体的碎片化[28]

3.3. Atl2在脂滴合成中的作用

脂滴由单层的磷脂膜及中性脂质核心组成,中性脂质核心又由甘油三酯(TG)、胆固醇酯、视黄醇酯构成[50]。研究发现脂滴中的脂质不仅能满足细胞中供能的需求,对于细胞中信号转导也有不可或缺的作用,例如通过PI3K/Akt信号通路、AMPK通路影响脂质代谢[51]

在小鼠中,过表达miR-30b-5p可以导致Atl2的表达量降低,使得在小鼠泌乳细胞中内质网形态断裂影响正常的泌乳功能,进而形成较大脂滴[52]。在已有的研究中表明,炎症因子例如IL-1β、TNF-α等炎症因子的诱导也会产生较大的脂滴[53]。这提示我们Atl2可能影响炎症因子的水平进而影响脂滴的大小,但仍需后续的实验证明。有趣的是,在秀丽隐杆线虫及果蝇中有相反的结果,在缺失Atln-1 (哺乳动物Atlastin家族的同源蛋白)的条件下脂滴形态变小,并且内质网形态也发生显著变化[54]

Atl2通过参与ER-phagy、高尔基体稳态及脂滴代谢等过程参与细胞器稳态过程,这些过程均可能成为部分疾病的诱因,例如通过影响脂质代谢进而参与代谢性疾病;通过影响内质网及高尔基体形态参与神经退行性疾病。阐明Atl2稳态调控与疾病病理的关系,将为对应疾病的防治提供新思路新视野。因此本文将对Atl2相关疾病进一步综述。

4. Atl2在其他疾病中的作用

Atl2作为广泛参与内质网形态调控及膜融合过程的关键蛋白,其表达水平的变化已被证明与多种全身性疾病相关。在代谢性疾病中,Atl2通过维持脂肪细胞的稳定,防止脂肪细胞的异常肥大及脂滴的沉积,进而降低肥胖导致的胰岛素抵抗及二型糖尿病的可能[55]。同时,全基因组关联研究(GWAS)表明,Atl2是非酒精性脂肪肝的枢纽基因,可能通过影响脂肪组织形态结构,进而影响疾病的发展进程,但其直接作用机制仍需进一步验证[56]

代谢紊乱引发的慢性炎症及氧化应激可能成为其他疾病的诱因。类风湿关节炎(RA)是一种全身性自身免疫性疾病,易引起患者的关节僵硬、疲劳甚至残疾[57] [58]。在类风湿性关节炎(RA)中,Atl2通过充当miR-30e-5p的竞争性内源RNA (ceRNA),进而缓解滑膜成纤维细胞的异常增殖及炎症水平[59]。同样的现象在NIH-3T3和HEK293T细胞中也得到验证:敲低Atl家族蛋白(包括Atl2)显著降低细胞增殖速率,提示其在细胞增殖方面可能也具有一定作用[28]

除了蛋白本身的作用外,Atl2基因的外显子还可以生成具有生物学效应的非编码RNA。胃癌作为全球第五大常见癌症以及第三大癌症的死亡原因,研究者对于其机制的研究未停止[60] [61]。在胃癌中,来源于Atl2外显子3和外显子4的环状RNA hsa circ 0000993表现出显著的抑癌活性,在胃癌组织中表达量降低,过表达hsa circ 0000993可以抑制肿瘤细胞的迁移、侵袭及增殖,并且这一过程对其亲本基因Atl2无显著影响[62]

同样的基因多效性(pleiotropy)在神经退行性疾病中也有体现。阿尔茨海默病(AD)患者海马组织中Atl2的表达异常导致线粒体–内质网接触位点(MAMs)增多,进而诱导钙稳态失衡、线粒体氧化应激及能量代谢障碍等,加剧神经退行性变[63]。通过siRNA敲低Atl2可以缓解这一现象,恢复其表达后线粒体功能障碍得到恢复,这提示Atl2可能通过调控内质网进而稳定神经元稳态[64]

综上所述,Atl2在全身性疾病中具有多层次调控特点,可以作为miRNA海绵参与炎症调控;其基因衍生物(如环状RNA)可以参与癌症调控;其自身还可以参与细胞器互作进而维持细胞内代谢。现有的证据表明,Atl2表达水平与多种疾病呈现出显著相关性,未来的研究需要进一步探究Atl2对于其他疾病的作用机制,并探索其与miRNA、MAMs等节点的互作机制,从而为代谢异常、自身免疫、癌症及神经退行性疾病提供新的药物开发和疾病防控的新思路。

5. 总结与展望

Atl2也可能是部分疾病潜在的治疗靶点,对于Atl2的研究仍面临巨大挑战。在未来的研究中,应进一步关注Atl2在各种疾病中的影响,例如癌症、免疫疾病、炎症等,以进一步加深我们对于Atl2在疾病中的认识。

综上所述,这些研究对于探索Atl2在细胞中的功能及其作用机制提供了新的研究思路,深入解析ATL2的功能,不仅有助于揭示细胞生物学的基本机制,还将为Atl2作为内质网膜融合的核心蛋白,通过GTP依赖性的构象变化驱动内质网膜重塑过程,其结构的特殊性(如N端可变域及C端尾部)使得其拥有多种细胞器形态调控的特性,例如内质网自噬、高尔基体形态稳定及脂滴大小的调控。这种功能的多样性使其成为多种全身性疾病的关键调控因子,例如胰岛素抵抗、肥胖症、非酒精性脂肪肝、风湿性关节炎、胃癌及阿尔茨海默病等。但现有关于Atl2的研究仍具有局限性,例如Atl2对多种疾病的深层作用机制仍有待研究;Atl2促进膜融合动态过程的可视化技术仍有待突破;Atl2在不同物种间(例如果蝇与线虫脂滴调控的差异)进化机制有待研究;以及在不同疾病中表达量变化对疾病的影响(如高水平的Atl2缓解炎症、癌症、代谢性疾病,但促进阿尔茨海默病的进展)。

未来的研究应该聚焦于以上对于Atl2研究的局限性,通过前沿生物学技术推动对于Atl2的研究。这些研究将推动Atl2从基础生物学机制向精准医疗方法的转化,为部分疾病治疗提供革新性策略。相关疾病的治疗策略提供新的方向。

参考文献

[1] Wang, Y., Li, L., Hou, C., Lai, Y., Long, J., Liu, J., et al. (2016) Snare-Mediated Membrane Fusion in Autophagy. Seminars in Cell & Developmental Biology, 60, 97-104.
https://doi.org/10.1016/j.semcdb.2016.07.009
[2] Tábara, L., Segawa, M. and Prudent, J. (2024) Molecular Mechanisms of Mitochondrial Dynamics. Nature Reviews Molecular Cell Biology, 26, 123-146.
https://doi.org/10.1038/s41580-024-00785-1
[3] Daumke, O. and Unger, V.M. (2016) Protein-Mediated Membrane Remodeling. Journal of Structural Biology, 196, 1-2.
https://doi.org/10.1016/j.jsb.2016.09.002
[4] Ramachandran, R. and Schmid, S.L. (2018) The Dynamin Superfamily. Current Biology, 28, R411-R416.
https://doi.org/10.1016/j.cub.2017.12.013
[5] Praefcke, G.J.K. and McMahon, H.T. (2004) The Dynamin Superfamily: Universal Membrane Tubulation and Fission Molecules? Nature Reviews Molecular Cell Biology, 5, 133-147.
https://doi.org/10.1038/nrm1313
[6] Pletan, M., Liu, X., Cha, G., Chen, Y., Knupp, J. and Tsai, B. (2023) The Atlastin ER Morphogenic Proteins Promote Formation of a Membrane Penetration Site during Non-Enveloped Virus Entry. Journal of Virology, 97, e00756-23.
https://doi.org/10.1128/jvi.00756-23
[7] Moss, T.J., Daga, A. and McNew, J.A. (2011) Fusing a Lasting Relationship between ER Tubules. Trends in Cell Biology, 21, 416-423.
https://doi.org/10.1016/j.tcb.2011.03.009
[8] Hu, J., Shibata, Y., Zhu, P., Voss, C., Rismanchi, N., Prinz, W.A., et al. (2009) A Class of Dynamin-Like GTPases Involved in the Generation of the Tubular ER Network. Cell, 138, 549-561.
https://doi.org/10.1016/j.cell.2009.05.025
[9] Anwar, K., Klemm, R.W., Condon, A., Severin, K.N., Zhang, M., Ghirlando, R., et al. (2012) The Dynamin-Like GTPases Sey1p Mediates Homotypic ER Fusion in s. Cerevisiae. Journal of Cell Biology, 197, 209-217.
https://doi.org/10.1083/jcb.201111115
[10] Bian, X., Klemm, R.W., Liu, T.Y., Zhang, M., Sun, S., Sui, X., et al. (2011) Structures of the Atlastin GTPases Provide Insight into Homotypic Fusion of Endoplasmic Reticulum Membranes. Proceedings of the National Academy of Sciences of the United States of America, 108, 3976-3981.
https://doi.org/10.1073/pnas.1101643108
[11] Byrnes, L.J. and Sondermann, H. (2011) Structural Basis for the Nucleotide-Dependent Dimerization of the Large G Protein Atlastin-1/SPG3A. Proceedings of the National Academy of Sciences of the United States of America, 108, 2216-2221.
https://doi.org/10.1073/pnas.1012792108
[12] Crosby, D., Mikolaj, M.R., Nyenhuis, S.B., Bryce, S., Hinshaw, J.E. and Lee, T.H. (2021) Reconstitution of Human Atlastin Fusion Activity Reveals Autoinhibition by the C Terminus. Journal of Cell Biology, 221, e202107070.
https://doi.org/10.1083/jcb.202107070
[13] Neufeldt, C.J., Cortese, M., Scaturro, P., Cerikan, B., Wideman, J.G., Tabata, K., et al. (2019) ER-Shaping Atlastin Proteins Act as Central Hubs to Promote Flavivirus Replication and Virion Assembly. Nature Microbiology, 4, 2416-2429.
https://doi.org/10.1038/s41564-019-0586-3
[14] McNew, J.A., Sondermann, H., Lee, T., Stern, M. and Brandizzi, F. (2013) GTP-Dependent Membrane Fusion. Annual Review of Cell and Developmental Biology, 29, 529-550.
https://doi.org/10.1146/annurev-cellbio-101512-122328
[15] Liang, J.R., Lingeman, E., Ahmed, S. and Corn, J.E. (2018) Atlastins Remodel the Endoplasmic Reticulum for Selective Autophagy. Journal of Cell Biology, 217, 3354-3367.
https://doi.org/10.1083/jcb.201804185
[16] Byrnes, L.J., Singh, A., Szeto, K., Benvin, N.M., O’Donnell, J.P., Zipfel, W.R., et al. (2013) Structural Basis for Conformational Switching and GTP Loading of the Large G Protein Atlastin. The EMBO Journal, 32, 369-384.
https://doi.org/10.1038/emboj.2012.353
[17] Liu, T.Y., Bian, X., Sun, S., Hu, X., Klemm, R.W., Prinz, W.A., et al. (2012) Lipid Interaction of the C Terminus and Association of the Transmembrane Segments Facilitate Atlastin-Mediated Homotypic Endoplasmic Reticulum Fusion. Proceedings of the National Academy of Sciences of the United States of America, 109, E2146-E2154.
https://doi.org/10.1073/pnas.1208385109
[18] Faust, J.E., Desai, T., Verma, A., Ulengin, I., Sun, T., Moss, T.J., et al. (2015) The Atlastin C-Terminal Tail Is an Amphipathic Helix That Perturbs the Bilayer Structure during Endoplasmic Reticulum Homotypic Fusion. Journal of Biological Chemistry, 290, 4772-4783.
https://doi.org/10.1074/jbc.m114.601823
[19] Betancourt-Solis, M.A., Desai, T. and McNew, J.A. (2018) The Atlastin Membrane Anchor Forms an Intramembrane Hairpin That Does Not Span the Phospholipid Bilayer. Journal of Biological Chemistry, 293, 18514-18524.
https://doi.org/10.1074/jbc.ra118.003812
[20] Wiseman, R.L., Mesgarzadeh, J.S. and Hendershot, L.M. (2022) Reshaping Endoplasmic Reticulum Quality Control through the Unfolded Protein Response. Molecular Cell, 82, 1477-1491.
https://doi.org/10.1016/j.molcel.2022.03.025
[21] Foronda, H., Fu, Y., Covarrubias-Pinto, A., Bocker, H.T., González, A., Seemann, E., et al. (2023) Heteromeric Clusters of Ubiquitinated ER-Shaping Proteins Drive ER-Phagy. Nature, 618, 402-410.
https://doi.org/10.1038/s41586-023-06090-9
[22] Shibata, Y., Voeltz, G.K. and Rapoport, T.A. (2006) Rough Sheets and Smooth Tubules. Cell, 126, 435-439.
https://doi.org/10.1016/j.cell.2006.07.019
[23] Baumann, O. and Walz, B. (2001) Endoplasmic Reticulum of Animal Cells and Its Organization into Structural and Functional Domains. International Review of Cytology, 205, 149-214.
https://doi.org/10.1016/s0074-7696(01)05004-5
[24] Friedman, J.R. and Voeltz, G.K. (2011) The ER in 3D: A Multifunctional Dynamic Membrane Network. Trends in Cell Biology, 21, 709-717.
https://doi.org/10.1016/j.tcb.2011.07.004
[25] Friedman, J.R., Webster, B.M., Mastronarde, D.N., Verhey, K.J. and Voeltz, G.K. (2010) ER Sliding Dynamics and Er–mitochondrial Contacts Occur on Acetylated Microtubules. Journal of Cell Biology, 190, 363-375.
https://doi.org/10.1083/jcb.200911024
[26] Orso, G., Pendin, D., Liu, S., Tosetto, J., Moss, T.J., Faust, J.E., et al. (2009) Homotypic Fusion of ER Membranes Requires the Dynamin-Like GTPases Atlastin. Nature, 460, 978-983.
https://doi.org/10.1038/nature08280
[27] Jang, E., Moon, Y., Yoon, S.Y., Diaz, J.A.R., Lee, M., Ko, N., et al. (2023) Human Atlastins Are Sufficient to Drive the Fusion of Liposomes with a Physiological Lipid Composition. Journal of Cell Biology, 222, e202109090.
https://doi.org/10.1083/jcb.202109090
[28] Zhao, G., Zhu, P., Renvoisé, B., Maldonado-Báez, L., Park, S.H. and Blackstone, C. (2016) Mammalian Knock Out Cells Reveal Prominent Roles for Atlastin GTPasess in ER Network Morphology. Experimental Cell Research, 349, 32-44.
https://doi.org/10.1016/j.yexcr.2016.09.015
[29] Jiang, X., Wang, X., Ding, X., Du, M., Li, B., Weng, X., et al. (2020) fam 134B Oligomerization Drives Endoplasmic Reticulum Membrane Scission for ER‐Phagy. The EMBO Journal, 39, e102608.
https://doi.org/10.15252/embj.2019102608
[30] Lamb, C.A., Yoshimori, T. and Tooze, S.A. (2013) The Autophagosome: Origins Unknown, Biogenesis Complex. Nature Reviews Molecular Cell Biology, 14, 759-774.
https://doi.org/10.1038/nrm3696
[31] Mochida, K., Oikawa, Y., Kimura, Y., Kirisako, H., Hirano, H., Ohsumi, Y., et al. (2015) Receptor-Mediated Selective Autophagy Degrades the Endoplasmic Reticulum and the Nucleus. Nature, 522, 359-362.
https://doi.org/10.1038/nature14506
[32] Dikic, I. (2017) Proteasomal and Autophagic Degradation Systems. Annual Review of Biochemistry, 86, 193-224.
https://doi.org/10.1146/annurev-biochem-061516-044908
[33] Khaminets, A., Heinrich, T., Mari, M., Grumati, P., Huebner, A.K., Akutsu, M., et al. (2015) Regulation of Endoplasmic Reticulum Turnover by Selective Autophagy. Nature, 522, 354-358.
https://doi.org/10.1038/nature14498
[34] Fumagalli, F., Noack, J., Bergmann, T.J., Cebollero, E., Pisoni, G.B., Fasana, E., et al. (2016) Translocon Component Sec62 Acts in Endoplasmic Reticulum Turnover during Stress Recovery. Nature Cell Biology, 18, 1173-1184.
https://doi.org/10.1038/ncb3423
[35] Grumati, P., Morozzi, G., Hölper, S., Mari, M., Harwardt, M.I., Yan, R., et al. (2017) Full Length RTN3 Regulates Turnover of Tubular Endoplasmic Reticulum via Selective Autophagy. eLife, 6, e25555.
https://doi.org/10.7554/elife.25555
[36] Smith, M.D., Harley, M.E., Kemp, A.J., Wills, J., Lee, M., Arends, M., et al. (2018) CCPG1 Is a Non-Canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Developmental Cell, 44, 217-232.e11.
https://doi.org/10.1016/j.devcel.2017.11.024
[37] Chen, Q., Xiao, Y., Chai, P., Zheng, P., Teng, J. and Chen, J. (2019) ATL3 Is a Tubular ER-Phagy Receptor for Gabarap-Mediated Selective Autophagy. Current Biology, 29, 846-855.e6.
https://doi.org/10.1016/j.cub.2019.01.041
[38] Pendin, D., McNew, J.A. and Daga, A. (2011) Balancing ER Dynamics: Shaping, Bending, Severing, and Mending Membranes. Current Opinion in Cell Biology, 23, 435-442.
https://doi.org/10.1016/j.ceb.2011.04.007
[39] Wang, S., Tukachinsky, H., Romano, F.B. and Rapoport, T.A. (2016) Cooperation of the ER-Shaping Proteins Atlastin, Lunapark, and Reticulons to Generate a Tubular Membrane Network. eLife, 5, e18605.
https://doi.org/10.7554/elife.18605
[40] Lü, L., Niu, L. and Hu, J. (2020) “At Last In” the Physiological Roles of the Tubular ER Network. Biophysics Reports, 6, 105-114.
https://doi.org/10.1007/s41048-020-00113-y
[41] Zhao, Y.G. and Zhang, H. (2018) Autophagosome Maturation: An Epic Journey from the ER to Lysosomes. Journal of Cell Biology, 218, 757-770.
https://doi.org/10.1083/jcb.201810099
[42] Liu, N., Zhao, H., Zhao, Y.G., Hu, J. and Zhang, H. (2021) Atlastin 2/3 Regulate ER Targeting of the ULK1 Complex to Initiate Autophagy. Journal of Cell Biology, 220, e202012091.
https://doi.org/10.1083/jcb.202012091
[43] Li, J., Ahat, E. and Wang, Y. (2019) Golgi Structure and Function in Health, Stress, and Diseases. In: Kloc, M., Ed., The Golgi Apparatus and Centriole, Springer, 441-485.
https://doi.org/10.1007/978-3-030-23173-6_19
[44] Carlton, J.G., Jones, H. and Eggert, U.S. (2020) Membrane and Organelle Dynamics during Cell Division. Nature Reviews Molecular Cell Biology, 21, 151-166.
https://doi.org/10.1038/s41580-019-0208-1
[45] Wong, Y.C., Kim, S., Peng, W. and Krainc, D. (2019) Regulation and Function of Mitochondria-Lysosome Membrane Contact Sites in Cellular Homeostasis. Trends in Cell Biology, 29, 500-513.
https://doi.org/10.1016/j.tcb.2019.02.004
[46] Stefano, G., Renna, L., Moss, T., McNew, J.A. and Brandizzi, F. (2011) In Arabidopsis, the Spatial and Dynamic Organization of the Endoplasmic Reticulum and Golgi Apparatus Is Influenced by the Integrity of the C‐Terminal Domain of RHD3, a Non‐Essential GTPases. The Plant Journal, 69, 957-966.
https://doi.org/10.1111/j.1365-313x.2011.04846.x
[47] Namekawa, M., Muriel, M., Janer, A., Latouche, M., Dauphin, A., Debeir, T., et al. (2007) Mutations in the SPG3A Gene Encoding the GTPases Atlastin Interfere with Vesicle Trafficking in the ER/Golgi Interface and Golgi Morphogenesis. Molecular and Cellular Neuroscience, 35, 1-13.
https://doi.org/10.1016/j.mcn.2007.01.012
[48] Chen, J., Stefano, G., Brandizzi, F. and Zheng, H. (2011) Arabidopsis RHD3 Mediates the Generation of the Tubular ER Network and Is Required for Golgi Distribution and Motility in Plant Cells. Journal of Cell Science, 124, 2241-2252.
https://doi.org/10.1242/jcs.084624
[49] Rismanchi, N., Soderblom, C., Stadler, J., Zhu, P. and Blackstone, C. (2008) Atlastin GTPasess Are Required for Golgi Apparatus and ER Morphogenesis. Human Molecular Genetics, 17, 1591-1604.
https://doi.org/10.1093/hmg/ddn046
[50] Welte, M.A. and Gould, A.P. (2017) Lipid Droplet Functions Beyond Energy Storage. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1862, 1260-1272.
https://doi.org/10.1016/j.bbalip.2017.07.006
[51] Bosch, M., Parton, R.G. and Pol, A. (2020) Lipid Droplets, Bioenergetic Fluxes, and Metabolic Flexibility. Seminars in Cell & Developmental Biology, 108, 33-46.
https://doi.org/10.1016/j.semcdb.2020.02.010
[52] Le Guillou, S., Laubier, J., Péchoux, C., Aujean, E., Castille, J., Leroux, C., et al. (2019) Defects of the Endoplasmic Reticulum and Changes to Lipid Droplet Size in Mammary Epithelial Cells Due to miR-30b-5p Overexpression Are Correlated to a Reduction in Atlastin 2 Expression. Biochemical and Biophysical Research Communications, 512, 283-288.
https://doi.org/10.1016/j.bbrc.2019.03.022
[53] Matsunaga, K., Tsugami, Y., Kumai, A., Suzuki, T., Nishimura, T. and Kobayashi, K. (2018) IL-1β Directly Inhibits Milk Lipid Production in Lactating Mammary Epithelial Cells Concurrently with Enlargement of Cytoplasmic Lipid Droplets. Experimental Cell Research, 370, 365-372.
https://doi.org/10.1016/j.yexcr.2018.06.038
[54] Klemm, R.W., Norton, J.P., Cole, R.A., Li, C.S., Park, S.H., Crane, M.M., et al. (2013) A Conserved Role for Atlastin GTPasess in Regulating Lipid Droplet Size. Cell Reports, 3, 1465-1475.
https://doi.org/10.1016/j.celrep.2013.04.015
[55] Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., et al. (2011) Differentiation of Mesenchymal Stem Cells Derived from Pancreatic Islets and Bone Marrow into Islet-Like Cell Phenotype. PLOS ONE, 6, e28175.
https://doi.org/10.1371/journal.pone.0028175
[56] Lundbäck, V., Kulyté, A., Arner, P., Strawbridge, R.J. and Dahlman, I. (2020) Genome-Wide Association Study of Diabetogenic Adipose Morphology in the Genetics of Adipocyte Lipolysis (Genial) Cohort. Cells, 9, Article 1085.
https://doi.org/10.3390/cells9051085
[57] Rivellese, F., Lobasso, A., Barbieri, L., Liccardo, B., de Paulis, A. and Rossi, F.W. (2019) Novel Therapeutic Approaches in Rheumatoid Arthritis: Role of Janus Kinases Inhibitors. Current Medicinal Chemistry, 26, 2823-2843.
https://doi.org/10.2174/0929867325666180209145243
[58] Deane, K.D. and Holers, V.M. (2020) Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis & Rheumatology, 73, 181-193.
https://doi.org/10.1002/art.41417
[59] Liu, S., Wang, K., Li, J., Liu, Y., Zhang, Z. and Meng, D. (2022) MiR-30e-5p Deficiency Exerts an Inhibitory Effect on Inflammation in Rheumatoid Arthritis via Regulating Atl2 Expression. Archives of Rheumatology, 38, 119-128.
https://doi.org/10.46497/archrheumatol.2023.9526
[60] Smyth, E.C., Nilsson, M., Grabsch, H.I., van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. The Lancet, 396, 635-648.
https://doi.org/10.1016/s0140-6736(20)31288-5
[61] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[62] Zhong, S., Wang, J., Hou, J., Zhang, Q., Xu, H., Hu, J., et al. (2018) Circular RNA Hsa_circ_0000993 Inhibits Metastasis of Gastric Cancer Cells. Epigenomics, 10, 1301-1313.
https://doi.org/10.2217/epi-2017-0173
[63] Yu, W., Jin, H. and Huang, Y. (2021) Mitochondria-Associated Membranes (MAMs): A Potential Therapeutic Target for Treating Alzheimer’s Disease. Clinical Science, 135, 109-126.
https://doi.org/10.1042/cs20200844
[64] Han, J., Park, H., Maharana, C., Gwon, A., Park, J., Baek, S.H., et al. (2021) Alzheimer’s Disease-Causing Presenilin-1 Mutations Have Deleterious Effects on Mitochondrial Function. Theranostics, 11, 8855-8873.
https://doi.org/10.7150/thno.59776