原发性骨质疏松症病因学研究进展
Research Progress in the Etiology of Primary Osteoporosis
DOI: 10.12677/jcpm.2025.43354, PDF, HTML, XML,    科研立项经费支持
作者: 武晓东:济宁医学院临床医学院(附属医院),山东 济宁;王瑞民:莒南县人民医院手足踝外科,山东 临沂;李彦明*:济宁医学院附属医院脊柱外科,山东 济宁
关键词: 骨质疏松症病因学肠道菌群自噬Osteoporosis Etiology Gut microbiome Iron Autophagy
摘要: 骨质疏松症是一种以骨量低,骨组织微结构损坏,导致骨脆性增加,易发生脆性骨折为特征的全身性骨病。骨质疏松症包括原发性骨质疏松症和继发性骨质疏松症。原发性骨质疏松包括老年性骨质疏松、绝经后骨质疏松和特发性骨质疏松。近年来,国内外学者研究发现原发性骨质疏松症的发病与遗传因素、细胞衰老、肠道菌群失调、铁代谢失衡、自噬异常、Th17/Treg失衡等有关。本文通过查阅相关文献,对近年来原发性骨质疏松症的病因学研究进展进行阐述。
Abstract: Osteoporosis is a systemic bone disease characterized by low bone mass and microstructural deterioration of bone tissue, leading to increased bone fragility and susceptibility to fragility fractures. Osteoporosis includes primary osteoporosis and secondary osteoporosis. Primary osteoporosis encompasses senile osteoporosis, postmenopausal osteoporosis, and idiopathic osteoporosis. In recent years, studies by domestic and international scholars have found that the pathogenesis of primary osteoporosis is associated with genetic factors, cellular senescence, gut microbiota dysbiosis, iron metabolism imbalance, autophagy abnormalities, and Th17/Treg imbalance, among others. This article reviews relevant literature to elaborate on the progress of research in the etiology of primary osteoporosis in recent years.
文章引用:武晓东, 王瑞民, 李彦明. 原发性骨质疏松症病因学研究进展[J]. 临床个性化医学, 2025, 4(3): 362-369. https://doi.org/10.12677/jcpm.2025.43354

1. 引言

原发性骨质疏松症(osteoporosis, OP)是自然衰老过程中引起的骨骼系统的退行性改变,是最常见的代谢性骨病。随着人口老龄化的发展,骨质疏松症的发病率逐年增加,骨质疏松症患者常因轻微外力即出现骨折,对患者的生存质量造成严重的影响,但病因仍不明确。因此,充分了解骨质疏松的病因和发病机制,并在此基础上指导骨质疏松症的预防、诊断和治疗策略的制定成为亟待解决的问题。

骨稳态依赖于破骨细胞骨吸收和间充质细胞系成骨细胞骨基质形成之间的精确平衡,涉及一系列复杂且高度调控的步骤,骨质疏松症及其骨折的发生是多种因素交互作用的结果。

2. 遗传因素

原发性骨质疏松有较强的遗传倾向。骨密度(bone mineral density, BMD)的遗传率为60%~80%,也就是说大约60%~80%的BMD来源于父母,较少的一部分来自非遗传因素即环境因素[1]。此外,还有研究表明骨质疏松骨折的遗传率为50%~70%,这也提示对于有骨质疏松家族史的低BMD患者应该及早干预[2] [3]

3. 内分泌因素

3.1. 雌激素缺乏

雌激素对于男性和女性的骨质均有保护作用,绝经后雌激素的骤然缺乏是导致绝经后骨质疏松的重要原因[4]。雌激素通过破骨细胞上的雌激素受体抑制破骨细胞的分化直接抑制骨吸收,也可通过抑制成骨细胞、T细胞、B细胞核因子-κB配体RANKL的产生间接抑制骨吸收;促进骨髓间充质干细胞成骨分化增加,成脂分化减少,修复衰老的间充质干细胞[5] [6]。雌激素缺乏时一方面对骨吸收的抑制不足;另一方面,对抗氧化应激的作用降低,体内的活性氧(reactive oxygen species, ROS)堆积,造成成骨细胞凋亡增加、成骨细胞分化减少,骨形成不足[7]。雌激素缺乏增加了活化T细胞上表达的共刺激因子CD40L的数量,诱导了基质细胞上M-CSF和RANKL的表达,下调了OPG的产生,最终导致破骨细胞数量显著增加[8]。因而,雌激素缺乏时骨形成与骨吸收之间的平衡被打破,导致净骨丢失,骨密度下降,导致骨质疏松的发生。在过去的几十年,雌激素的替代疗法被应用于治疗骨质疏松症。然而,这一疗法仅仅在绝经后十年内骨折风险升高的女性中雌激素替代疗法的益处高过风险[9]。单独应用雌激素会导致子宫内膜癌的风险增加,联合应用孕激素虽然降低了子宫内膜癌的患病风险,但是雌激素可能通过诱导孕激素受体从而放大孕激素信号传导,间接增加乳腺癌风险[10] [11],这导致雌激素使用量大幅下降。传统雌激素替代疗法的风险使选择性雌激素受体调节剂应运而生。其保留了雌激素对骨的保护作用同时,降低了子宫内膜癌和乳腺癌的发生率。但是,越来越多的证据表明使用选择性雌激素受体调节剂会增加血栓栓塞性疾病、肌肉痉挛和脑卒中的风险[12]。雌激素受体表达十分复杂,尤其是最近的研究推翻了许多用于检测ERβ表达的抗体[13]。因此,雌激素受体表达仍需进一步研究,SERMs用于临床预防和治疗骨质疏松的主要目标是在需要的部位(如骨骼组织)最大化药物的激动活性,同时通过减少其他组织中的雌激素激动活性来避免不良反应。

3.2. 维生素D缺乏

维生素D在骨代谢、调节钙通道功能、促进肠道对钙磷的吸收和骨钙化中起着核心作用,成人维生素D的缺乏是骨质疏松的重要原因[14],维生素D和钙的结合补充能提高骨密度降低髋部和非锥体骨折的发生率[15]。然而,越来越多的证据表明,补充维生素D的益处仅见于维生素D缺乏的患者[16]。甚至还有证据表明,间歇性大剂量服用维生素D可能有害,增加跌倒或骨折的风险[17]。因此,老年人是否应该常规补充维生素D以预防骨质疏松的发生仍有待商榷。

3.3. 维生素C缺乏

维生素C不仅具有清除ROS的抗氧化作用,而且在骨代谢、基因表达调控和免疫系统激活等方面具有重要的介导作用。维生素C大量缺乏时会导致包括骨骼在内的结缔组织的大量破坏[18]。维生素C缺乏时骨小梁减少在靠近生长板的地方最为突出,表明在维生素C缺乏状态下骨生成障碍[19]。去卵巢小鼠服用维生素C后可以防止骨流失和成骨细胞耗竭,维生素C能增加成骨分化基因的表达,减少RANKL的生成[18]。此外,维生素C可以减少炎症条件下的骨吸收[20]。这些研究表明维生素C对于雌激素减少所致的绝经后骨质疏松症和慢性炎症所致的骨质流失均有抑制作用。

3.4. 铁代谢异常

铁是生物体内重要的元素,参与多种生化反应,对氧气的运输和储存、呼吸链复合体和DNA复制等生物功能至关重要[21]

3.4.1. 铁过载

铁过载时过量的铁通过芬顿反应生成大量的ROS,而ROS会影响成骨细胞和破骨细胞的生理活性,有利于破骨细胞并抑制成骨细胞的功能,最终破坏骨平衡,ROS的过度积累是骨质疏松症发展的重要致病因素[22] [23]。ROS能激活MAPKs信号通路诱导成骨细胞凋亡,ROS还能上调RANKL的表达、下调OPG的表达使RANKL/OPG的比值增大促进破骨细胞的分化[24]。铁过载时除ROS外,血清TNFα、IL-6的水平也升高,这表明氧化应激和炎症途径均参与铁过载时的骨质流失[25]。Wnt激动剂被证实显著减少铁过载导致的成骨细胞凋亡[26],有望成为治疗铁过载相关骨质疏松症的治疗靶点。

3.4.2. 铁缺乏

铁缺乏是世界上主要的疾病负担之一,常见于儿童、绝经前妇女和中低收入国家的个体;它是许多疾病的病因[27]。研究表明骨质疏松症的风险随着膳食铁摄入量的适度增加而降低[28],铁缺乏时会使生成I型胶原和维生素D活化的相关酶的活性降低进而影响骨代谢,使骨的转换率下降[29]。此外,铁缺乏时会导致缺铁性贫血,诱导产生iFGF23,生理条件下iFGF23会直接裂解,但经静脉补铁会影响iFGF23的裂解出现高水平iFGF23,增加磷酸盐排泄,导致低磷血症并增加骨吸收[23]

4. 衰老

衰老导致细胞、器官衰老使骨重建失衡,随着年龄增长骨髓间充质干细胞数量减少,成骨分化减弱,成脂分化增强,成骨细胞减少,骨细胞在衰老机体内也会出现凋亡增加,数量减少的现象[30] [31]。衰老细胞在胚胎发育的早期阶段产生,并随着年龄的增长而积累(5)。然而,衰老细胞通过分泌过多的炎症性细胞因子、趋化因子、氧化应激相关蛋白、生长因子和蛋白酶,对组织产生有害的影响,这被称为衰老相关分泌表型(senescence-associated secretory phenotype, SASP)。积累的衰老细胞是衰老的标志,并导致与年龄相关的OP在内的多种骨骼疾病[32]。SASP因子是衰老的关键调节因子,因此驱动系统性慢性炎症,其特征是即使在没有急性感染或显性临床疾病的情况下,也能维持低级别持续的炎症反应[33]。与SASP相关的细胞因子,包括IL-6、IL-8、单核细胞趋化蛋白1 (MCP-1)和肿瘤坏死因子α (TNF-α),在老龄小鼠的骨细胞中显著上调[34]。IL-6可能是年龄相关骨丢失中相关炎症因素的主要炎症因子。在肥胖模型中,IL-6通过IL-6/STAT3信号通路加速骨髓间充质干细胞的衰老,IL-6敲除可防止骨髓间充质干细胞衰老,并减轻肥胖诱导的骨丢失[35]。此外,IL-6可能通过Akt通路抑制Setd7的表达,并损害MSC的成骨作用[36]。虽然SASP与衰老相关骨疾病之间的关系受到了广泛的关注,但还需要更多的研究来确定SASP在骨稳态调节中的分子机制,这将为骨骼疾病的治疗干预提供潜在的靶点。

5. 肠道菌群失调

Sjogren等人首次描述了微生物和骨骼代谢之间的关系,他们通过动物实验发现与对照组相比,无菌饲养的小鼠骨小梁量增加,经传统饲养的小鼠体内肠道菌群定植后这一现象又发生逆转,这说明肠道微生物可以使净骨量下降[37]。肠道菌群失调会影响维生素D、叶酸在肠道的吸收。菌群失调引起的维生素D吸收障碍会导致骨重建失衡,进而诱发骨质疏松;叶酸参与同型半胱氨酸的代谢,叶酸吸收障碍会导致高同型半胱氨酸血症会导致细胞外骨基质降解,使骨密度降低[38]。肠道菌群的失调还可通过提高5-HT合成的限速酶5-HT-色氨酸羟化酶-1(TPH-1)的活性降低肠源性5-HT的合成,进而使骨形成减少[38]。近来研究表明肠道益生菌能促进肠道碳水化合物的消化并产生短链脂肪酸(包括乙酸、丙酸、丁酸等) [39],而丁酸盐被证明在肠道菌群诱导的骨形成有重要影响。在无菌小鼠中添加鼠李糖乳酪杆菌可以调节增加肠道和全身的丁酸盐浓度、股骨小梁体积分数和骨形成标志骨钙素的水平[40]。肠道菌群对铁代谢也有重要作用,乳酸杆菌能感知肠道中铁水平并增加宿主矿物质元素(如铁、镁和锌)的吸收[41]。此外,肠道微生物群凭借其强大的生物合成能力,在调节炎症方面发挥着关键作用,无菌动物的研究表明,缺乏肠道微生物群会导致显著的免疫系统缺陷[42]。梭菌属vadinBB60群与健康小鼠的Treg细胞计数呈正相关群与健康小鼠Treg细胞计数呈正相关,鼠李糖乳酪杆菌可通过调节肠道微生物组和肠道屏障以及刺激肠道和骨骼中的Th17/Treg平衡来改善雌激素缺乏诱导的骨质疏松症[43] [44]。改善肠道微生态平衡可能是治疗和预防骨质疏松症的新方法。

6. 细胞自噬异常

细胞自噬是细胞内蛋白质和细胞器降解和循环的一个基本的进化上保守的过程,是调节细胞和器官稳态的重要基本过程[45]。包括成骨细胞、破骨细胞、骨细胞和BMSCs在内的多种细胞的自噬参与了骨重塑,在维持骨稳态和OP的发病机制中起着重要作用。在BMSCs中,自噬抑制剂3-MA可减少BMSCs成骨分化,而自噬激活剂雷帕霉素增加成骨分化[46]。自噬可以拮抗ROS所致的细胞损伤,延缓BMSCs衰老,促进成骨分化并为成骨分化提供能量[47]。自噬相关基因ATG5、ATG7、Beclin-1缺失会使BMSCs成骨分化降低、成骨细胞矿化能力降低,使骨稳态失衡[48] [49]。在骨细胞中,自噬的失调会导致骨组织的衰老[50]。在RANKL诱导的破骨细胞分化过程中细胞自噬上调以促进单核巨噬细胞分化为破骨细胞[51]。自噬有助于成骨细胞前分化、成骨细胞–骨细胞转化以及破骨细胞的分化和功能[52]。近来在自噬相关研究中出现了矛盾的情况,PAX8-AS1是一种长的非编码RNA,在OVX诱导的OP大鼠胫骨近端区域的表达上调,而PAX8-AS1沉默已被证明通过抑制自噬来减少骨质流失[53]。这表明细胞自噬途径十分复杂,相关机制仍需进一步研究,以阐明细胞自噬和OP之间的关系。

7. Th17/Treg失衡

骨髓中富含造血干细胞,为这些细胞的生长提供了必要的微环境,并可分化为免疫细胞,发挥免疫功能,免疫系统与骨骼系统因骨髓这一共同的微环境而紧密相连。在OVX小鼠中,Th17亚群在免疫细胞中的百分比和Th17/Treg比值均增加,而Treg亚群的百分比和Th17/Treg的比值均显著降低[54]。T辅助细胞17 (Th17)和调节性T细胞(Treg)是两种可以相互作用,通过OPG/RANK/RANKL通路调节破骨细胞分化和形成的T细胞[55] [56]。在体内和体外的研究表明,Treg细胞抑制破骨细胞的分化,而Th17细胞促进破骨细胞的分化[54]。Th17细胞对骨代谢的影响主要体现在其分泌的IL-17能上调RANK在巨噬细胞的表达促进RANKL-RANK的结合并且Th17本身也可以分泌RANKL使OPG/RANKL比值降低促进破骨细胞分化[57]。Treg分泌的IL-10可通过上调骨保护素OPG的分泌,下调RANKL和M-CSF的表达,抑制破骨分化,减少骨吸收[58]。然而,免疫系统是一个复杂的网络,骨免疫领域的药物研发面临着如何在抑制T细胞致病性激活的同时维持其正常的免疫应答功能等问题。

8. 小结

骨质疏松症是多病因共同作用的结果,骨质疏松症的预防和治疗仍面临着困难和挑战。在过去的几十年内,开发了多种不同机制的药物。现有的药物具有较好的疗效,但长期应用存在一定的安全性问题。长期使用阿仑膦酸钠和地诺单抗会导致颌骨坏死和不典型股骨骨折;在动物实验中发现,长期高剂量使用特立帕肽骨肉瘤的患病率明显增加等[59]。近年来的研究发现肠道菌群、自噬、铁代谢、细胞衰老、Th17/Treg平衡失调等均与骨稳态相关。未来对于骨质疏松发病机制的研究应更多地向临床治疗转化,寻找更加精准的靶点,达到更佳药效的同时尽量减少药物的副作用。

基金项目

济宁医学院高层次科研项目培育计划700215001。

NOTES

*通讯作者。

参考文献

[1] Peacock, M., Turner, C.H., Econs, M.J. and Foroud, T. (2002) Genetics of Osteoporosis. Endocrine Reviews, 23, 303-326.
https://doi.org/10.1210/edrv.23.3.0464
[2] Deng, H., Mahaney, M.C., Williams, J.T., Li, J., Conway, T., Davies, K.M., et al. (2001) Relevance of the Genes for Bone Mass Variation to Susceptibility to Osteoporotic Fractures and Its Implications to Gene Search for Complex Human Diseases. Genetic Epidemiology, 22, 12-25.
https://doi.org/10.1002/gepi.1040
[3] 赵敏. 骨质疏松症的易感遗传位点鉴定及与肾病之间的因果关系研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2022.
[4] Khosla, S. and Monroe, D.G. (2017) Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harbor Perspectives in Medicine, 8, a031211.
https://doi.org/10.1101/cshperspect.a031211
[5] 钟丽红. 雌激素相关受体alpha调控脂质分解代谢促进间充质干细胞成骨分化的机制研究[D]: [硕士学位论文]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2022.
[6] Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., Boyle, W.J., Lacey, D.L. and Riggs, B.L. (2003) Role of RANK Ligand in Mediating Increased Bone Resorption in Early Postmenopausal Women. Journal of Clinical Investigation, 111, 1221-1230.
https://doi.org/10.1172/jci200317215
[7] Yao, P., Bennett, D., Mafham, M., Lin, X., Chen, Z., Armitage, J., et al. (2019) Vitamin D and Calcium for the Prevention of Fracture. JAMA Network Open, 2, e1917789.
https://doi.org/10.1001/jamanetworkopen.2019.17789
[8] Yang, M. and Zhu, L. (2024) Osteoimmunology: The Crosstalk between T Cells, B Cells, and Osteoclasts in Rheumatoid Arthritis. International Journal of Molecular Sciences, 25, Article 2688.
https://doi.org/10.3390/ijms25052688
[9] Prentice, R.L., Aragaki, A.K., Chlebowski, R.T., Rossouw, J.E., Anderson, G.L., Stefanick, M.L., et al. (2020) Randomized Trial Evaluation of the Benefits and Risks of Menopausal Hormone Therapy among Women 50-59 Years of Age. American Journal of Epidemiology, 190, 365-375.
https://doi.org/10.1093/aje/kwaa210
[10] Writing Group for the Women’s Health Initiative Investigators (2002) Risks and Benefits of Estrogen Plus Progestin in Healthy Postmenopausal Women: Principal Results from the Women’s Health Initiative Randomized Controlled Trial. The Journal of the American Medical Association, 288, 321-333.
https://doi.org/10.1001/jama.288.3.321
[11] Kim, J. and Munster, P.N. (2025) Estrogens and Breast Cancer. Annals of Oncology, 36, 134-148.
https://doi.org/10.1016/j.annonc.2024.10.824
[12] Schmidt, P.J., Wei, S., Martinez, P.E., Dor, R.R.B., Guerrieri, G.M., Palladino, P.P., et al. (2021) The Short-Term Effects of Estradiol, Raloxifene, and a Phytoestrogen in Women with Perimenopausal Depression. Menopause, 28, 369-383.
https://doi.org/10.1097/gme.0000000000001724
[13] Nelson, A.W., Groen, A.J., Miller, J.L., Warren, A.Y., Holmes, K.A., Tarulli, G.A., et al. (2017) Corrigendum to “Comprehensive Assessment of Estrogen Receptor Beta Antibodies in Cancer Cell Line Models and Tissue Reveals Critical Limitations in Reagent Specificity” [mol. Cell Endocrinol. 440 (2016) 138-150]. Molecular and Cellular Endocrinology, 443, 175.
https://doi.org/10.1016/j.mce.2017.01.048
[14] Giustina, A., Bilezikian, J.P., Adler, R.A., Banfi, G., Bikle, D.D., Binkley, N.C., et al. (2024) Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocrine Reviews, 45, 625-654.
https://doi.org/10.1210/endrev/bnae009
[15] Cianferotti, L., Bifolco, G., Caffarelli, C., Mazziotti, G., Migliaccio, S., Napoli, N., et al. (2024) Nutrition, Vitamin D, and Calcium in Elderly Patients before and after a Hip Fracture and Their Impact on the Musculoskeletal System: A Narrative Review. Nutrients, 16, Article 1773.
https://doi.org/10.3390/nu16111773
[16] Méndez-Sánchez, L., Clark, P., Winzenberg, T.M., Tugwell, P., Correa-Burrows, P. and Costello, R. (2023) Calcium and Vitamin D for Increasing Bone Mineral Density in Premenopausal Women. Cochrane Database of Systematic Reviews, 2023, CD12664.
https://doi.org/10.1002/14651858.cd012664.pub2
[17] Asif, A. and Farooq, N. (2025) Vitamin D Toxicity. StatPearls Publishing.
[18] Thaler, R., Khani, F., Sturmlechner, I., Dehghani, S.S., Denbeigh, J.M., Zhou, X., et al. (2022) Vitamin C Epigenetically Controls Osteogenesis and Bone Mineralization. Nature Communications, 13, Article No. 5883.
https://doi.org/10.1038/s41467-022-32915-8
[19] Kim, W., Bae, S., Kim, H., Kim, Y., Choi, J., Lim, S.Y., et al. (2013) Ascorbic Acid Insufficiency Induces the Severe Defect on Bone Formation via the Down-Regulation of Osteocalcin Production. Anatomy & Cell Biology, 46, 254-261.
https://doi.org/10.5115/acb.2013.46.4.254
[20] Maxfield, L., Daley, S.F. and Crane, J.S. (2025) Vitamin C Deficiency. StatPearls Publishing.
[21] Ciosek, Ż., Kot, K. and Rotter, I. (2023) Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. International Journal of Environmental Research and Public Health, 20, Article 2197.
https://doi.org/10.3390/ijerph20032197
[22] Wudhikulprapan, W., Chattipakorn, S.C., Chattipakorn, N. and Kumfu, S. (2024) Iron Overload and Programmed Bone Marrow Cell Death: Potential Mechanistic Insights. Archives of Biochemistry and Biophysics, 754, Article 109954.
https://doi.org/10.1016/j.abb.2024.109954
[23] von Brackel, F.N. and Oheim, R. (2024) Iron and Bones: Effects of Iron Overload, Deficiency and Anemia Treatments on Bone. JBMR Plus, 8, ziae064.
https://doi.org/10.1093/jbmrpl/ziae064
[24] Ma, J., Wang, A., Zhang, H., Liu, B., Geng, Y., Xu, Y., et al. (2022) Iron Overload Induced Osteocytes Apoptosis and Led to Bone Loss in Hepcidin−/− Mice through Increasing Sclerostin and RANKL/OPG. Bone, 164, Article 116511.
https://doi.org/10.1016/j.bone.2022.116511
[25] Tsay, J., Yang, Z., Ross, F.P., Cunningham-Rundles, S., Lin, H., Coleman, R., et al. (2010) Bone Loss Caused by Iron Overload in a Murine Model: Importance of Oxidative Stress. Blood, 116, 2582-2589.
https://doi.org/10.1182/blood-2009-12-260083
[26] Luo, C., Xu, W., Tang, X., Liu, X., Cheng, Y., Wu, Y., et al. (2022) Canonical Wnt Signaling Works Downstream of Iron Overload to Prevent Ferroptosis from Damaging Osteoblast Differentiation. Free Radical Biology and Medicine, 188, 337-350.
https://doi.org/10.1016/j.freeradbiomed.2022.06.236
[27] Pasricha, S., Tye-Din, J., Muckenthaler, M.U. and Swinkels, D.W. (2021) Iron Deficiency. The Lancet, 397, 233-248.
https://doi.org/10.1016/s0140-6736(20)32594-0
[28] Liu, X. and An, J. (2023) Dietary Iron Intake and Its Impact on Osteopenia/Osteoporosis. BMC Endocrine Disorders, 23, Article No. 154.
https://doi.org/10.1186/s12902-023-01389-0
[29] Yang, J., Li, Q., Feng, Y. and Zeng, Y. (2023) Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. International Journal of Molecular Sciences, 24, Article 6891.
https://doi.org/10.3390/ijms24086891
[30] Li, C., Cheng, P., Liang, M., Chen, Y., Lu, Q., Wang, J., et al. (2015) MicroRNA-188 Regulates Age-Related Switch between Osteoblast and Adipocyte Differentiation. Journal of Clinical Investigation, 125, 1509-1522.
https://doi.org/10.1172/jci77716
[31] Hemmatian, H., Bakker, A.D., Klein-Nulend, J. and van Lenthe, G.H. (2017) Aging, Osteocytes, and Mechanotransduction. Current Osteoporosis Reports, 15, 401-411.
https://doi.org/10.1007/s11914-017-0402-z
[32] Demaria, M., Ohtani, N., Youssef, S.A., Rodier, F., Toussaint, W., Mitchell, J.R., et al. (2014) An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA. Developmental Cell, 31, 722-733.
https://doi.org/10.1016/j.devcel.2014.11.012
[33] Coppé, J., Desprez, P., Krtolica, A. and Campisi, J. (2010) The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99-118.
https://doi.org/10.1146/annurev-pathol-121808-102144
[34] Bao, H., Cao, J., Chen, M., Chen, M., Chen, W., Chen, X., et al. (2023) Biomarkers of Aging. Science China Life Sciences, 66, 893-1066.
https://doi.org/10.1007/s11427-023-2305-0
[35] Li, Y., Lu, L., Xie, Y., Chen, X., Tian, L., Liang, Y., et al. (2021) Interleukin-6 Knockout Inhibits Senescence of Bone Mesenchymal Stem Cells in High-Fat Diet-Induced Bone Loss. Frontiers in Endocrinology, 11, Article 622950.
https://doi.org/10.3389/fendo.2020.622950
[36] Wang, J., Chen, J., Zhang, B. and Jia, X. (2021) IL-6 Regulates the Bone Metabolism and Inflammatory Microenvironment in Aging Mice by Inhibiting Setd7. Acta Histochemica, 123, Article 151718.
https://doi.org/10.1016/j.acthis.2021.151718
[37] Sjögren, K., Engdahl, C., Henning, P., Lerner, U.H., Tremaroli, V., Lagerquist, M.K., et al. (2012) The Gut Microbiota Regulates Bone Mass in Mice. Journal of Bone and Mineral Research, 27, 1357-1367.
https://doi.org/10.1002/jbmr.1588
[38] De Martinis, M., Sirufo, M.M., Nocelli, C., Fontanella, L. and Ginaldi, L. (2020) Hyperhomocysteinemia Is Associated with Inflammation, Bone Resorption, Vitamin B12 and Folate Deficiency and MTHFR C677T Polymorphism in Postmenopausal Women with Decreased Bone Mineral Density. International Journal of Environmental Research and Public Health, 17, Article 4260.
https://doi.org/10.3390/ijerph17124260
[39] Robling, A.G. and Bonewald, L.F. (2020) The Osteocyte: New Insights. Annual Review of Physiology, 82, 485-506.
https://doi.org/10.1146/annurev-physiol-021119-034332
[40] Tyagi, A.M., Yu, M., Darby, T.M., Vaccaro, C., Li, J., Owens, J.A., et al. (2018) The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity, 49, 1116-1131.
https://doi.org/10.1016/j.immuni.2018.10.013
[41] Qi, X., Zhang, Y., Guo, H., Hai, Y., Luo, Y. and Yue, T. (2019) Mechanism and Intervention Measures of Iron Side Effects on the Intestine. Critical Reviews in Food Science and Nutrition, 60, 2113-2125.
https://doi.org/10.1080/10408398.2019.1630599
[42] Shi, N., Li, N., Duan, X. and Niu, H. (2017) Interaction between the Gut Microbiome and Mucosal Immune System. Military Medical Research, 4, Article No. 14.
https://doi.org/10.1186/s40779-017-0122-9
[43] Guo, M., Liu, H., Yu, Y., Zhu, X., Xie, H., Wei, C., et al. (2023) lactobacillus Rhamnosus GG Ameliorates Osteoporosis in Ovariectomized Rats by Regulating the Th17/Treg Balance and Gut Microbiota Structure. Gut Microbes, 15, Article 2190304.
https://doi.org/10.1080/19490976.2023.2190304
[44] Deng, L., Wojciech, L., Png, C.W., Koh, E.Y., Aung, T.T., Kioh, D.Y.Q., et al. (2022) Experimental Colonization with Blastocystis ST4 Is Associated with Protective Immune Responses and Modulation of Gut Microbiome in a DSS-Induced Colitis Mouse Model. Cellular and Molecular Life Sciences, 79, Article No. 245.
https://doi.org/10.1007/s00018-022-04271-9
[45] Ohsumi, Y. (2013) Historical Landmarks of Autophagy Research. Cell Research, 24, 9-23.
https://doi.org/10.1038/cr.2013.169
[46] Ma, Y., Qi, M., An, Y., Zhang, L., Yang, R., Doro, D.H., et al. (2017) Autophagy Controls Mesenchymal Stem Cell Properties and Senescence during Bone Aging. Aging Cell, 17, e12709.
https://doi.org/10.1111/acel.12709
[47] Yang, Y., Li, B., Zheng, X., Chen, J., Chen, K., Jiang, S., et al. (2014) Oxidative Damage to Osteoblasts Can Be Alleviated by Early Autophagy through the Endoplasmic Reticulum Stress Pathway—Implications for the Treatment of Osteoporosis. Free Radical Biology and Medicine, 77, 10-20.
https://doi.org/10.1016/j.freeradbiomed.2014.08.028
[48] Thomas, N., Choi, H.K., Wei, X., Wang, L., Mishina, Y., Guan, J., et al. (2019) Autophagy Regulates Craniofacial Bone Acquisition. Calcified Tissue International, 105, 518-530.
https://doi.org/10.1007/s00223-019-00593-2
[49] Weng, Y.M., Ke, C.R., Kong, J.Z., et al. (2018) The Significant Role of ATG5 in the Maintenance of Normal Functions of Mc3T3-E1 Osteoblast. European Review for Medical and Pharmacological Sciences, 22, 1224-1232.
[50] Yin, X., Zhou, C., Li, J., Liu, R., Shi, B., Yuan, Q., et al. (2019) Autophagy in Bone Homeostasis and the Onset of Osteoporosis. Bone Research, 7, Article No. 28.
https://doi.org/10.1038/s41413-019-0058-7
[51] Arai, A., Kim, S., Goldshteyn, V., Kim, T., Park, N., Wang, C., et al. (2019) Beclin1 Modulates Bone Homeostasis by Regulating Osteoclast and Chondrocyte Differentiation. Journal of Bone and Mineral Research, 34, 1753-1766.
https://doi.org/10.1002/jbmr.3756
[52] Wang, J., Zhang, Y., Cao, J., Wang, Y., Anwar, N., Zhang, Z., et al. (2023) The Role of Autophagy in Bone Metabolism and Clinical Significance. Autophagy, 19, 2409-2427.
https://doi.org/10.1080/15548627.2023.2186112
[53] Huang, C., Li, R., Yang, C., Ding, R., Li, Q., Xie, D., et al. (2021) PAX8-AS1 Knockdown Facilitates Cell Growth and Inactivates Autophagy in Osteoblasts via the miR-1252-5p/GNB1 Axis in Osteoporosis. Experimental & Molecular Medicine, 53, 894-906.
https://doi.org/10.1038/s12276-021-00621-y
[54] Zhu, L., Hua, F., Ding, W., Ding, K., Zhang, Y. and Xu, C. (2020) The Correlation between the Th17/Treg Cell Balance and Bone Health. Immunity & Ageing, 17, Article No. 30.
https://doi.org/10.1186/s12979-020-00202-z
[55] Wang, J., Hou, Y., Mu, L., Yang, M. and Ai, X. (2024) Gut Microbiota Contributes to the Intestinal and Extraintestinal Immune Homeostasis by Balancing Th17/Treg Cells. International Immunopharmacology, 143, Article 113570.
https://doi.org/10.1016/j.intimp.2024.113570
[56] Hu, Y., Ding, J., Chen, Y., Wang, Q., Yang, X., Hua, H., et al. (2024) Soluble Fibrinogen-Like Protein 2 Downregulation and Th17/Treg Imbalance in a Taurocholate-Induced Murine Experimental Model of Severe Acute Pancreatitis. Journal of Clinical Laboratory Analysis, 38, e25076.
https://doi.org/10.1002/jcla.25076
[57] Ono, T., Hayashi, M., Sasaki, F. and Nakashima, T. (2020) RANKL Biology: Bone Metabolism, the Immune System, and Beyond. Inflammation and Regeneration, 40, Article No. 2.
https://doi.org/10.1186/s41232-019-0111-3
[58] Qi, P., Xie, R., Liu, H., Zhang, Z., Cheng, Y., Ma, J., et al. (2024) Mechanisms of Gut Homeostasis Regulating Th17/Treg Cell Balance in PMOP. Frontiers in Immunology, 15, Article 1497311.
https://doi.org/10.3389/fimmu.2024.1497311
[59] Reid, I.R. and Billington, E.O. (2022) Drug Therapy for Osteoporosis in Older Adults. The Lancet, 399, 1080-1092.
https://doi.org/10.1016/s0140-6736(21)02646-5