小分子靶向抗炎药物的研究进展
Research Progress of Small Molecule Targeted Anti-Inflammatory Drugs
DOI: 10.12677/pi.2025.143022, PDF, HTML, XML,   
作者: 陈 晓, 王玉荣*:中国药科大学基础医学与临床药学学院,江苏 南京
关键词: 炎症炎症相关通路小分子药物靶向药物Inflammation Inflammation Related Pathways Small Molecule Drugs Targeted Drugs
摘要: 炎症是一种常见的病理过程,在各种疾病的发生发展过程中起重要作用。炎症的发生、发展及转归涉及多种分子机制,包括JAK信号通路和TLR信号通路活化等。临床常用的抗炎药物包括甾体抗炎药和非甾体抗炎药,都存在诸多药物不良反应,限制了其临床使用。近年来,研究者们开发了一系列小分子靶向抗炎化合物,包括JAK、TLR4、MyD88、NF-κB和PDE4抑制剂等,在类风湿性关节炎、炎症性肠病和特应性皮炎等炎症相关疾病中表现出良好的治疗效果。针对性合成选择性靶向药物具有良好的研究前景。本文综述了针对几个关键炎症信号通路的小分子靶向抗炎药物的研究进展,旨在为炎症性疾病的治疗提供更优的策略。
Abstract: Inflammation is a common pathological process that plays an important role in the development of various diseases. The occurrence, progression, and resolution of inflammation involve multiple molecular mechanisms, including the JAK and TLR signaling pathways, etc. At present, steroidal anti-inflammatory drugs and nonsteroidal anti-inflammatory drugs are commonly used in clinical. But both of which have many adverse drug reactions, their clinical uses are limited. In recent years, researchers have developed a series of small molecule targeted anti-inflammatory compounds that have good therapeutic effects in inflammation related diseases such as rheumatoid arthritis, inflammatory bowel disease, and atopic dermatitis. For example, JAK inhibitors, TLR4 inhibitors, MyD88 inhibitors, NF-κB inhibitors, and PDE4 inhibitors, etc. Targeted synthesis of selective targeted drugs has good research prospects. This article reviews the research progress of small molecule targeted anti-inflammatory drugs developed for several key inflammatory signaling pathways, aiming to provide better strategies for the treatment of inflammatory diseases.
文章引用:陈晓, 王玉荣. 小分子靶向抗炎药物的研究进展[J]. 药物资讯, 2025, 14(3): 179-187. https://doi.org/10.12677/pi.2025.143022

1. 引言

炎症是机体对于刺激的一种防御过程,表现为红、肿、热、痛和功能障碍。炎症是多种生理和病理过程的基础,关节炎、肝炎、结肠炎等都与之相关[1]。目前临床上常见的抗炎药物包括甾体抗炎药和非甾体抗炎药(Non-steroidal anti-inflammatory drugs, NSAIDs)。泼尼松和地塞米松等是常见的甾体抗炎药,具有显著的抗炎和免疫抑制效果,通过影响炎症反应的各个环节,如减少白细胞浸润和降低炎症因子释放,达到迅速缓解症状的目的[2]。但是长期使用该类药物会导致血糖异常增高、增加感染风险以及引起骨质疏松等[3]。NSAIDs是应用最广泛的抗炎药物,可抑制环氧化酶活性,导致花生四烯酸转化成前列腺素等炎症介质减少,从而发挥抗炎作用[4]。常见的NSAIDs包括阿司匹林、布洛芬、吲哚美辛等,适用于缓解轻至中度的疼痛、发热和炎症。NSAIDs在发挥作用的同时,可伴有胃肠道反应、过敏反应、肝损伤、肾损伤等一系列不良反应[5]。尽管该类药物在临床使用上占有重要地位,其药物不良反应也不能被忽视,针对不同靶点开发新型有效且安全的抗炎药物是非常必要的。

小分子靶向药物通常是指通过化学合成的、分子量低于1000的化合物,往往具备优良的生物利用度和较强的组织渗透性[6]。该类药物能够特异性地阻断炎症相关信号通路,达到减少炎症和免疫反应的目的。为了满足临床需求,科研工作者们聚焦于炎症相关信号通路,旨在开发出更加安全、有效的新型抗炎药物,为炎症相关疾病的治疗提供新的选择。

本文综述了针对几个关键炎症信号通路的小分子靶向抗炎药物的研究进展,旨在为炎症性疾病的治疗提供更优的策略。

2. JAK/STAT信号通路抑制剂

Janus激酶(Janus-activated kinase, JAK)/信号转导和转录激活因子(Singal transducers and activators of transcriprion, STAT)信号通路在协调多种细胞功能中占有重要地位,包括炎症反应、免疫反应、细胞增殖、细胞凋亡和肿瘤发生等[7]。JAK家族包含酪氨酸激酶2 (Tyrosine kinase 2, Tyk2)、JAK1、JAK2、JAK3四个成员。该信号通路的激活起始于细胞因子与其特异性跨膜受体的结合,导致受体二聚化和JAK激酶的自磷酸化。磷酸化的JAK激酶进一步催化受体胞内酪氨酸残基的磷酸化,生成STAT蛋白的结合位点。STAT蛋白凭借其SH2结构域识别并结合磷酸化的酪氨酸残基,随后自身发生磷酸化并形成二聚体,移位至细胞核内,与DNA上的特异性序列结合,从而调节基因的转录[8]。针对该信号通路中的关键位点开发靶向药物对于减少炎症反应至关重要。截至目前,共有19种靶向JAK的药品获得美国FDA批准。

2.1. 乌帕替尼

乌帕替尼是一种选择性口服JAK1抑制剂。JAK1参与多种细胞因子受体的信号转导,包括白介素(Interleukin, IL)和干扰素(Interferon, IFN)等[9]。GP130跨膜蛋白能够与IL-6等细胞因子结合后形成二聚体,参与JAK/STAT等途径,JAK1可能在与GP130的结合中占主导地位,选择性地抑制JAK1在炎症及免疫相关疾病中具有重要意义[10]。乌帕替尼目前被批准用于治疗溃疡性结肠炎(Ulcerative colitis, UC)、克罗恩病(Crohn’s disease, CD)以及类风湿性关节炎(Rheumatoid arthritis, RA)等炎症相关疾病[11] [12]。临床试验结果显示,乌帕替尼是减少瘙痒和湿疹面积及降低严重程度指数最快、最有效的药物,在特应性皮炎(Atopic dermatitis, AD)、银屑病等疾病中展现出良好的治疗效果[13]。研究表明乌帕替尼对于干燥综合征和肝细胞脂质沉积等疾病也具有潜在的治疗效果[14] [15]。已有多项研究揭示了乌帕替尼在各类炎症性疾病中的重要作用,选择性抑制JAK1可在一定程度上减少不良反应的发生。

2.2. 巴瑞替尼

巴瑞替尼可逆性抑制JAK1/JAK2,通过抑制JAK蛋白并阻止STAT磷酸化和激活发挥作用,并且能调节各种IL、IFN和生长因子相关的信号通路[16]。该药用于治疗中重度活动性RA已获得FDA批准,主要适用于已经采用了改善病情的抗风湿药(Disease-modifying anti-rheumatic drugs, DMARDs),并且没有达到治疗效果的患者[17]。另外,斑秃的发病受遗传因素和免疫失调两个因素的共同影响,其中IFN-γ和IL-15是疾病发展必需的细胞因子,依靠JAK进行细胞内信号传导。巴瑞替尼已被证明可有效促进斑秃成人患者的头发再生[18]。部分斑秃患者存在指甲病变,最常见的变化包括凹陷和气壳甲。近期发现,斑秃相关的甲周炎症患者,在接受巴瑞替尼治疗4个月后,患者指甲症状轻度改善,在服用11个月后,指甲外观和质地恢复正常[19]。尽管目前没有指南表明巴瑞替尼可以治疗斑秃相关的指甲变化,但它仍可能是某些斑秃相关甲周炎患者的有效治疗选择,需要进一步的研究来确定哪些患者可以从中受益。

2.3. 托法替尼

托法替尼能够抑制JAK1、JAK3,也能轻微抑制JAK2,是非选择性口服JAK抑制剂,通过抑制JAK阻断STAT蛋白磷酸化过程,也是第一个被FDA批准用于UC慢性治疗的JAK抑制剂[20]。尽管托法替尼对UC的治疗效果已被充分证实,但由于其非选择性以及带状疱疹感染、恶性肿瘤和胃肠道穿孔等重大毒副作用风险,临床上需要慎重使用[21]。而且托法替尼对巨噬细胞表型具有调节作用。巨噬细胞存在M1、M2等不同亚型,参与炎症、伤口愈合和凝血。研究发现托法替尼对M1巨噬细胞具有调节作用,对抗炎的IL-10诱导更加明显。然而在巨噬细胞M2极化期间,托法替尼可降低其IL-10和CD206表达,阻止其极化,且该效果呈剂量依赖性[22]。这一结果表明托法替尼在发挥抗炎作用的同时,还存在其他毒副作用风险。近期有研究揭示了托法替尼在滑膜炎、痤疮、脓疱病、骨质增生和骨炎(Synovitis, acne, pustulosis, hyperostosis, osteomyelitis, SAPHO)综合征中的应用潜力。SAPHO综合征主要表现为肌肉骨骼相关症状和皮肤的持续炎症。研究报告了一名患有难治性SAPHO综合征的患者,在使用托法替尼治疗后症状得以改善且耐受性良好,提示托法替尼可能是用于DMARDs和肿瘤坏死因子(Tumor necrosis factor, TNF)抑制剂难治性SAPHO的良好选择[23]

3. TLR4/MyD88/NF-κB信号通路抑制剂

TLR4信号通路由Toll样受体4 (Toll-like receptor 4, TLR4)、髓样分化因子88 (Myeloid differentiation factor 88, MyD88)和核因子κB (Nuclear factor-κB, NF-κB)组成。目前,多项实验证实TLR信号通路与各类疾病相关,包括但不限于炎症、免疫、肿瘤等。TLR4可识别微生物成分的特定模式,即病原体相关分子模式,参与激活先天免疫以及适应性免疫。微生物识别促进TLR4二聚化,TLR4通过其细胞质内的Toll/IL-1受体(Toll/interleukin-1 receptor, TIR)结构域与MyD88相互作用,介导MyD88依赖性通路,导致NF-κB的核转位并调控促炎细胞因子的表达[24]。TLR家族包含多种亚型,其中TLR4在IL-1、IL-6和TNF-α等炎症因子的产生中起至关重要的作用,与RA等炎症性疾病密切相关[25]。所以,阻断TLR4介导的MyD88依赖性通路,在炎症性疾病的治疗中具有重大意义。

3.1. TLR4抑制剂

3.1.1. TAK-242

TAK-242是一种合成的芳基磺酰胺类化合物,它的作用机制是特异性地抑制TLR4,通过与细胞内Cys-747蛋白结构域结合,阻断TLR4与其下游所有衔接蛋白的相互作用[26] [27]。TAK-242可以减少脂多糖(Lipopolysaccharide, LPS)诱导的TNF-α、IL-1β、IL-6和一氧化氮(NO)的产生,且在小鼠和人的巨噬细胞中表现出相似的效果[28]。遗憾的是,一项临床试验表明TAK-242在一定程度上降低了脓毒症或呼吸衰竭患者的死亡率,但是它并不能显著抑制患者的炎症因子水平[29]。这一结果可能与疾病的严重程度和患者的个体差异有关,尤其是在脓毒症的后期阶段,药物可能无法逆转已经发生的病理损伤。尽管如此,仍有许多证据表明TAK-242能够显著抑制TLR4信号通路,在炎症介导的心肌损伤、脑损伤和肝损伤模型中发挥保护作用[30]-[32]。未来的研究需进一步积累更多临床数据以支持其在炎症相关疾病的临床治疗中的应用价值。

3.1.2. 纳洛酮和纳曲酮

(+)-纳洛酮和(+)-纳曲酮是TLR4拮抗剂。机体识别LPS需要TLR4和MD-2,纳洛酮和纳曲酮通过结合MD-2阻止TLR4与LPS或其他配体结合,从而抑制非MyD88依赖性信号通路的激活,显著减少LPS诱导的活性氧(Reactive oxygen species, ROS)、NO和炎症因子的产生[33]。低剂量的纳曲酮已被证明可以调节神经炎症[34]。近期的研究发现,纳洛酮和纳曲酮在预防和治疗胎儿炎症损伤方面具有潜在的应用价值[35]

许多研究者正在借助计算机辅助药物设计和人工智能驱动的药物设计技术来开发创新型TLR4调节剂[36]。鉴于TLR4信号通路在炎症和免疫反应中的关键作用,开发新型TLR4抑制剂在治疗炎症性和免疫性疾病中有广阔的应用前景。

3.2. MyD88抑制剂

3.2.1. ST2825

MyD88是TLR4信号转导的关键衔接蛋白,在细胞内,MyD88二聚化后会召集IL-1受体相关激酶1和4,触发细胞内信号级联反应[37]。ST2825是一种MyD88二聚化抑制剂,通过干扰MyD88的TIR结构域BB环的同寡聚化来发挥作用。研究表明,ST2825能够阻断MyD88二聚化,从而下调炎症介质的表达,并可能通过恢复线粒体稳态来抑制RA的进展[38]。在实际应用中,ST2825通常作为MyD88抑制剂使用,便于实验人员判断目标化合物是否通过MyD88依赖性通路发挥作用。

3.2.2. TJ-M2010-5

TJ-M2010-5是一种基于MyD88分子结构合成的化合物,通过与TIR结构域结合抑制MyD88二聚化来发挥抗炎作用。TJ-M2010-5作为一种有效的MyD88抑制剂能够减缓结肠炎相关肿瘤的发展,并可能对其他炎症相关肿瘤也有抑制作用[39]。该团队通过研究MyD88基因敲除小鼠模型发现TJ-M2010-5能够显著减少肝脏的炎症反应且保护肝脏免受促炎因子的损伤,揭示了该化合物在肝脏保护方面的潜在临床应用价值[40]。为了优化TJ-M2010-5的药物代谢动力学特性,研究者用新型氧化铈纳米酶作为载体与TJ-M2010-5联合用于结肠炎治疗,在结肠炎小鼠模型中不仅表现出优异的治疗效果,还能实现药物的延迟释放并改善结肠靶向性[41]

MyD88抑制剂可能可以治疗炎症性疾病已经得到多方面证据支持,但针对MyD88的药物研发数据却鲜有报道。未来的研究可聚焦于药物的有效性、安全性、成药性等方面开发靶向MyD88的新型化合物,为炎症性疾病的治疗提供新的选择。

3.3. NF-κB抑制剂

糖皮质激素的作用机制之一是配体与细胞质可溶性糖皮质激素受体(Glucocorticoid receptor, GR)结合,诱导配体–受体复合物的核易位,随后与靶基因启动子区域中的糖皮质激素应答元件(Glucocorticoid response element, GRE)相互作用,调节基因转录。越来越多的证据表明,GRE介导的转录途径是导致长期使用糖皮质激素相关不良反应的重要机制[42]。为此,研究人员开发了一系列类固醇类似物(VBP化合物)。VBP化合物作为解离性GR配体,缺乏传统糖皮质激素的GRE介导的转录特性,但保留了类似的抗炎能力。Vamorolone (VBP15)能够抑制肺上皮细胞中的NF-κB活性,减少急性过敏性肺炎小鼠模型体内炎症因子的表达,抑制效果与泼尼松龙相似。糖皮质激素的一个主要长期不良反应是影响骨骼生长,使用VBP15不会抑制小鼠胫骨的骨骼生长[43]。在RA模型中,VBP15的治疗效果优于传统糖皮质激素,且不良反应和耐受性更优[44]。目前,VBP15已获批用于杜氏肌营养不良,并且在多种炎症性疾病的临床前研究中显示出有效性和安全性,提示其可能成为传统糖皮质激素治疗炎症性疾病的替代品。

迄今为止,有100余种靶向NF-κB的化合物处于研发阶段。AMTX-100是一种新型的NF-κB抑制剂,通过竞争性抑制NF-κB和STAT1等转录因子,减少促炎细胞因子和趋化因子的产生。在临床前研究中,AMTX-100已显示出对轻度至中度AD瘙痒和炎症的治疗潜力。目前,AMTX-100已进入II期临床试验阶段[45]

炎症信号通路之间存在广泛的交叉和协同作用,例如JAK/STAT信号通路与NF-κB信号通路之间存在相互调控的关系。未来的研究可以聚焦于这些信号通路的交叉点和协同机制,寻找能够同时干预多个信号通路的新型靶点,开发具有多靶点作用的小分子药物,以实现更全面、更有效的抗炎治疗效果。

4. 磷酸二酯酶4抑制剂

磷酸二酯酶(phosphodiesterases, PDE)负责降解环磷酸腺苷(Cyclic adenosine monophosphate, cAMP)和环磷酸鸟苷(Cyclic guanosine monophosphate, cGMP)。PDE包含11个亚型,不同亚型对cAMP和cGMP表现出不同的选择性。其中,PDE4特异性地水解cAMP,并在多种炎症细胞中发挥关键作用[46]。PDE4抑制剂通过选择性抑制PDE4的活性,增加细胞内cAMP水平,抑制炎症相关信号通路的激活,减少促炎因子的释放。靶向抑制PDE4已被证明是AD、RA、UC、CD等炎症性疾病的有效治疗策略[47]

4.1. 阿普斯特

阿普斯特是一种常用的口服PDE4抑制剂,能够降低病变皮肤的表皮厚度且能抑制TNF-α、IL-12、IL-23的异常表达,被FDA批准用于治疗银屑病性关节炎、斑块型银屑病、银屑病。阿普斯特的抗炎机制还涉及抑制NF-κB和JAK/STAT信号通路的激活,在多种炎症性疾病中表现出显著的治疗效果[48]。口腔粘膜炎是癌症化疗和放疗最常见的难治性并发症,严重影响患者的生活质量。普鲁士蓝纳米立方体是一种可以清除活性氧(ROS)的纳米材料,研究者将阿普斯特和普鲁士蓝纳米立方体联合使用,不仅显著增强了抗炎效果和伤口修复能力,还提高了患者的舒适度,成为临床治疗难治性口腔黏膜炎的候选方案[49]。在LPS诱导的大鼠急性肺损伤模型中,阿普斯特通过抑制促炎介质的释放来恢复肺组织的形态和结构,其作用机制可能与Nrf2/HO-1信号通路相关[50]。科研工作者在关注阿普斯特显著的抗炎效果的同时,还需评估阿普斯特因广泛抑制PDE4而可能引发的不良反应,以确保患者用药的安全性。

4.2. 恩塞芬汀

慢性阻塞性肺病(Chronic obstructive pulmonary disease, COPD)作为最常见的呼吸系统疾病之一,其核心特征为气流受限和气道慢性炎症,这些病理改变会导致呼吸急促、慢性咳嗽和咳痰等症状。恩塞芬汀是一种PDE3和PDE4双重抑制剂,能够通过缓解支气管收缩和减轻炎症反应显著改善COPD患者的肺功能、减轻患者呼吸困难等症状从而提高患者的生活质量。恩塞芬汀在临床应用中展现出良好的安全性,可作为在标准治疗后仍有持续症状患者的辅助治疗[51]。然而目前的研究证据尚不充分,未来需进一步探讨恩塞芬汀在COPD管理中的疗效、安全性和最佳剂量,研究恩塞芬汀与其他药物的协同作用,并评估其对COPD患者长期预后的影响。

4.3. 地法米司特

PDE4在多种组织中广泛表达,非选择性抑制PDE4可引发多种不良反应,包括胃肠道反应、体重下降、失眠及头痛等。这些不良反应导致PDE4抑制剂在临床上不能普遍使用。PDE4有A、B、C、D四种亚型,其中PDE4B和PDE4D在免疫细胞中高水平表达,抑制这两种亚型被认为是PDE4抑制剂发挥抗炎作用的主要机制[52]。研究表明,呕吐等不良反应可能是由大脑中的PDE4D介导的[53] [54]。地法米司特是一种选择性PDE4抑制剂,对PDE4B亚型表现出更强的抑制活性。在AD模型中,地法米司特能够抑制小鼠和人细胞中TNF-α的产生,并显著改善AD小鼠的皮炎症状。此外,通过评估地法米司特在动物模型中局部应用后的分布情况,发现其在血液和大脑中的分布较少,提示其导致全身性不良反应的风险较低[55]。对于炎症性疾病,开发PDE4B选择性抑制剂在有效性和安全性方面具有良好的研究前景。

5. 总结与展望

炎症是一种极为常见的病理过程,是许多疾病发生发展过程中的关键病理机制,选择有效且安全的抗炎药物对于各类炎症性疾病的治疗至关重要。小分子靶向药物的研发流程相对高效,能够快速响应现代医学的快速发展以及日益增长的市场需求,这类药物具有良好的生物利用度且能够精准作用于特定靶点,从而在短时间内实现疾病缓解或治疗的目的。近年来小分子靶向药物因其独特的优势在炎症性疾病的治疗中受到广泛关注。目前众多国内外研究者正致力于针对关键炎症信号通路合成新型靶向化合物,并对化合物的药理学、药效学、药代动力学及安全性和成药性等多方面展开深入研究。随着对药物作用机制的不断探究,合成选择性靶向抑制剂已成为解决药物疗效不足和不良反应过多等问题的重要策略。小分子靶向抑制剂在炎症性疾病的治疗中展现出巨大的应用潜力,在未来通过不断地探索,小分子靶向药物能够为炎症性疾病的治疗提供新的选择。

本文综述了靶向几个关键炎症信号通路的小分子抗炎药物的研究进展,包括JAK/STAT、TLR4/MyD88/NF-κB和PDE4信号通路。尽管小分子靶向抗炎药物在炎症性疾病的治疗中已经取得了显著进展,但仍有许多挑战和机遇有待探索。随着生物医学数据的爆炸式增长,人工智能和机器学习技术在药物研发中具有广阔的应用前景。可以利用这些技术对大量的基因组学、转录组学、蛋白质组学和代谢组学数据进行分析和挖掘,预测新的炎症相关靶点、优化药物设计、提高药物筛选的效率和准确性。此外,未来需要进一步深入研究细胞因子网络,挖掘更多具有潜在治疗价值的细胞因子靶点,以及它们在不同炎症性疾病中的具体作用机制,开发针对这些新靶点的特异性小分子抑制剂或调节剂。

随着对炎症机制的不断深入研究以及新技术的不断涌现,未来的研究应注重新靶点的发现、新技术的应用以及个体化治疗的推进,为炎症性疾病的治疗提供更有效、更安全的策略。

NOTES

*通讯作者。

参考文献

[1] Medzhitov, R. (2008) Origin and Physiological Roles of Inflammation. Nature, 454, 428-435.
https://doi.org/10.1038/nature07201
[2] Urbańska, J., Karewicz, A. and Nowakowska, M. (2014) Polymeric Delivery Systems for Dexamethasone. Life Sciences, 96, 1-6.
https://doi.org/10.1016/j.lfs.2013.12.020
[3] Roubille, C., Richer, V., Starnino, T., McCourt, C., McFarlane, A., Fleming, P., et al. (2015) The Effects of Tumour Necrosis Factor Inhibitors, Methotrexate, Non-Steroidal Anti-Inflammatory Drugs and Corticosteroids on Cardiovascular Events in Rheumatoid Arthritis, Psoriasis and Psoriatic Arthritis: A Systematic Review and Meta-Analysis. Annals of the Rheumatic Diseases, 74, 480-489.
https://doi.org/10.1136/annrheumdis-2014-206624
[4] Bacchi, S., Palumbo, P., Sponta, A. and Coppolino, M.F. (2012) Clinical Pharmacology of Non-Steroidal Anti-Inflammatory Drugs: A Review. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 11, 52-64.
https://doi.org/10.2174/187152312803476255
[5] Klomjit, N. and Ungprasert, P. (2022) Acute Kidney Injury Associated with Non-Steroidal Anti-Inflammatory Drugs. European Journal of Internal Medicine, 101, 21-28.
https://doi.org/10.1016/j.ejim.2022.05.003
[6] Su, Q., Hao, X., Chen, Z., Li, H., Wei, M. and Zuo, Z. (2023) Small-Molecule Drugs in Immunotherapy. Mini-Reviews in Medicinal Chemistry, 23, 1341-1359.
https://doi.org/10.2174/1389557522666220930154527
[7] Yu, H., Lee, H., Herrmann, A., Buettner, R. and Jove, R. (2014) Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746.
https://doi.org/10.1038/nrc3818
[8] Ihle, J.N., Witthuhn, B.A., Quelle, F.W., Yamamoto, K., Thierfelder, W.E., Kreider, B., et al. (1994) Signaling by the Cytokine Receptor Superfamily: JAKs and STATs. Trends in Biochemical Sciences, 19, 222-227.
https://doi.org/10.1016/0968-0004(94)90026-4
[9] Fayand, A., Hentgen, V., Posseme, C., Lacout, C., Picard, C., Moguelet, P., et al. (2023) Successful Treatment of JAK1-Associated Inflammatory Disease. Journal of Allergy and Clinical Immunology, 152, 972-983.
https://doi.org/10.1016/j.jaci.2023.06.004
[10] Morris, R., Kershaw, N.J. and Babon, J.J. (2018) The Molecular Details of Cytokine Signaling via the JAK/STAT Pathway. Protein Science, 27, 1984-2009.
https://doi.org/10.1002/pro.3519
[11] Ernest-Suarez, K. and Panaccione, R. (2023) Update on the Role of Upadacitinib in the Treatment of Adults with Moderately to Severely Active Ulcerative Colitis. Therapeutic Advances in Gastroenterology, 16, 1-18.
https://doi.org/10.1177/17562848231158235
[12] Duggan, S. and Keam, S.J. (2019) Upadacitinib: First Approval. Drugs, 79, 1819-1828.
https://doi.org/10.1007/s40265-019-01211-z
[13] Navarro-Triviño, F., Alcantara-Luna, S., Domínguez-Cruz, J., Galán-Gutiérrez, M., Ruiz-Villaverde, R., Pereyra-Rodriguez, J., et al. (2023) Upadacitinib for Moderate to Severe Atopic Dermatitis. Immunotherapy, 15, 799-808.
https://doi.org/10.2217/imt-2023-0037
[14] Ahn, S.H., Lee, Y., Lim, D.S., Cho, W., Gwon, H.J., Abd El-Aty, A.M., et al. (2024) Upadacitinib Counteracts Hepatic Lipid Deposition via the Repression of JAK1/STAT3 Signaling and AMPK/Autophagy-Mediated Suppression of ER Stress. Biochemical and Biophysical Research Communications, 735, Article ID: 150829.
https://doi.org/10.1016/j.bbrc.2024.150829
[15] Yang, Y., Liu, Y., Li, X., Zeng, Y., He, W. and Zhou, J. (2024) Uncovering the Therapeutic Target and Molecular Mechanism of Upadacitinib on Sjogren’s Syndrome. Biomedical Engineering and Computational Biology, 15, 1-6.
https://doi.org/10.1177/11795972241293519
[16] Ahmad, A., Zaheer, M. and Balis, F.J. (2024) StatPearls. StatPearls Publishing.
[17] Dougados, M., van der Heijde, D., Chen, Y., Greenwald, M., Drescher, E., Liu, J., et al. (2017) Baricitinib in Patients with Inadequate Response or Intolerance to Conventional Synthetic DMARDs: Results from the RA-BUILD Study. Annals of the Rheumatic Diseases, 76, 88-95.
https://doi.org/10.1136/annrheumdis-2016-210094
[18] King, B., Ohyama, M., Kwon, O., Zlotogorski, A., Ko, J., Mesinkovska, N.A., et al. (2022) Two Phase 3 Trials of Baricitinib for Alopecia Areata. New England Journal of Medicine, 386, 1687-1699.
https://doi.org/10.1056/nejmoa2110343
[19] Wittmer, A., De Jong, K., Bolish, L. and Finklea, L. (2024) Therapeutic Response of Alopecia Areata‐Associated Nail Changes to Baricitinib. Case Reports in Dermatological Medicine, 2024, Article ID: 8879884.
https://doi.org/10.1155/2024/8879884
[20] Palasik, B.N. and Wang, H. (2020) Tofacitinib, the First Oral Janus Kinase Inhibitor Approved for Adult Ulcerative Colitis. Journal of Pharmacy Practice, 34, 913-921.
https://doi.org/10.1177/0897190020953019
[21] Sandborn, W.J., Panés, J., D’Haens, G.R., Sands, B.E., Su, C., Moscariello, M., et al. (2019) Safety of Tofacitinib for Treatment of Ulcerative Colitis, Based on 4.4 Years of Data from Global Clinical Trials. Clinical Gastroenterology and Hepatology, 17, 1541-1550.
https://doi.org/10.1016/j.cgh.2018.11.035
[22] Lethen, I., Lechner-Grimm, K., Gabel, M., Knauss, A., Atreya, R., Neurath, M.F., et al. (2023) Tofacitinib Affects M1-Like and M2-Like Polarization and Tissue Factor Expression in Macrophages of Healthy Donors and IBD Patients. Inflammatory Bowel Diseases, 30, 1151-1163.
https://doi.org/10.1093/ibd/izad290
[23] Alhayali, M. (2024) Successful Treatment of Refractory Synovitis, Acne, Pustulosis, Hyperostosis, and Osteitis (SAPHO) Syndrome with Tofacitinib: A Case Report. Cureus, 16, e66169.
https://doi.org/10.7759/cureus.66169
[24] Takeda, K. and Akira, S. (2015) Toll‐Like Receptors. Current Protocols in Immunology, 109, 14.12.1-14.12.10.
https://doi.org/10.1002/0471142735.im1412s109
[25] Akira, S. and Takeda, K. (2004) Toll-Like Receptor Signalling. Nature Reviews Immunology, 4, 499-511.
https://doi.org/10.1038/nri1391
[26] Zandi, Z., Kashani, B., Poursani, E.M., Bashash, D., Kabuli, M., Momeny, M., et al. (2019) TLR4 Blockade Using TAK-242 Suppresses Ovarian and Breast Cancer Cells Invasion through the Inhibition of Extracellular Matrix Degradation and Epithelial-Mesenchymal Transition. European Journal of Pharmacology, 853, 256-263.
https://doi.org/10.1016/j.ejphar.2019.03.046
[27] Yamada, M., Ichikawa, T., Yamano, T., Kikumoto, F., Nishikimi, Y., Tamura, N., et al. (2006) Optically Active Cyclohexene Derivative as a New Antisepsis Agent: An Efficient Synthesis of Ethyl (6R)-6-[N-(2-Chloro-4-Fluorophenyl)sulfamoyl]cyclohex-1-Ene-1-Carboxylate (TAK-242). Chemical and Pharmaceutical Bulletin, 54, 58-62.
https://doi.org/10.1248/cpb.54.58
[28] Ii, M., Matsunaga, N., Hazeki, K., Nakamura, K., Takashima, K., Seya, T., et al. (2006) A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-Fluorophenyl)sulfamoyl]cyclohex-1-Ene-1-Carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytokine Production through Suppression of Intracellular Signaling. Molecular Pharmacology, 69, 1288-1295.
https://doi.org/10.1124/mol.105.019695
[29] Rice, T.W., Wheeler, A.P., Bernard, G.R., Vincent, J., Angus, D.C., Aikawa, N., et al. (2010) A Randomized, Double-Blind, Placebo-Controlled Trial of TAK-242 for the Treatment of Severe Sepsis. Critical Care Medicine, 38, 1685-1694.
https://doi.org/10.1097/ccm.0b013e3181e7c5c9
[30] Liu, Z., Yang, K., Deng, T. and Peng, P. (2021) Protective Effect of TAK242 Blocking Toll-Like Receptor 4 Pathway on Septic Myocardial Injury and Cardiac Dysfunction. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 33, 1226-1231.
[31] Feng, Y., Ju, Y., Wu, Q., Sun, G. and Yan, Z. (2023) TAK-242, a Toll-Like Receptor 4 Antagonist, against Brain Injury by Alleviates Autophagy and Inflammation in Rats. Open Life Sciences, 18, Article ID: 20220662.
https://doi.org/10.1515/biol-2022-0662
[32] Engelmann, C., Sheikh, M., Sharma, S., Kondo, T., Loeffler-Wirth, H., Zheng, Y.B., et al. (2020) Toll-Like Receptor 4 Is a Therapeutic Target for Prevention and Treatment of Liver Failure. Journal of Hepatology, 73, 102-112.
https://doi.org/10.1016/j.jhep.2020.01.011
[33] Wang, X., Zhang, Y., Peng, Y., Hutchinson, M.R., Rice, K.C., Yin, H., et al. (2016) Pharmacological Characterization of the Opioid Inactive Isomers (+)‐Naltrexone and (+)‐Naloxone as Antagonists of Toll‐Like Receptor 4. British Journal of Pharmacology, 173, 856-869.
https://doi.org/10.1111/bph.13394
[34] Hummig, W., Baggio, D.F., Lopes, R.V., dos Santos, S.M.D., Ferreira, L.E.N. and Chichorro, J.G. (2023) Antinociceptive Effect of Ultra-Low Dose Naltrexone in a Pre-Clinical Model of Postoperative Orofacial Pain. Brain Research, 1798, Article ID: 148154.
https://doi.org/10.1016/j.brainres.2022.148154
[35] Robertson, S.A., Hutchinson, M.R., Rice, K.C., Chin, P., Moldenhauer, L.M., Stark, M.J., et al. (2020) Targeting Toll‐like Receptor‐4 to Tackle Preterm Birth and Fetal Inflammatory Injury. Clinical & Translational Immunology, 9, e1121.
https://doi.org/10.1002/cti2.1121
[36] Romerio, A. and Peri, F. (2020) Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Frontiers in Immunology, 11, Article No. 1210.
https://doi.org/10.3389/fimmu.2020.01210
[37] Sacre, S.M., Andreakos, E., Kiriakidis, S., Amjadi, P., Lundberg, A., Giddins, G., et al. (2007) The Toll-Like Receptor Adaptor Proteins MyD88 and Mal/TIRAP Contribute to the Inflammatory and Destructive Processes in a Human Model of Rheumatoid Arthritis. The American Journal of Pathology, 170, 518-525.
https://doi.org/10.2353/ajpath.2007.060657
[38] Ramirez-Perez, S., Vekariya, R., Gautam, S., Reyes-Perez, I.V., Drissi, H. and Bhattaram, P. (2023) MyD88 Dimerization Inhibitor ST2825 Targets the Aggressiveness of Synovial Fibroblasts in Rheumatoid Arthritis Patients. Arthritis Research & Therapy, 25, Article No. 180.
https://doi.org/10.1186/s13075-023-03145-0
[39] Xie, L., Jiang, F., Zhang, L., He, W., Liu, J., Li, M., et al. (2015) Targeting of MyD88 Homodimerization by Novel Synthetic Inhibitor TJ-M2010-5 in Preventing Colitis-Associated Colorectal Cancer. Journal of the National Cancer Institute, 108, djv364.
https://doi.org/10.1093/jnci/djv364
[40] Ding, Z., Du, D., Yang, Y., Yang, M., Miao, Y., Zou, Z., et al. (2019) Short-Term Use of MyD88 Inhibitor TJ-M2010-5 Prevents D-Galactosamine/Lipopolysaccharide-Induced Acute Liver Injury in Mice. International Immunopharmacology, 67, 356-365.
https://doi.org/10.1016/j.intimp.2018.11.051
[41] Liu, H., Ji, M., Bi, Y., Xiao, P., Zhao, J., Gou, J., et al. (2023) Integration of MyD88 Inhibitor into Mesoporous Cerium Oxide Nanozymes-Based Targeted Delivery Platform for Enhancing Treatment of Ulcerative Colitis. Journal of Controlled Release, 361, 493-509.
https://doi.org/10.1016/j.jconrel.2023.08.015
[42] Newton, R. and Holden, N.S. (2007) Separating Transrepression and Transactivation: A Distressing Divorce for the Glucocorticoid Receptor? Molecular Pharmacology, 72, 799-809.
https://doi.org/10.1124/mol.107.038794
[43] Damsker, J.M., Dillingham, B.C., Rose, M.C., Balsley, M.A., Heier, C.R., Watson, A.M., et al. (2013) VBP15, a Glucocorticoid Analogue, Is Effective at Reducing Allergic Lung Inflammation in Mice. PLOS ONE, 8, e63871.
https://doi.org/10.1371/journal.pone.0063871
[44] Damsker, J.M., Cornish, M.R., Kanneboyina, P., Kanneboyina, I., Yu, Q., Lipson, R., et al. (2019) Vamorolone, a Dissociative Steroidal Compound, Reduces Collagen Antibody-Induced Joint Damage and Inflammation When Administered after Disease Onset. Inflammation Research, 68, 969-980.
https://doi.org/10.1007/s00011-019-01279-z
[45] Kleinman, E., Laborada, J., Metterle, L. and Eichenfield, L.F. (2022) What’s New in Topicals for Atopic Dermatitis? American Journal of Clinical Dermatology, 23, 595-603.
https://doi.org/10.1007/s40257-022-00712-0
[46] Paes, D., Schepers, M., Rombaut, B., van den Hove, D., Vanmierlo, T. and Prickaerts, J. (2021) The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacological Reviews, 73, 1016-1049.
https://doi.org/10.1124/pharmrev.120.000273
[47] Schick, M.A. and Schlegel, N. (2022) Clinical Implication of Phosphodiesterase-4-Inhibition. International Journal of Molecular Sciences, 23, Article No. 1209.
https://doi.org/10.3390/ijms23031209
[48] Fan, T., Wang, W., Wang, Y., Zeng, M., Liu, Y., Zhu, S., et al. (2024) PDE4 Inhibitors: Potential Protective Effects in Inflammation and Vascular Diseases. Frontiers in Pharmacology, 15, Article ID: 1407871.
https://doi.org/10.3389/fphar.2024.1407871
[49] Zhang, Y., Wang, T., Dong, X., Zhu, C., Peng, Q., Liu, C., et al. (2024) Salivary Amylase‐Responsive Buccal Tablets Wipe out Chemotherapy‐Rooted Refractory Oral Mucositis. Advanced Science, 11, e2308439.
https://doi.org/10.1002/advs.202308439
[50] Al-Harbi, N.O., Imam, F., Al-Harbi, M.M., Qamar, W., Aljerian, K., Khalid Anwer, M., et al. (2023) Effect of Apremilast on Lps-Induced Immunomodulation and Inflammation via Activation of Nrf2/HO-1 Pathways in Rat Lungs. Saudi Pharmaceutical Journal, 31, 1327-1338.
https://doi.org/10.1016/j.jsps.2023.05.022
[51] Singh, D., Lea, S. and Mathioudakis, A.G. (2021) Inhaled Phosphodiesterase Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs, 81, 1821-1830.
https://doi.org/10.1007/s40265-021-01616-9
[52] Houslay, M.D., Schafer, P. and Zhang, K.Y.J. (2005) Keynote Review: Phosphodiesterase-4 as a Therapeutic Target. Drug Discovery Today, 10, 1503-1519.
https://doi.org/10.1016/s1359-6446(05)03622-6
[53] Robichaud, A., Stamatiou, P.B., Jin, S.-C., Lachance, N., MacDonald, D., Laliberté, F., et al. (2002) Deletion of Phosphodiesterase 4D in Mice Shortens α2-Adrenoceptor-Mediated Anesthesia, a Behavioral Correlate of Emesis. Journal of Clinical Investigation, 110, 1045-1052.
https://doi.org/10.1172/jci0215506
[54] Pérez-Torres, S., Miró, X., Palacios, J.M., Cortés, R., Puigdoménech, P. and Mengod, G. (2000) Phosphodiesterase Type 4 Isozymes Expression in Human Brain Examined by in Situ Hybridization Histochemistry and [3h]rolipram Binding Autoradiography. Journal of Chemical Neuroanatomy, 20, 349-374.
https://doi.org/10.1016/s0891-0618(00)00097-1
[55] Hiyama, H., Arichika, N., Okada, M., Koyama, N., Tahara, T. and Haruta, J. (2023) Pharmacological Profile of Difamilast, a Novel Selective Phosphodiesterase 4 Inhibitor, for Topical Treatment of Atopic Dermatitis. The Journal of Pharmacology and Experimental Therapeutics, 386, 45-55.
https://doi.org/10.1124/jpet.123.001609