|
[1]
|
Peacock, M., Turner, C.H., Econs, M.J. and Foroud, T. (2002) Genetics of Osteoporosis. Endocrine Reviews, 23, 303-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Deng, H., Mahaney, M.C., Williams, J.T., Li, J., Conway, T., Davies, K.M., et al. (2001) Relevance of the Genes for Bone Mass Variation to Susceptibility to Osteoporotic Fractures and Its Implications to Gene Search for Complex Human Diseases. Genetic Epidemiology, 22, 12-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
赵敏. 骨质疏松症的易感遗传位点鉴定及与肾病之间的因果关系研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2022.
|
|
[4]
|
Khosla, S. and Monroe, D.G. (2017) Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harbor Perspectives in Medicine, 8, a031211. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
钟丽红. 雌激素相关受体alpha调控脂质分解代谢促进间充质干细胞成骨分化的机制研究[D]: [硕士学位论文]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2022.
|
|
[6]
|
Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., Boyle, W.J., Lacey, D.L. and Riggs, B.L. (2003) Role of RANK Ligand in Mediating Increased Bone Resorption in Early Postmenopausal Women. Journal of Clinical Investigation, 111, 1221-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yao, P., Bennett, D., Mafham, M., Lin, X., Chen, Z., Armitage, J., et al. (2019) Vitamin D and Calcium for the Prevention of Fracture. JAMA Network Open, 2, e1917789. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yang, M. and Zhu, L. (2024) Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. International Journal of Molecular Sciences, 25, Article 2688. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Prentice, R.L., Aragaki, A.K., Chlebowski, R.T., Rossouw, J.E., Anderson, G.L., Stefanick, M.L., et al. (2020) Randomized Trial Evaluation of the Benefits and Risks of Menopausal Hormone Therapy among Women 50-59 Years of Age. American Journal of Epidemiology, 190, 365-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Writing Group for the Women’s Health Initiative Investigators (2002) Risks and Benefits of Estrogen Plus Progestin in Healthy Postmenopausal Women: Principal Results from the Women’s Health Initiative Randomized Controlled Trial. The Journal of the American Medical Association, 288, 321-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kim, J. and Munster, P.N. (2025) Estrogens and Breast Cancer. Annals of Oncology, 36, 134-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Schmidt, P.J., Wei, S., Martinez, P.E., Dor, R.R.B., Guerrieri, G.M., Palladino, P.P., et al. (2021) The Short-Term Effects of Estradiol, Raloxifene, and a Phytoestrogen in Women with Perimenopausal Depression. Menopause, 28, 369-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Nelson, A.W., Groen, A.J., Miller, J.L., Warren, A.Y., Holmes, K.A., Tarulli, G.A., et al. (2017) Corrigendum to “Comprehensive Assessment of Estrogen Receptor Beta Antibodies in Cancer Cell Line Models and Tissue Reveals Critical Limitations in Reagent Specificity” [mol. Cell Endocrinol. 440 (2016) 138-150]. Molecular and Cellular Endocrinology, 443, 175. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Giustina, A., Bilezikian, J.P., Adler, R.A., Banfi, G., Bikle, D.D., Binkley, N.C., et al. (2024) Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocrine Reviews, 45, 625-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cianferotti, L., Bifolco, G., Caffarelli, C., Mazziotti, G., Migliaccio, S., Napoli, N., et al. (2024) Nutrition, Vitamin D, and Calcium in Elderly Patients before and after a Hip Fracture and Their Impact on the Musculoskeletal System: A Narrative Review. Nutrients, 16, Article 1773. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Méndez-Sánchez, L., Clark, P., Winzenberg, T.M., Tugwell, P., Correa-Burrows, P. and Costello, R. (2023) Calcium and Vitamin D for Increasing Bone Mineral Density in Premenopausal Women. Cochrane Database of Systematic Reviews, 2023, CD12664. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Asif, A. and Farooq, N. (2025) Vitamin D Toxicity. StatPearls Publishing.
|
|
[18]
|
Thaler, R., Khani, F., Sturmlechner, I., Dehghani, S.S., Denbeigh, J.M., Zhou, X., et al. (2022) Vitamin C Epigenetically Controls Osteogenesis and Bone Mineralization. Nature Communications, 13, Article No. 5883. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kim, W., Bae, S., Kim, H., Kim, Y., Choi, J., Lim, S.Y., et al. (2013) Ascorbic Acid Insufficiency Induces the Severe Defect on Bone Formation via the Down-Regulation of Osteocalcin Production. Anatomy & Cell Biology, 46, 254-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Maxfield, L., Daley, S.F. and Crane, J.S. (2025) Vitamin C Deficiency. StatPearls Publishing.
|
|
[21]
|
Ciosek, Ż., Kot, K. and Rotter, I. (2023) Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. International Journal of Environmental Research and Public Health, 20, Article 2197. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wudhikulprapan, W., Chattipakorn, S.C., Chattipakorn, N. and Kumfu, S. (2024) Iron Overload and Programmed Bone Marrow Cell Death: Potential Mechanistic Insights. Archives of Biochemistry and Biophysics, 754, Article 109954. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
von Brackel, F.N. and Oheim, R. (2024) Iron and Bones: Effects of Iron Overload, Deficiency and Anemia Treatments on Bone. JBMR Plus, 8, ziae064. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ma, J., Wang, A., Zhang, H., Liu, B., Geng, Y., Xu, Y., et al. (2022) Iron Overload Induced Osteocytes Apoptosis and Led to Bone Loss in Hepcidin−/− Mice through Increasing Sclerostin and RANKL/OPG. Bone, 164, Article 116511. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tsay, J., Yang, Z., Ross, F.P., Cunningham-Rundles, S., Lin, H., Coleman, R., et al. (2010) Bone Loss Caused by Iron Overload in a Murine Model: Importance of Oxidative Stress. Blood, 116, 2582-2589. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Luo, C., Xu, W., Tang, X., Liu, X., Cheng, Y., Wu, Y., et al. (2022) Canonical Wnt Signaling Works Downstream of Iron Overload to Prevent Ferroptosis from Damaging Osteoblast Differentiation. Free Radical Biology and Medicine, 188, 337-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Pasricha, S., Tye-Din, J., Muckenthaler, M.U. and Swinkels, D.W. (2021) Iron Deficiency. The Lancet, 397, 233-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, X. and An, J. (2023) Dietary Iron Intake and Its Impact on Osteopenia/Osteoporosis. BMC Endocrine Disorders, 23, Article No. 154. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, J., Li, Q., Feng, Y. and Zeng, Y. (2023) Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. International Journal of Molecular Sciences, 24, Article 6891. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, C., Cheng, P., Liang, M., Chen, Y., Lu, Q., Wang, J., et al. (2015) MicroRNA-188 Regulates Age-Related Switch between Osteoblast and Adipocyte Differentiation. Journal of Clinical Investigation, 125, 1509-1522. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hemmatian, H., Bakker, A.D., Klein-Nulend, J. and van Lenthe, G.H. (2017) Aging, Osteocytes, and Mechanotransduction. Current Osteoporosis Reports, 15, 401-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Demaria, M., Ohtani, N., Youssef, S.A., Rodier, F., Toussaint, W., Mitchell, J.R., et al. (2014) An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 31, 722-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Coppé, J., Desprez, P., Krtolica, A. and Campisi, J. (2010) The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bao, H., Cao, J., Chen, M., Chen, M., Chen, W., Chen, X., et al. (2023) Biomarkers of Aging. Science China Life Sciences, 66, 893-1066. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, Y., Lu, L., Xie, Y., Chen, X., Tian, L., Liang, Y., et al. (2021) Interleukin-6 Knockout Inhibits Senescence of Bone Mesenchymal Stem Cells in High-Fat Diet-Induced Bone Loss. Frontiers in Endocrinology, 11, Article 622950. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, J., Chen, J., Zhang, B. and Jia, X. (2021) IL-6 Regulates the Bone Metabolism and Inflammatory Microenvironment in Aging Mice by Inhibiting Setd7. Acta Histochemica, 123, Article 151718. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sjögren, K., Engdahl, C., Henning, P., Lerner, U.H., Tremaroli, V., Lagerquist, M.K., et al. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
De Martinis, M., Sirufo, M.M., Nocelli, C., Fontanella, L. and Ginaldi, L. (2020) Hyperhomocysteinemia Is Associated with Inflammation, Bone Resorption, Vitamin B12 and Folate Deficiency and MTHFR C677T Polymorphism in Postmenopausal Women with Decreased Bone Mineral Density. International Journal of Environmental Research and Public Health, 17, Article 4260. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Robling, A.G. and Bonewald, L.F. (2020) The Osteocyte: New Insights. Annual Review of Physiology, 82, 485-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Tyagi, A.M., Yu, M., Darby, T.M., Vaccaro, C., Li, J., Owens, J.A., et al. (2018) The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity, 49, 1116-1131. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Qi, X., Zhang, Y., Guo, H., Hai, Y., Luo, Y. and Yue, T. (2019) Mechanism and Intervention Measures of Iron Side Effects on the Intestine. Critical Reviews in Food Science and Nutrition, 60, 2113-2125. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Shi, N., Li, N., Duan, X. and Niu, H. (2017) Interaction between the Gut Microbiome and Mucosal Immune System. Military Medical Research, 4, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Guo, M., Liu, H., Yu, Y., Zhu, X., Xie, H., Wei, C., et al. (2023) lactobacillus Rhamnosus GG Ameliorates Osteoporosis in Ovariectomized Rats by Regulating the Th17/Treg Balance and Gut Microbiota Structure. Gut Microbes, 15, Article 2190304. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Deng, L., Wojciech, L., Png, C.W., Koh, E.Y., Aung, T.T., Kioh, D.Y.Q., et al. (2022) Experimental Colonization with Blastocystis ST4 Is Associated with Protective Immune Responses and Modulation of Gut Microbiome in a DSS-Induced Colitis Mouse Model. Cellular and Molecular Life Sciences, 79, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ohsumi, Y. (2013) Historical Landmarks of Autophagy Research. Cell Research, 24, 9-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ma, Y., Qi, M., An, Y., Zhang, L., Yang, R., Doro, D.H., et al. (2017) Autophagy Controls Mesenchymal Stem Cell Properties and Senescence during Bone Aging. Aging Cell, 17, e12709. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yang, Y., Li, B., Zheng, X., Chen, J., Chen, K., Jiang, S., et al. (2014) Oxidative Damage to Osteoblasts Can Be Alleviated by Early Autophagy through the Endoplasmic Reticulum Stress Pathway—Implications for the Treatment of Osteoporosis. Free Radical Biology and Medicine, 77, 10-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Thomas, N., Choi, H.K., Wei, X., Wang, L., Mishina, Y., Guan, J., et al. (2019) Autophagy Regulates Craniofacial Bone Acquisition. Calcified Tissue International, 105, 518-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Weng, Y.M., Ke, C.R., Kong, J.Z., et al. (2018) The Significant Role of ATG5 in the Maintenance of Normal Functions of Mc3T3-E1 Osteoblast. European Review for Medical and Pharmacological Sciences, 22, 1224-1232.
|
|
[50]
|
Yin, X., Zhou, C., Li, J., Liu, R., Shi, B., Yuan, Q., et al. (2019) Autophagy in Bone Homeostasis and the Onset of Osteoporosis. Bone Research, 7, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Arai, A., Kim, S., Goldshteyn, V., Kim, T., Park, N., Wang, C., et al. (2019) Beclin1 Modulates Bone Homeostasis by Regulating Osteoclast and Chondrocyte Differentiation. Journal of Bone and Mineral Research, 34, 1753-1766. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Wang, J., Zhang, Y., Cao, J., Wang, Y., Anwar, N., Zhang, Z., et al. (2023) The Role of Autophagy in Bone Metabolism and Clinical Significance. Autophagy, 19, 2409-2427. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Huang, C., Li, R., Yang, C., Ding, R., Li, Q., Xie, D., et al. (2021) PAX8-AS1 Knockdown Facilitates Cell Growth and Inactivates Autophagy in Osteoblasts via the miR-1252-5p/GNB1 Axis in Osteoporosis. Experimental & Molecular Medicine, 53, 894-906. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhu, L., Hua, F., Ding, W., Ding, K., Zhang, Y. and Xu, C. (2020) The Correlation between the Th17/Treg Cell Balance and Bone Health. Immunity & Ageing, 17, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wang, J., Hou, Y., Mu, L., Yang, M. and Ai, X. (2024) Gut Microbiota Contributes to the Intestinal and Extraintestinal Immune Homeostasis by Balancing Th17/Treg Cells. International Immunopharmacology, 143, Article 113570. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hu, Y., Ding, J., Chen, Y., Wang, Q., Yang, X., Hua, H., et al. (2024) Soluble Fibrinogen-Like Protein 2 Downregulation and Th17/Treg Imbalance in a Taurocholate-Induced Murine Experimental Model of Severe Acute Pancreatitis. Journal of Clinical Laboratory Analysis, 38, e25076. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Ono, T., Hayashi, M., Sasaki, F. and Nakashima, T. (2020) RANKL Biology: Bone Metabolism, the Immune System, and Beyond. Inflammation and Regeneration, 40, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Qi, P., Xie, R., Liu, H., Zhang, Z., Cheng, Y., Ma, J., et al. (2024) Mechanisms of Gut Homeostasis Regulating Th17/Treg Cell Balance in PMOP. Frontiers in Immunology, 15, Article 1497311. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Reid, I.R. and Billington, E.O. (2022) Drug Therapy for Osteoporosis in Older Adults. The Lancet, 399, 1080-1092. [Google Scholar] [CrossRef] [PubMed]
|