|
[1]
|
Chiu, C. and Legrand, M. (2021) Epidemiology of Sepsis and Septic Shock. Current Opinion in Anaesthesiology, 34, 71-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wilcox, M.E., Daou, M., Dionne, J.C., Dodek, P., Englesakis, M., Garland, A., et al. (2022) Protocol for a Scoping Review of Sepsis Epidemiology. Systematic Reviews, 11, Article No. 125. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Xu, J., Zhang, W., Fu, J., Fang, X., Gao, C., Li, C., et al. (2024) Viral Sepsis: Diagnosis, Clinical Features, Pathogenesis, and Clinical Considerations. Military Medical Research, 11, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bruserud, Ø., Mosevoll, K.A., Bruserud, Ø., Reikvam, H. and Wendelbo, Ø. (2023) The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells, 12, Article 1003. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kolodyazhna, A., Wiersinga, W.J. and van der Poll, T. (2025) Aiming for Precision: Personalized Medicine through Sepsis Subtyping. Burns & Trauma, 13, tkae073. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chenoweth, J.G., Brandsma, J., Striegel, D.A., Genzor, P., Chiyka, E., Blair, P.W., et al. (2024) Sepsis Endotypes Identified by Host Gene Expression across Global Cohorts. Communications Medicine, 4, Article No. 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Vadapalli, S., Abdelhalim, H., Zeeshan, S. and Ahmed, Z. (2022) Artificial Intelligence and Machine Learning Approaches Using Gene Expression and Variant Data for Personalized Medicine. Briefings in Bioinformatics, 23, bbac191. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
McCoy, M., Yeang, C., Bahnassy, S., Tam, S., Riggins, R.B., Parashar, D., et al. (2025) Generalized Evolutionary Classifier for Evolutionary Guided Precision Medicine. JCO Precision Oncology, 9, e2300714. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, W. and Liu, C. (2023) Sepsis Heterogeneity. World Journal of Pediatrics, 19, 919-927. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Cummings, M.J., Lutwama, J.J., Owor, N., Tomoiaga, A.S., Ross, J.E., Muwanga, M., et al. (2025) Unsupervised Classification of the Host Response Identifies Dominant Pathobiological Signatures of Sepsis in Sub-Saharan Africa. American Journal of Respiratory and Critical Care Medicine, 211, 357-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Brandes-Leibovitz, R., Riza, A., Yankovitz, G., Pirvu, A., Dorobantu, S., Dragos, A., et al. (2024) Sepsis Pathogenesis and Outcome Are Shaped by the Balance between the Transcriptional States of Systemic Inflammation and Antimicrobial Response. Cell Reports Medicine, 5, Article ID: 101829. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sun, P., Cui, M., Jing, J., Kong, F., Wang, S., Tang, L., et al. (2023) Deciphering the Molecular and Cellular Atlas of Immune Cells in Septic Patients with Different Bacterial Infections. Journal of Translational Medicine, 21, Article No. 777. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tao, X., Wang, J., Liu, B., Cheng, P., Mu, D., Du, H., et al. (2024) Plasticity and Crosstalk of Mesenchymal Stem Cells and Macrophages in Immunomodulation in Sepsis. Frontiers in Immunology, 15, Article 1338744. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, X., Zhang, W., Zhang, H. and Liao, X. (2025) Sepsis Subphenotypes: Bridging the Gaps in Sepsis Treatment Strategies. Frontiers in Immunology, 16, Article 1546474. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Burnham, K.L., Milind, N., Lee, W., Kwok, A.J., Cano-Gamez, K., Mi, Y., et al. (2024) eQTLs Identify Regulatory Networks and Drivers of Variation in the Individual Response to Sepsis. Cell Genomics, 4, Article ID: 100587. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Santacroce, E., D’Angerio, M., Ciobanu, A.L., Masini, L., Lo Tartaro, D., Coloretti, I., et al. (2024) Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells, 13, Article 439. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, L., Tian, W., Zhang, W., Wen, D., Yang, S., Wang, J., et al. (2024) A Machine Learning Model for Predicting Sepsis Based on an Optimized Assay for Microbial Cell-Free DNA Sequencing. Clinica Chimica Acta, 559, Article ID: 119716. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shen, X., Zhao, Y., Wang, Z. and Shi, Q. (2022) Recent Advances in High-Throughput Single-Cell Transcriptomics and Spatial Transcriptomics. Lab on a Chip, 22, 4774-4791. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cajander, S., Kox, M., Scicluna, B.P., Weigand, M.A., Mora, R.A., Flohé, S.B., et al. (2024) Profiling the Dysregulated Immune Response in Sepsis: Overcoming Challenges to Achieve the Goal of Precision Medicine. The Lancet Respiratory Medicine, 12, 305-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Eloranta, S. and Boman, M. (2022) Predictive Models for Clinical Decision Making: Deep Dives in Practical Machine Learning. Journal of Internal Medicine, 292, 278-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Feng, J., Liu, L., Liu, J. and Wang, J. (2024) Immunological Alterations in the Endothelial Barrier: A New Predictive and Therapeutic Paradigm for Sepsis. Expert Review of Clinical Immunology, 20, 1205-1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
von Groote, T. and Meersch-Dini, M. (2022) Biomarkers for the Prediction and Judgement of Sepsis and Sepsis Complications: A Step Towards Precision Medicine? Journal of Clinical Medicine, 11, Article 5782. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Monneret, G., Haem Rahimi, M., Lukaszewicz, A., Venet, F. and Gossez, M. (2024) Shadows and Lights in Sepsis Immunotherapy. Expert Opinion on Pharmacotherapy, 25, 2125-2133. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liang, C., Pan, S., Wu, W., Chen, F., Zhang, C., Zhou, C., et al. (2024) Glucocorticoid Therapy for Sepsis in the AI Era: A Survey on Current and Future Approaches. Computational and Structural Biotechnology Journal, 24, 292-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Giamarellos-Bourboulis, E.J., Aschenbrenner, A.C., Bauer, M., Bock, C., Calandra, T., Gat-Viks, I., et al. (2024) The Pathophysiology of Sepsis and Precision-Medicine-Based Immunotherapy. Nature Immunology, 25, 19-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lin, L., Liu, H., Zhang, D., Du, L. and Zhang, H. (2024) Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. International Journal of Nanomedicine, 19, 12529-12556. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wösten-van Asperen, R.M., la Roi-Teeuw, H.M., van Amstel, R.B., Bos, L.D., Tissing, W.J., Jordan, I., et al. (2023) Distinct Clinical Phenotypes in Paediatric Cancer Patients with Sepsis Are Associated with Different Outcomes—An International Multicentre Retrospective Study. eClinicalMedicine, 65, Article ID: 102252. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Langston, J.C., Yang, Q., Kiani, M.F. and Kilpatrick, L.E. (2022) Leukocyte Phenotyping in Sepsis Using Omics, Functional Analysis, and in Silico Modeling. Shock, 59, 224-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Komorowski, M., Green, A., Tatham, K.C., Seymour, C. and Antcliffe, D. (2022) Sepsis Biomarkers and Diagnostic Tools with a Focus on Machine Learning. eBioMedicine, 86, Article ID: 104394. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bomrah, S., Uddin, M., Upadhyay, U., Komorowski, M., Priya, J., Dhar, E., et al. (2024) A Scoping Review of Machine Learning for Sepsis Prediction-Feature Engineering Strategies and Model Performance: A Step Towards Explainability. Critical Care, 28, Article No. 180. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Murao, A., Jha, A., Aziz, M. and Wang, P. (2024) Transcriptomic Profiling of Immune Cells in Murine Polymicrobial Sepsis. Frontiers in Immunology, 15, Article 1347453. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tsuji, N., Tsuji, T., Yamashita, T., Hayase, N., Hu, X., Yuen, P.S.T., et al. (2023) BAM15 Treats Mouse Sepsis and Kidney Injury, Linking Mortality, Mitochondrial DNA, Tubule Damage, and Neutrophils. Journal of Clinical Investigation, 133, e152401. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shi, Z., Zhang, X., Yang, X., Zhang, X., Ma, F., Gan, H., et al. (2023) Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. Advanced Materials, 35, e2302560. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Suh, G.J., shin, T.G., Kwon, W.Y., Kim, K., Jo, Y.H., Choi, S., et al. (2023) Hemodynamic Management of Septic Shock: Beyond the Surviving Sepsis Campaign Guidelines. Clinical and Experimental Emergency Medicine, 10, 255-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Peng, J., Tang, R., Yu, Q., Wang, D. and Qi, D. (2022) No Sex Differences in the Incidence, Risk Factors and Clinical Impact of Acute Kidney Injury in Critically Ill Patients with Sepsis. Frontiers in Immunology, 13, Article 895018. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhou, T.L., Zhou, Y.P., Zhang, Y.C., et al. (2020) [Clinical Features and Outcomes of Cancer-Related versus Non-Cancer-Related Sepsis in Pediatric Intensive Care Unit]. Chinese Journal of Pediatrics, 58, 482-487.
|
|
[37]
|
Williams, J.C., Ford, M.L. and Coopersmith, C.M. (2023) Cancer and Sepsis. Clinical Science, 137, 881-893. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sinha, P., Meyer, N.J. and Calfee, C.S. (2023) Biological Phenotyping in Sepsis and Acute Respiratory Distress Syndrome. Annual Review of Medicine, 74, 457-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Na, A., Lee, H., Min, E.K., Paudel, S., Choi, S.Y., Sim, H., et al. (2023) Novel Time-Dependent Multi-Omics Integration in Sepsis-Associated Liver Dysfunction. Genomics, Proteomics & Bioinformatics, 21, 1101-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Santacroce, G., Zammarchi, I., Nardone, O.M., Capobianco, I., Puga-Tejada, M., Majumder, S., et al. (2025) Rediscovering Histology—The Application of Artificial Intelligence in Inflammatory Bowel Disease Histologic Assessment. Therapeutic Advances in Gastroenterology, 18, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Scherger, S.J. and Kalil, A.C. (2024) Sepsis Phenotypes, Subphenotypes, and Endotypes: Are They Ready for Bedside Care? Current Opinion in Critical Care, 30, 406-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Stevens, J., Tezel, O., Bonnefil, V., Hapstack, M. and Atreya, M.R. (2024) Biological Basis of Critical Illness Subclasses: From the Bedside to the Bench and Back Again. Critical Care, 28, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
van Amstel, R.B.E., Kennedy, J.N., Scicluna, B.P., Bos, L.D.J., Peters-Sengers, H., Butler, J.M., et al. (2023) Uncovering Heterogeneity in Sepsis: A Comparative Analysis of Subphenotypes. Intensive Care Medicine, 49, 1360-1369. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Cummings, M.J., Lutwama, J.J., Tomoiaga, A.S., Owor, N., Lu, X., Ross, J.E., et al. (2024) Molecular Phenotypes of Critical Illness Confer Prognostic and Biological Enrichment in Sub-Saharan Africa: A Prospective Cohort Study from Uganda. Thorax, 80, 175-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, N., Riazi, K., Pan, J., Thavorn, K., Ziegler, J., Rochwerg, B., et al. (2025) Unsupervised Clustering for Sepsis Identification in Large-Scale Patient Data: A Model Development and Validation Study. Intensive Care Medicine Experimental, 13, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Düsing, C., Cimiano, P., Rehberg, S., Scherer, C., Kaup, O., Köster, C., et al. (2024) Integrating Federated Learning for Improved Counterfactual Explanations in Clinical Decision Support Systems for Sepsis Therapy. Artificial Intelligence in Medicine, 157, Article ID: 102982. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ukanwa, K. (2024) Algorithmic Bias: Social Science Research Integration through the 3-D Dependable AI Framework. Current Opinion in Psychology, 58, Article ID: 101836. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wang, H.E., Weiner, J.P., Saria, S., Lehmann, H. and Kharrazi, H. (2024) Assessing Racial Bias in Healthcare Predictive Models: Practical Lessons from an Empirical Evaluation of 30-Day Hospital Readmission Models. Journal of Biomedical Informatics, 156, Article ID: 104683. [Google Scholar] [CrossRef] [PubMed]
|