[1]
|
Chiu, C. and Legrand, M. (2021) Epidemiology of Sepsis and Septic Shock. Current Opinion in Anaesthesiology, 34, 71-76. https://doi.org/10.1097/aco.0000000000000958
|
[2]
|
Wilcox, M.E., Daou, M., Dionne, J.C., Dodek, P., Englesakis, M., Garland, A., et al. (2022) Protocol for a Scoping Review of Sepsis Epidemiology. Systematic Reviews, 11, Article No. 125. https://doi.org/10.1186/s13643-022-02002-6
|
[3]
|
Xu, J., Zhang, W., Fu, J., Fang, X., Gao, C., Li, C., et al. (2024) Viral Sepsis: Diagnosis, Clinical Features, Pathogenesis, and Clinical Considerations. Military Medical Research, 11, Article No. 78. https://doi.org/10.1186/s40779-024-00581-0
|
[4]
|
Bruserud, Ø., Mosevoll, K.A., Bruserud, Ø., Reikvam, H. and Wendelbo, Ø. (2023) The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells, 12, Article 1003. https://doi.org/10.3390/cells12071003
|
[5]
|
Kolodyazhna, A., Wiersinga, W.J. and van der Poll, T. (2025) Aiming for Precision: Personalized Medicine through Sepsis Subtyping. Burns & Trauma, 13, tkae073. https://doi.org/10.1093/burnst/tkae073
|
[6]
|
Chenoweth, J.G., Brandsma, J., Striegel, D.A., Genzor, P., Chiyka, E., Blair, P.W., et al. (2024) Sepsis Endotypes Identified by Host Gene Expression across Global Cohorts. Communications Medicine, 4, Article No. 120. https://doi.org/10.1038/s43856-024-00542-7
|
[7]
|
Vadapalli, S., Abdelhalim, H., Zeeshan, S. and Ahmed, Z. (2022) Artificial Intelligence and Machine Learning Approaches Using Gene Expression and Variant Data for Personalized Medicine. Briefings in Bioinformatics, 23, bbac191. https://doi.org/10.1093/bib/bbac191
|
[8]
|
McCoy, M., Yeang, C., Bahnassy, S., Tam, S., Riggins, R.B., Parashar, D., et al. (2025) Generalized Evolutionary Classifier for Evolutionary Guided Precision Medicine. JCO Precision Oncology, 9, e2300714. https://doi.org/10.1200/po.23.00714
|
[9]
|
Wang, W. and Liu, C. (2023) Sepsis Heterogeneity. World Journal of Pediatrics, 19, 919-927. https://doi.org/10.1007/s12519-023-00689-8
|
[10]
|
Cummings, M.J., Lutwama, J.J., Owor, N., Tomoiaga, A.S., Ross, J.E., Muwanga, M., et al. (2025) Unsupervised Classification of the Host Response Identifies Dominant Pathobiological Signatures of Sepsis in Sub-Saharan Africa. American Journal of Respiratory and Critical Care Medicine, 211, 357-369. https://doi.org/10.1164/rccm.202407-1394oc
|
[11]
|
Brandes-Leibovitz, R., Riza, A., Yankovitz, G., Pirvu, A., Dorobantu, S., Dragos, A., et al. (2024) Sepsis Pathogenesis and Outcome Are Shaped by the Balance between the Transcriptional States of Systemic Inflammation and Antimicrobial Response. Cell Reports Medicine, 5, Article ID: 101829. https://doi.org/10.1016/j.xcrm.2024.101829
|
[12]
|
Sun, P., Cui, M., Jing, J., Kong, F., Wang, S., Tang, L., et al. (2023) Deciphering the Molecular and Cellular Atlas of Immune Cells in Septic Patients with Different Bacterial Infections. Journal of Translational Medicine, 21, Article No. 777. https://doi.org/10.1186/s12967-023-04631-4
|
[13]
|
Tao, X., Wang, J., Liu, B., Cheng, P., Mu, D., Du, H., et al. (2024) Plasticity and Crosstalk of Mesenchymal Stem Cells and Macrophages in Immunomodulation in Sepsis. Frontiers in Immunology, 15, Article 1338744. https://doi.org/10.3389/fimmu.2024.1338744
|
[14]
|
Zhang, X., Zhang, W., Zhang, H. and Liao, X. (2025) Sepsis Subphenotypes: Bridging the Gaps in Sepsis Treatment Strategies. Frontiers in Immunology, 16, Article 1546474. https://doi.org/10.3389/fimmu.2025.1546474
|
[15]
|
Burnham, K.L., Milind, N., Lee, W., Kwok, A.J., Cano-Gamez, K., Mi, Y., et al. (2024) eQTLs Identify Regulatory Networks and Drivers of Variation in the Individual Response to Sepsis. Cell Genomics, 4, Article ID: 100587. https://doi.org/10.1016/j.xgen.2024.100587
|
[16]
|
Santacroce, E., D’Angerio, M., Ciobanu, A.L., Masini, L., Lo Tartaro, D., Coloretti, I., et al. (2024) Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells, 13, Article 439. https://doi.org/10.3390/cells13050439
|
[17]
|
Wang, L., Tian, W., Zhang, W., Wen, D., Yang, S., Wang, J., et al. (2024) A Machine Learning Model for Predicting Sepsis Based on an Optimized Assay for Microbial Cell-Free DNA Sequencing. Clinica Chimica Acta, 559, Article ID: 119716. https://doi.org/10.1016/j.cca.2024.119716
|
[18]
|
Shen, X., Zhao, Y., Wang, Z. and Shi, Q. (2022) Recent Advances in High-Throughput Single-Cell Transcriptomics and Spatial Transcriptomics. Lab on a Chip, 22, 4774-4791. https://doi.org/10.1039/d2lc00633b
|
[19]
|
Cajander, S., Kox, M., Scicluna, B.P., Weigand, M.A., Mora, R.A., Flohé, S.B., et al. (2024) Profiling the Dysregulated Immune Response in Sepsis: Overcoming Challenges to Achieve the Goal of Precision Medicine. The Lancet Respiratory Medicine, 12, 305-322. https://doi.org/10.1016/s2213-2600(23)00330-2
|
[20]
|
Eloranta, S. and Boman, M. (2022) Predictive Models for Clinical Decision Making: Deep Dives in Practical Machine Learning. Journal of Internal Medicine, 292, 278-295. https://doi.org/10.1111/joim.13483
|
[21]
|
Feng, J., Liu, L., Liu, J. and Wang, J. (2024) Immunological Alterations in the Endothelial Barrier: A New Predictive and Therapeutic Paradigm for Sepsis. Expert Review of Clinical Immunology, 20, 1205-1217. https://doi.org/10.1080/1744666x.2024.2366301
|
[22]
|
von Groote, T. and Meersch-Dini, M. (2022) Biomarkers for the Prediction and Judgement of Sepsis and Sepsis Complications: A Step Towards Precision Medicine? Journal of Clinical Medicine, 11, Article 5782. https://doi.org/10.3390/jcm11195782
|
[23]
|
Monneret, G., Haem Rahimi, M., Lukaszewicz, A., Venet, F. and Gossez, M. (2024) Shadows and Lights in Sepsis Immunotherapy. Expert Opinion on Pharmacotherapy, 25, 2125-2133. https://doi.org/10.1080/14656566.2024.2418987
|
[24]
|
Liang, C., Pan, S., Wu, W., Chen, F., Zhang, C., Zhou, C., et al. (2024) Glucocorticoid Therapy for Sepsis in the AI Era: A Survey on Current and Future Approaches. Computational and Structural Biotechnology Journal, 24, 292-305. https://doi.org/10.1016/j.csbj.2024.04.020
|
[25]
|
Giamarellos-Bourboulis, E.J., Aschenbrenner, A.C., Bauer, M., Bock, C., Calandra, T., Gat-Viks, I., et al. (2024) The Pathophysiology of Sepsis and Precision-Medicine-Based Immunotherapy. Nature Immunology, 25, 19-28. https://doi.org/10.1038/s41590-023-01660-5
|
[26]
|
Lin, L., Liu, H., Zhang, D., Du, L. and Zhang, H. (2024) Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. International Journal of Nanomedicine, 19, 12529-12556. https://doi.org/10.2147/ijn.s496456
|
[27]
|
Wösten-van Asperen, R.M., la Roi-Teeuw, H.M., van Amstel, R.B., Bos, L.D., Tissing, W.J., Jordan, I., et al. (2023) Distinct Clinical Phenotypes in Paediatric Cancer Patients with Sepsis Are Associated with Different Outcomes—An International Multicentre Retrospective Study. eClinicalMedicine, 65, Article ID: 102252. https://doi.org/10.1016/j.eclinm.2023.102252
|
[28]
|
Langston, J.C., Yang, Q., Kiani, M.F. and Kilpatrick, L.E. (2022) Leukocyte Phenotyping in Sepsis Using Omics, Functional Analysis, and in Silico Modeling. Shock, 59, 224-231. https://doi.org/10.1097/shk.0000000000002047
|
[29]
|
Komorowski, M., Green, A., Tatham, K.C., Seymour, C. and Antcliffe, D. (2022) Sepsis Biomarkers and Diagnostic Tools with a Focus on Machine Learning. eBioMedicine, 86, Article ID: 104394. https://doi.org/10.1016/j.ebiom.2022.104394
|
[30]
|
Bomrah, S., Uddin, M., Upadhyay, U., Komorowski, M., Priya, J., Dhar, E., et al. (2024) A Scoping Review of Machine Learning for Sepsis Prediction-Feature Engineering Strategies and Model Performance: A Step Towards Explainability. Critical Care, 28, Article No. 180. https://doi.org/10.1186/s13054-024-04948-6
|
[31]
|
Murao, A., Jha, A., Aziz, M. and Wang, P. (2024) Transcriptomic Profiling of Immune Cells in Murine Polymicrobial Sepsis. Frontiers in Immunology, 15, Article 1347453. https://doi.org/10.3389/fimmu.2024.1347453
|
[32]
|
Tsuji, N., Tsuji, T., Yamashita, T., Hayase, N., Hu, X., Yuen, P.S.T., et al. (2023) BAM15 Treats Mouse Sepsis and Kidney Injury, Linking Mortality, Mitochondrial DNA, Tubule Damage, and Neutrophils. Journal of Clinical Investigation, 133, e152401. https://doi.org/10.1172/jci152401
|
[33]
|
Shi, Z., Zhang, X., Yang, X., Zhang, X., Ma, F., Gan, H., et al. (2023) Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. Advanced Materials, 35, e2302560. https://doi.org/10.1002/adma.202302560
|
[34]
|
Suh, G.J., shin, T.G., Kwon, W.Y., Kim, K., Jo, Y.H., Choi, S., et al. (2023) Hemodynamic Management of Septic Shock: Beyond the Surviving Sepsis Campaign Guidelines. Clinical and Experimental Emergency Medicine, 10, 255-264. https://doi.org/10.15441/ceem.23.065
|
[35]
|
Peng, J., Tang, R., Yu, Q., Wang, D. and Qi, D. (2022) No Sex Differences in the Incidence, Risk Factors and Clinical Impact of Acute Kidney Injury in Critically Ill Patients with Sepsis. Frontiers in Immunology, 13, Article 895018. https://doi.org/10.3389/fimmu.2022.895018
|
[36]
|
Zhou, T.L., Zhou, Y.P., Zhang, Y.C., et al. (2020) [Clinical Features and Outcomes of Cancer-Related versus Non-Cancer-Related Sepsis in Pediatric Intensive Care Unit]. Chinese Journal of Pediatrics, 58, 482-487.
|
[37]
|
Williams, J.C., Ford, M.L. and Coopersmith, C.M. (2023) Cancer and Sepsis. Clinical Science, 137, 881-893. https://doi.org/10.1042/cs20220713
|
[38]
|
Sinha, P., Meyer, N.J. and Calfee, C.S. (2023) Biological Phenotyping in Sepsis and Acute Respiratory Distress Syndrome. Annual Review of Medicine, 74, 457-471. https://doi.org/10.1146/annurev-med-043021-014005
|
[39]
|
Na, A., Lee, H., Min, E.K., Paudel, S., Choi, S.Y., Sim, H., et al. (2023) Novel Time-Dependent Multi-Omics Integration in Sepsis-Associated Liver Dysfunction. Genomics, Proteomics & Bioinformatics, 21, 1101-1116. https://doi.org/10.1016/j.gpb.2023.04.002
|
[40]
|
Santacroce, G., Zammarchi, I., Nardone, O.M., Capobianco, I., Puga-Tejada, M., Majumder, S., et al. (2025) Rediscovering Histology—The Application of Artificial Intelligence in Inflammatory Bowel Disease Histologic Assessment. Therapeutic Advances in Gastroenterology, 18, 1-17. https://doi.org/10.1177/17562848251325525
|
[41]
|
Scherger, S.J. and Kalil, A.C. (2024) Sepsis Phenotypes, Subphenotypes, and Endotypes: Are They Ready for Bedside Care? Current Opinion in Critical Care, 30, 406-413. https://doi.org/10.1097/mcc.0000000000001178
|
[42]
|
Stevens, J., Tezel, O., Bonnefil, V., Hapstack, M. and Atreya, M.R. (2024) Biological Basis of Critical Illness Subclasses: From the Bedside to the Bench and Back Again. Critical Care, 28, Article No. 186. https://doi.org/10.1186/s13054-024-04959-3
|
[43]
|
van Amstel, R.B.E., Kennedy, J.N., Scicluna, B.P., Bos, L.D.J., Peters-Sengers, H., Butler, J.M., et al. (2023) Uncovering Heterogeneity in Sepsis: A Comparative Analysis of Subphenotypes. Intensive Care Medicine, 49, 1360-1369. https://doi.org/10.1007/s00134-023-07239-w
|
[44]
|
Cummings, M.J., Lutwama, J.J., Tomoiaga, A.S., Owor, N., Lu, X., Ross, J.E., et al. (2024) Molecular Phenotypes of Critical Illness Confer Prognostic and Biological Enrichment in Sub-Saharan Africa: A Prospective Cohort Study from Uganda. Thorax, 80, 175-179. https://doi.org/10.1136/thorax-2024-222412
|
[45]
|
Li, N., Riazi, K., Pan, J., Thavorn, K., Ziegler, J., Rochwerg, B., et al. (2025) Unsupervised Clustering for Sepsis Identification in Large-Scale Patient Data: A Model Development and Validation Study. Intensive Care Medicine Experimental, 13, Article No. 37. https://doi.org/10.1186/s40635-025-00744-w
|
[46]
|
Düsing, C., Cimiano, P., Rehberg, S., Scherer, C., Kaup, O., Köster, C., et al. (2024) Integrating Federated Learning for Improved Counterfactual Explanations in Clinical Decision Support Systems for Sepsis Therapy. Artificial Intelligence in Medicine, 157, Article ID: 102982. https://doi.org/10.1016/j.artmed.2024.102982
|
[47]
|
Ukanwa, K. (2024) Algorithmic Bias: Social Science Research Integration through the 3-D Dependable AI Framework. Current Opinion in Psychology, 58, Article ID: 101836. https://doi.org/10.1016/j.copsyc.2024.101836
|
[48]
|
Wang, H.E., Weiner, J.P., Saria, S., Lehmann, H. and Kharrazi, H. (2024) Assessing Racial Bias in Healthcare Predictive Models: Practical Lessons from an Empirical Evaluation of 30-Day Hospital Readmission Models. Journal of Biomedical Informatics, 156, Article ID: 104683. https://doi.org/10.1016/j.jbi.2024.104683
|