[1]
|
Medzhitov, R. (2008) Origin and Physiological Roles of Inflammation. Nature, 454, 428-435. https://doi.org/10.1038/nature07201
|
[2]
|
Urbańska, J., Karewicz, A. and Nowakowska, M. (2014) Polymeric Delivery Systems for Dexamethasone. Life Sciences, 96, 1-6. https://doi.org/10.1016/j.lfs.2013.12.020
|
[3]
|
Roubille, C., Richer, V., Starnino, T., McCourt, C., McFarlane, A., Fleming, P., et al. (2015) The Effects of Tumour Necrosis Factor Inhibitors, Methotrexate, Non-Steroidal Anti-Inflammatory Drugs and Corticosteroids on Cardiovascular Events in Rheumatoid Arthritis, Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-Analysis. Annals of the Rheumatic Diseases, 74, 480-489. https://doi.org/10.1136/annrheumdis-2014-206624
|
[4]
|
Bacchi, S., Palumbo, P., Sponta, A. and Coppolino, M.F. (2012) Clinical Pharmacology of Non-Steroidal Anti-Inflammatory Drugs: A Review. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 11, 52-64. https://doi.org/10.2174/187152312803476255
|
[5]
|
Klomjit, N. and Ungprasert, P. (2022) Acute Kidney Injury Associated with Non-Steroidal Anti-Inflammatory Drugs. European Journal of Internal Medicine, 101, 21-28. https://doi.org/10.1016/j.ejim.2022.05.003
|
[6]
|
Su, Q., Hao, X., Chen, Z., Li, H., Wei, M. and Zuo, Z. (2023) Small-Molecule Drugs in Immunotherapy. Mini-Reviews in Medicinal Chemistry, 23, 1341-1359. https://doi.org/10.2174/1389557522666220930154527
|
[7]
|
Yu, H., Lee, H., Herrmann, A., Buettner, R. and Jove, R. (2014) Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746. https://doi.org/10.1038/nrc3818
|
[8]
|
Ihle, J.N., Witthuhn, B.A., Quelle, F.W., Yamamoto, K., Thierfelder, W.E., Kreider, B., et al. (1994) Signaling by the Cytokine Receptor Superfamily: JAKs and STATs. Trends in Biochemical Sciences, 19, 222-227. https://doi.org/10.1016/0968-0004(94)90026-4
|
[9]
|
Fayand, A., Hentgen, V., Posseme, C., Lacout, C., Picard, C., Moguelet, P., et al. (2023) Successful Treatment of JAK1-Associated Inflammatory Disease. Journal of Allergy and Clinical Immunology, 152, 972-983. https://doi.org/10.1016/j.jaci.2023.06.004
|
[10]
|
Morris, R., Kershaw, N.J. and Babon, J.J. (2018) The Molecular Details of Cytokine Signaling via the JAK/STAT Pathway. Protein Science, 27, 1984-2009. https://doi.org/10.1002/pro.3519
|
[11]
|
Ernest-Suarez, K. and Panaccione, R. (2023) Update on the Role of Upadacitinib in the Treatment of Adults with Moderately to Severely Active Ulcerative Colitis. Therapeutic Advances in Gastroenterology, 16, 1-18. https://doi.org/10.1177/17562848231158235
|
[12]
|
Duggan, S. and Keam, S.J. (2019) Upadacitinib: First Approval. Drugs, 79, 1819-1828. https://doi.org/10.1007/s40265-019-01211-z
|
[13]
|
Navarro-Triviño, F., Alcantara-Luna, S., Domínguez-Cruz, J., Galán-Gutiérrez, M., Ruiz-Villaverde, R., Pereyra-Rodriguez, J., et al. (2023) Upadacitinib for Moderate to Severe Atopic Dermatitis. Immunotherapy, 15, 799-808. https://doi.org/10.2217/imt-2023-0037
|
[14]
|
Ahn, S.H., Lee, Y., Lim, D.S., Cho, W., Gwon, H.J., Abd El-Aty, A.M., et al. (2024) Upadacitinib Counteracts Hepatic Lipid Deposition via the Repression of JAK1/STAT3 Signaling and AMPK/Autophagy-Mediated Suppression of ER Stress. Biochemical and Biophysical Research Communications, 735, Article ID: 150829. https://doi.org/10.1016/j.bbrc.2024.150829
|
[15]
|
Yang, Y., Liu, Y., Li, X., Zeng, Y., He, W. and Zhou, J. (2024) Uncovering the Therapeutic Target and Molecular Mechanism of Upadacitinib on Sjogren’s Syndrome. Biomedical Engineering and Computational Biology, 15, 1-6. https://doi.org/10.1177/11795972241293519
|
[16]
|
Ahmad, A., Zaheer, M. and Balis, F.J. (2024) StatPearls. StatPearls Publishing.
|
[17]
|
Dougados, M., van der Heijde, D., Chen, Y., Greenwald, M., Drescher, E., Liu, J., et al. (2017) Baricitinib in Patients with Inadequate Response or Intolerance to Conventional Synthetic DMARDs: Results from the RA-BUILD Study. Annals of the Rheumatic Diseases, 76, 88-95. https://doi.org/10.1136/annrheumdis-2016-210094
|
[18]
|
King, B., Ohyama, M., Kwon, O., Zlotogorski, A., Ko, J., Mesinkovska, N.A., et al. (2022) Two Phase 3 Trials of Baricitinib for Alopecia Areata. New England Journal of Medicine, 386, 1687-1699. https://doi.org/10.1056/nejmoa2110343
|
[19]
|
Wittmer, A., De Jong, K., Bolish, L. and Finklea, L. (2024) Therapeutic Response of Alopecia Areata‐Associated Nail Changes to Baricitinib. Case Reports in Dermatological Medicine, 2024, Article ID: 8879884. https://doi.org/10.1155/2024/8879884
|
[20]
|
Palasik, B.N. and Wang, H. (2020) Tofacitinib, the First Oral Janus Kinase Inhibitor Approved for Adult Ulcerative Colitis. Journal of Pharmacy Practice, 34, 913-921. https://doi.org/10.1177/0897190020953019
|
[21]
|
Sandborn, W.J., Panés, J., D’Haens, G.R., Sands, B.E., Su, C., Moscariello, M., et al. (2019) Safety of Tofacitinib for Treatment of Ulcerative Colitis, Based on 4.4 Years of Data from Global Clinical Trials. Clinical Gastroenterology and Hepatology, 17, 1541-1550. https://doi.org/10.1016/j.cgh.2018.11.035
|
[22]
|
Lethen, I., Lechner-Grimm, K., Gabel, M., Knauss, A., Atreya, R., Neurath, M.F., et al. (2023) Tofacitinib Affects M1-Like and M2-Like Polarization and Tissue Factor Expression in Macrophages of Healthy Donors and IBD Patients. Inflammatory Bowel Diseases, 30, 1151-1163. https://doi.org/10.1093/ibd/izad290
|
[23]
|
Alhayali, M. (2024) Successful Treatment of Refractory Synovitis, Acne, Pustulosis, Hyperostosis, and Osteitis (SAPHO) Syndrome with Tofacitinib: A Case Report. Cureus, 16, e66169. https://doi.org/10.7759/cureus.66169
|
[24]
|
Takeda, K. and Akira, S. (2015) Toll‐Like Receptors. Current Protocols in Immunology, 109, 14.12.1-14.12.10. https://doi.org/10.1002/0471142735.im1412s109
|
[25]
|
Akira, S. and Takeda, K. (2004) Toll-Like Receptor Signalling. Nature Reviews Immunology, 4, 499-511. https://doi.org/10.1038/nri1391
|
[26]
|
Zandi, Z., Kashani, B., Poursani, E.M., Bashash, D., Kabuli, M., Momeny, M., et al. (2019) TLR4 Blockade Using TAK-242 Suppresses Ovarian and Breast Cancer Cells Invasion through the Inhibition of Extracellular Matrix Degradation and Epithelial-Mesenchymal Transition. European Journal of Pharmacology, 853, 256-263. https://doi.org/10.1016/j.ejphar.2019.03.046
|
[27]
|
Yamada, M., Ichikawa, T., Yamano, T., Kikumoto, F., Nishikimi, Y., Tamura, N., et al. (2006) Optically Active Cyclohexene Derivative as a New Antisepsis Agent: An Efficient Synthesis of Ethyl (6R)-6-[N-(2-Chloro-4-Fluorophenyl)sulfamoyl]cyclohex-1-Ene-1-Carboxylate (TAK-242). Chemical and Pharmaceutical Bulletin, 54, 58-62. https://doi.org/10.1248/cpb.54.58
|
[28]
|
Ii, M., Matsunaga, N., Hazeki, K., Nakamura, K., Takashima, K., Seya, T., et al. (2006) A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-Fluorophenyl)sulfamoyl]cyclohex-1-Ene-1-Carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling. Molecular Pharmacology, 69, 1288-1295. https://doi.org/10.1124/mol.105.019695
|
[29]
|
Rice, T.W., Wheeler, A.P., Bernard, G.R., Vincent, J., Angus, D.C., Aikawa, N., et al. (2010) A Randomized, Double-Blind, Placebo-Controlled Trial of TAK-242 for the Treatment of Severe Sepsis. Critical Care Medicine, 38, 1685-1694. https://doi.org/10.1097/ccm.0b013e3181e7c5c9
|
[30]
|
Liu, Z., Yang, K., Deng, T. and Peng, P. (2021) Protective Effect of TAK242 Blocking Toll-Like Receptor 4 Pathway on Septic Myocardial Injury and Cardiac Dysfunction. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 33, 1226-1231.
|
[31]
|
Feng, Y., Ju, Y., Wu, Q., Sun, G. and Yan, Z. (2023) TAK-242, a Toll-Like Receptor 4 Antagonist, against Brain Injury by Alleviates Autophagy and Inflammation in Rats. Open Life Sciences, 18, Article ID: 20220662. https://doi.org/10.1515/biol-2022-0662
|
[32]
|
Engelmann, C., Sheikh, M., Sharma, S., Kondo, T., Loeffler-Wirth, H., Zheng, Y.B., et al. (2020) Toll-Like Receptor 4 Is a Therapeutic Target for Prevention and Treatment of Liver Failure. Journal of Hepatology, 73, 102-112. https://doi.org/10.1016/j.jhep.2020.01.011
|
[33]
|
Wang, X., Zhang, Y., Peng, Y., Hutchinson, M.R., Rice, K.C., Yin, H., et al. (2016) Pharmacological Characterization of the Opioid Inactive Isomers (+)‐Naltrexone and (+)‐Naloxone as Antagonists of Toll‐Like Receptor 4. British Journal of Pharmacology, 173, 856-869. https://doi.org/10.1111/bph.13394
|
[34]
|
Hummig, W., Baggio, D.F., Lopes, R.V., dos Santos, S.M.D., Ferreira, L.E.N. and Chichorro, J.G. (2023) Antinociceptive Effect of Ultra-Low Dose Naltrexone in a Pre-Clinical Model of Postoperative Orofacial Pain. Brain Research, 1798, Article ID: 148154. https://doi.org/10.1016/j.brainres.2022.148154
|
[35]
|
Robertson, S.A., Hutchinson, M.R., Rice, K.C., Chin, P., Moldenhauer, L.M., Stark, M.J., et al. (2020) Targeting Toll‐like Receptor‐4 to Tackle Preterm Birth and Fetal Inflammatory Injury. Clinical & Translational Immunology, 9, e1121. https://doi.org/10.1002/cti2.1121
|
[36]
|
Romerio, A. and Peri, F. (2020) Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Frontiers in Immunology, 11, Article No. 1210. https://doi.org/10.3389/fimmu.2020.01210
|
[37]
|
Sacre, S.M., Andreakos, E., Kiriakidis, S., Amjadi, P., Lundberg, A., Giddins, G., et al. (2007) The Toll-Like Receptor Adaptor Proteins MyD88 and Mal/TIRAP Contribute to the Inflammatory and Destructive Processes in a Human Model of Rheumatoid Arthritis. The American Journal of Pathology, 170, 518-525. https://doi.org/10.2353/ajpath.2007.060657
|
[38]
|
Ramirez-Perez, S., Vekariya, R., Gautam, S., Reyes-Perez, I.V., Drissi, H. and Bhattaram, P. (2023) MyD88 Dimerization Inhibitor ST2825 Targets the Aggressiveness of Synovial Fibroblasts in Rheumatoid Arthritis Patients. Arthritis Research & Therapy, 25, Article No. 180. https://doi.org/10.1186/s13075-023-03145-0
|
[39]
|
Xie, L., Jiang, F., Zhang, L., He, W., Liu, J., Li, M., et al. (2015) Targeting of MyD88 Homodimerization by Novel Synthetic Inhibitor TJ-M2010-5 in Preventing Colitis-Associated Colorectal Cancer. Journal of the National Cancer Institute, 108, djv364. https://doi.org/10.1093/jnci/djv364
|
[40]
|
Ding, Z., Du, D., Yang, Y., Yang, M., Miao, Y., Zou, Z., et al. (2019) Short-Term Use of MyD88 Inhibitor TJ-M2010-5 Prevents D-Galactosamine/Lipopolysaccharide-Induced Acute Liver Injury in Mice. International Immunopharmacology, 67, 356-365. https://doi.org/10.1016/j.intimp.2018.11.051
|
[41]
|
Liu, H., Ji, M., Bi, Y., Xiao, P., Zhao, J., Gou, J., et al. (2023) Integration of MyD88 Inhibitor into Mesoporous Cerium Oxide Nanozymes-Based Targeted Delivery Platform for Enhancing Treatment of Ulcerative Colitis. Journal of Controlled Release, 361, 493-509. https://doi.org/10.1016/j.jconrel.2023.08.015
|
[42]
|
Newton, R. and Holden, N.S. (2007) Separating Transrepression and Transactivation: A Distressing Divorce for the Glucocorticoid Receptor? Molecular Pharmacology, 72, 799-809. https://doi.org/10.1124/mol.107.038794
|
[43]
|
Damsker, J.M., Dillingham, B.C., Rose, M.C., Balsley, M.A., Heier, C.R., Watson, A.M., et al. (2013) VBP15, a Glucocorticoid Analogue, Is Effective at Reducing Allergic Lung Inflammation in Mice. PLOS ONE, 8, e63871. https://doi.org/10.1371/journal.pone.0063871
|
[44]
|
Damsker, J.M., Cornish, M.R., Kanneboyina, P., Kanneboyina, I., Yu, Q., Lipson, R., et al. (2019) Vamorolone, a Dissociative Steroidal Compound, Reduces Collagen Antibody-Induced Joint Damage and Inflammation When Administered after Disease Onset. Inflammation Research, 68, 969-980. https://doi.org/10.1007/s00011-019-01279-z
|
[45]
|
Kleinman, E., Laborada, J., Metterle, L. and Eichenfield, L.F. (2022) What’s New in Topicals for Atopic Dermatitis? American Journal of Clinical Dermatology, 23, 595-603. https://doi.org/10.1007/s40257-022-00712-0
|
[46]
|
Paes, D., Schepers, M., Rombaut, B., van den Hove, D., Vanmierlo, T. and Prickaerts, J. (2021) The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacological Reviews, 73, 1016-1049. https://doi.org/10.1124/pharmrev.120.000273
|
[47]
|
Schick, M.A. and Schlegel, N. (2022) Clinical Implication of Phosphodiesterase-4-Inhibition. International Journal of Molecular Sciences, 23, Article No. 1209. https://doi.org/10.3390/ijms23031209
|
[48]
|
Fan, T., Wang, W., Wang, Y., Zeng, M., Liu, Y., Zhu, S., et al. (2024) PDE4 Inhibitors: Potential Protective Effects in Inflammation and Vascular Diseases. Frontiers in Pharmacology, 15, Article ID: 1407871. https://doi.org/10.3389/fphar.2024.1407871
|
[49]
|
Zhang, Y., Wang, T., Dong, X., Zhu, C., Peng, Q., Liu, C., et al. (2024) Salivary Amylase‐Responsive Buccal Tablets Wipe out Chemotherapy‐Rooted Refractory Oral Mucositis. Advanced Science, 11, e2308439. https://doi.org/10.1002/advs.202308439
|
[50]
|
Al-Harbi, N.O., Imam, F., Al-Harbi, M.M., Qamar, W., Aljerian, K., Khalid Anwer, M., et al. (2023) Effect of Apremilast on Lps-Induced Immunomodulation and Inflammation via Activation of Nrf2/HO-1 Pathways in Rat Lungs. Saudi Pharmaceutical Journal, 31, 1327-1338. https://doi.org/10.1016/j.jsps.2023.05.022
|
[51]
|
Singh, D., Lea, S. and Mathioudakis, A.G. (2021) Inhaled Phosphodiesterase Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs, 81, 1821-1830. https://doi.org/10.1007/s40265-021-01616-9
|
[52]
|
Houslay, M.D., Schafer, P. and Zhang, K.Y.J. (2005) Keynote Review: Phosphodiesterase-4 as a Therapeutic Target. Drug Discovery Today, 10, 1503-1519. https://doi.org/10.1016/s1359-6446(05)03622-6
|
[53]
|
Robichaud, A., Stamatiou, P.B., Jin, S.-C., Lachance, N., MacDonald, D., Laliberté, F., et al. (2002) Deletion of Phosphodiesterase 4D in Mice Shortens α2-Adrenoceptor-Mediated Anesthesia, a Behavioral Correlate of Emesis. Journal of Clinical Investigation, 110, 1045-1052. https://doi.org/10.1172/jci0215506
|
[54]
|
Pérez-Torres, S., Miró, X., Palacios, J.M., Cortés, R., Puigdoménech, P. and Mengod, G. (2000) Phosphodiesterase Type 4 Isozymes Expression in Human Brain Examined by in Situ Hybridization Histochemistry and [3h]rolipram Binding Autoradiography. Journal of Chemical Neuroanatomy, 20, 349-374. https://doi.org/10.1016/s0891-0618(00)00097-1
|
[55]
|
Hiyama, H., Arichika, N., Okada, M., Koyama, N., Tahara, T. and Haruta, J. (2023) Pharmacological Profile of Difamilast, a Novel Selective Phosphodiesterase 4 Inhibitor, for Topical Treatment of Atopic Dermatitis. The Journal of Pharmacology and Experimental Therapeutics, 386, 45-55. https://doi.org/10.1124/jpet.123.001609
|