血管迷走性晕厥患儿直立倾斜试验及物理反压动作诊治及研究进展
Diagnosis, Treatment and Research Progress of Head-up Tilt Test and Physical Back Pressure Action in Children with Vasovagal Syncope
摘要: 血管迷走性晕厥(vasovagal syncope, VVS)是自主神经介导性晕厥中最常见,也是儿童晕厥类型最普遍的一种疾病,其发病机制复杂不清,目前尚无定论。随着愈来愈多儿童罹患VVS,其诊疗仍是一研究热点。直立倾斜试验(head-up tilt test,HUTT)为VVS辅诊的首要方式,对患儿VVS分型及诊断起到了至关重要的作用。一般预后好,但近年研究发现部分患儿会出现猝死、有危及生命的风险,严重影响学习和生活质量。一线治疗即非药物治疗,其中健康教育和物理反压动作(PCMs)被推崇,简单方便,升压速度快。PCMs通过调节自主神经活性、释放神经递质改善晕厥,降低复发率,是急救的首要方式。HUTT通过降低交感神经和/增高迷走神经活性复刻晕厥场景,监测心率、血压等关键指标,有助于评估及预测VVS的复发。本文将结合国内外大量文献就自主神经功能在VVS中发挥的作用及HUTT、PCMs对VVS患儿的诊疗进行详细阐述。
Abstract: Vasovagal syncope (VVS) is the most common type of autonomic nerve-mediated syncope and the most common type of syncope in children. Its pathogenesis remains complex and not fully understood. With more and more children suffering from VVS, its diagnosis and treatment is still a research hotspot. The head-up tilt test (HUTT) is the primary method for auxiliary diagnosis of VVS, and it plays a crucial role in classifying and diagnosing VVS in children. Research indicates that the diagnostic accuracy of HUTT can vary among physicians, with those having a moderate level of experience being more likely to report a positive result. For instance, a study conducted at the Fuwai Hospital suggests that physicians with a moderate cumulative workload in performing HUTT tests tend to report a higher rate of suspicious positive cases. Generally, the prognosis is good, but in recent years, studies have found that some children may face sudden death and life-threatening risks, thereby severely impacting their education and overall well-being. The first-line treatment is non-drug treatment. Among these, health education and physical countermeasures (PCMs) are currently recognized as effective. They present no contraindications, are simple and convenient, and provide rapid efficacy. The PCMs treatment method is equally suitable for immediate first aid and serves as the primary approach for emergency response. PCMs improve syncope and reduce the recurrence rate by regulating autonomic nerve activity and releasing neurotransmitters. HUTT reproduces syncope scenes by modulating autonomic nervous system activity, and monitoring heart rate, blood pressure, and other vital signs to evaluate and analyze the patient’s condition. This article will integrate a comprehensive review of international and domestic literature to detail the significance of cardiac autonomic function in the diagnosis and treatment of vasovagal syncope (VVS) in children, with a focus on the use of head-up tilt testing (HUTT) and PCMs.
文章引用:付星雨, 杨永永. 血管迷走性晕厥患儿直立倾斜试验及物理反压动作诊治及研究进展[J]. 临床个性化医学, 2025, 4(3): 370-376. https://doi.org/10.12677/jcpm.2025.43355

1. 引言

晕厥在急诊中发生率为3% [1] [2],是病理生理学机制为脑供血不足引起的短暂性意识丧失、肌张力不能维持从而出现摔倒的一种疾病,具有迅速性、可自行恢复性的特点[3]。此机制也是与其他一过性意识丧失性疾病的最基本鉴别点。《2018 ESC晕厥诊断和管理指南》阐述了晕厥的三大类型:自主神经介导性晕厥(neurally mediated syncope, NMS)、心源性晕厥和直立性低血压(orthostatic hypotension, OH)性晕厥。在儿童中普遍出现的属自主神经介导性晕厥,占儿童晕厥的60%~80% [4]。血管迷走性晕厥(vasovagal syncope, VVS)是多见于年长儿(>5岁)晕厥的最常见病因,也是自主神经介导性晕厥最常见的类型之一,而婴幼儿的屏气发作也可能是自主神经介导性晕厥的类型之一[5]。VVS是一种病因不明、由情绪激动或体位改变、以自主神经激活为主降低血压或减慢心率的反射性晕厥,一般预后好,但频繁复发的VVS仍会影响患儿生活质量,甚至出现二次损伤或危及生命[6]。迄今为止的研究认为最主要与自主神经系统的活跃度及血管张力调节失衡有关。直立倾斜试验(head-up tilt test, HUTT)有效性强、简便快捷,是诊断VVS的金标准,虽存在不足,但多年来临床上仍然推崇,是首要的辅诊方式。

2. VVS的定义及发病机制

VVS是指患儿在短时间内某些诱发因素的作用下通过交感神经活性降低和/迷走神经活性增强导致外周血管张力降低、回心血量减少、血压下降、脑供血不足的疾病[7],可与症状较为相似(如低血糖早期)且不明原因性晕厥鉴别[8]。因此,询问患儿发作VVS的诱因是做出诊断及治疗不可或缺的一部分,目前临床上发现的先兆因素包括情绪波动(如扎针时出现恐惧、紧张、疼痛,俗称“晕针”)、体位改变、药物等[8],发作时表现为出汗、恶心、颜面苍白等。治疗上,一般首选健康教育或自主神经功能锻炼疗法。如出现严重后果,进一步采取药物(如一线治疗药物盐酸米多君[9])等干预措施。VVS严重时的影响程度不亚于心力衰竭[10] [11]

VVS的发病机制

综合国内外研究成果,VVS的发病机制主要涉及以下几个方面:贝-亚反射(Bezold-Jarisch reflex, B-J)、自主神经功能异常、压力反射敏感性降低、血管活性物质水平异常、基因多态性等[12] [13]。(1) 贝-亚反射(Bezold-Jarisch reflex, B-J):是VVS发作且被普遍公认的最主要机制。当患儿持久站立或体位急变时,下肢血液瘀滞,静脉回心血量减少,交感神经活性增强,迷走神经活性减弱,心室达到完全排空和高收缩状态,引发“心室排空”效应,刺激左心室后下壁感受器及C纤维,冲动传至脑干,引发“矛盾”反应,使交感神经兴奋性降低,迷走神经活性增高[12] [14],周围血管阻力降低和/或心率减慢,脑灌注不足诱发VVS。然而,国内研究指出,行HUTT时机体外周血管阻力升高、回心血量不足,与B-J原理大相径庭,后又有研究者提出若除外年龄、性别等因素后尚可符合B-J理论。FU等[15]表明机体可能仅含回心血量不足因素,外周血管阻力意义不大。相反,LI等[16]提出VVS患儿的发作过程中,回心血量不足与外周血管阻力降低均参与,但更倾向于外周血管阻力降低。对比健康儿童与VVS患儿后发现,无论是长时间站立还是体位急变,均会诱导自主神经功能发生紊乱。但区别点在于正常儿童能通过刺激压力感受器来降低外周血管阻力,从而恢复至正常血压。除上所述,B-J反射也是β受体阻滞剂发挥作用的机制之一[17]。(2) 自主神经功能异常:自主神经包含交感神经及副交感神经(迷走神经)两条主干,又称植物神经,交感神经活性增强表现为正向心率、正向肌力及正向心肌收缩力,迷走神经与之相反。自主神经介于血管活性物质儿茶酚胺(肾上腺素、去甲肾上腺素、多巴胺等)浓度的升高而激活[18]。Benditt等[19]发现肾上腺素/去甲肾上腺素水平在VVS患儿发作前较健康儿童或对照组明显升高,提示儿茶酚胺水平在VVS患儿和正常儿童中有差异(P < 0.05),且儿茶酚胺可在VVS患儿先兆因素下升高,证明其在VVS早期发作中起到了关键作用。迷走神经通过释放乙酰胆碱作用于胆碱能受体(毒蕈碱M2型、M3型),刺激血管平滑肌细胞,抑制血管收缩,减少外周血管阻力,使血压下降。此外,毒蕈碱M3型受体在一氧化氮(nitric oxide, NO)的产生中发挥作用,而NO作为VVS机制的关键血管活性物质之一[20],其参与VVS的发生过程日益成为研究焦点,有望为开发新的靶向药物[21]提供方向。(3) 压力反射敏感性降低[22]:人体最主要的压力感受器(颈动脉窦、主动脉弓压力感受器)敏感性降低,静脉回心血量降低,无法对心率及血压进行调节,导致脑血流不足,导致VVS发生。(4) 血管活性物质水平异常:抗利尿激素(antidiuretic hormone, ADH)升高、5-羟色胺(5-hydroxytryptamine, 5-HT)升高、神经肽Y降低、儿茶酚胺升高(如上述)、肾素–血管紧张素–醛固酮系统降低等。(5) 基因多态性[23]。综上,我们可进一步推断出各机制间存在相互作用。B-J反射通过“心室排空”及“矛盾效应”使自主神经功能紊乱,迷走神经活性增高,交感神经活性减低,导致依赖迷走神经的活性物质如NO、交感神经活性物质儿茶酚胺得以激活,此时机体压力感受器敏感性减低,最终VVS发生。

临床上,VVS主要依靠病史(着重询问患儿是否有诱发因素)、症状、查体及直立倾斜试验诊断。

3. 直立倾斜试验(head-up tilt test, HUTT)

直立倾斜试验(head-up tilt test, HUTT)是在确保儿童安全的前提下通过改变体位模拟晕厥场景且可以检验自主神经功能的方法之一,从血流动力学方面分为三类:(1) 血管抑制型;(2) 心脏抑制型;(3) 混合型,是诊断VVS的金标准,同时也是与其他不明原因晕厥的主要鉴别方式。HUTT分为基础倾斜试验和药物激发试验,基础倾斜试验[24]-[27]:在连接好心电监护仪后,患儿快速从平卧位转变为与水平面倾斜60~80˚的体位,实时监测血压、心率等指标,并观察心电图变化,持续约40 min。期间若出现低血压、心律不齐、心搏骤停 ≥ 3秒、晕厥及晕厥前症状、试验达到规定时间可终止试验。若基础倾斜试验结果阴性,进一步完善药物激发试验,药物激发试验是在原基础倾斜试验阴性的基础上舌下含服硝酸甘油或异丙肾上腺素,一般剂量为4~6 μg/kg (以硝酸甘油为例),间隔3 min记录一次心率、血压,持续20 min或出现阳性反应终止试验。既往研究表明,基础倾斜试验反应阳性时间长,误差大,须多采用药物激发试验来提高准确率。黄敏虎等[28]通过ROC曲线研究氯米帕明联合硝酸甘油激发HUTT阳性的敏感性高(P < 0.05),且二联药物激发试验优于单药,但目前临床尚未多见双联血管扩张药物在HUTT前使用,因此,这一创新点为我们后续开展病例对照研究,进一步探索更为细致的辅助诊断方法提供了方向。HUTT作为金标准的主要依据[29]之一是阳性患儿改变体位时交感神经兴奋性降低,迷走神经活性升高,外周血管张力降低、血压下降,回心血量不足,导致VVS的发生。还有学者持不同意见[30],VVS患儿从卧位转换为直立位时,交感神经与迷走神经均处于抑制状态,自主神经无法兴奋,导致回心血量不足、脑灌注不足,VVS发生。尽管HUTT多年来在临床上被视为重要的辅助诊断方法之一,但其仍存在诸多不足,如阳性可疑,阴性无法排除[31]。HUTT阳性仅表明患者有罹患VVS的倾向,但不能明确晕厥的病因;若HUTT结果阴性,也无法排除该患儿未患VVS。在2018年ESC晕厥管理指南中指出[31] [32],HUTT诊断VVS的敏感性及特异性较低,且诊断不明原因晕厥的敏感度和特异度仅61%~66%、94%。因此,为进一步减少误差,在进行HUTT前,患儿需空腹4小时,并提前扎好输液针头,以避免恐惧、紧张等情绪波动对试验结果的影响。HUTT诊断标准[33]包含年龄、前兆因素、临床症状、HUTT的阳性标准、无基础疾病等,简单方便且无创,也可作为晕厥患儿的初筛。

近年来,心率变异性分析(heart rate variability, HRV)及心率减速力(deceleration capacity of rate, DC)逐渐成为国内外研究热点,二者均属于检测异常自主神经功能(尤其迷走神经)、侧面阐明VVS发生发展的诊断方法,但样本量甚少,依据不足,目前未广泛应用于临床中。孙巍等[34]通过Logistic回归分析得出全天心率减速力同晕厥发作呈正相关的结论,进一步提示DC的敏感性及特异性优于HRV。因此,我们可将其作为一重大突破点,继续深究对诊断VVS的潜在意义。

4. VVS的治疗

首先采取非药物治疗,如健康宣教(规避诱因、增加水、盐摄入等)、自主神经功能锻炼(如直立动作、物理反压动作等),若频繁VVS发作或发现有晕厥摔倒造成二次损伤的风险,则进一步选择药物治疗,或起搏器、射频消融术治疗。既往研究发现,健康宣教在儿童预后中取得了显著成绩。

4.1. 物理反压动作(PCMs)

自主神经功能锻炼中物理反压动作被认为是现场急救的首要治疗方式,巢天闻等[8]指出。PCMs适用于当患儿自觉晕厥或有晕厥前兆时通过双下肢大腿交叉或双手紧握力增强、腹肌绷直等方式调节自主神经活性,使交感神经活性增强和/或迷走神经活性减弱,增加外周血管阻力,回心血量增加,提高压力反射敏感性,减少VVS复发[8] [35]。PCMs简单方便,一人即可独立完成,且升压速度快,药物干扰性较小。HUTT实时记录的心率、血压等指标变化也为PCMs的疗效提供了更强有力的依据[36]。Kredie等[37]应用直立倾斜试验观察到大腿交叉可以快速提升复发性晕厥患者血压。也有人进一步提出,下肢PCMs复升血压较上肢PCMs效果更佳[38]。但患儿若在采用PCMs后仍反复晕厥或恶化,应立即终止PCMs,转为平卧,评估病情后调整治疗方案。大部分研究是通过倾斜试验对VVS患者的PCMs进行验证,鲜少发现有直接针对VVS患儿进行PCMs有效性的研究,主要原因是研究样本量少、患儿依从性差,容易造成实验误差。PCMs的作用机制一部分归因于骨骼肌泵的效应[39],即通过机械性压迫下肢肌肉增加静脉回流量,下肢肌肉收缩时排血量约30~40 ml,使回心血量增加,减轻脑缺血缺氧状态,改善VVS症状。还可能与神经递质[40]相关,下肢肌肉收缩使儿茶酚胺释放,交感活性增强,回心血量增加,减轻症状。然而,目前关于PCMs的作用机制尚不明确。

4.2. 药物、起搏器、射频消融术治疗

一般不主张药物治疗,反复出现VVS、依从性差的患儿除外。针对VVS治疗的药物主要包括α受体激动剂(盐酸米多君)、β受体阻滞剂、5-HT再摄取抑制剂等,盐酸米多君[41]是通过降低外周血管阻力升高血压的一线治疗药物。患儿安装永久起搏器[13]后若出现晕厥前兆时的心率下降,会刺激性释放快频率的心室起搏脉冲,使心室做出反应,导致心率下降,增加心输出量,维持脑血流量。但临床上适用病例数少。

5. 小结与展望

VVS的发病机制复杂多样,临床上通过HUTT试验进行诊断,从而对症处理,无法明确找出原因做到治本。因此,我们需确保患儿具备在某些诱因后VVS发作的病史,进行下一步的健康宣教,鼓励其规避诱因从而降低复发率。PCMs作用机制虽不清楚,但其疗效明显,消除误差关键在于提高患者依从性及扩大研究样本量,临床工作者也可做到随访。自主神经功能稳态在机体内起到了只管重要的作用,一旦失衡,就会导致交感神经、迷走神经、神经递质水平的紊乱,因此,这也成为VVS治疗的切入点之一,比如β受体阻滞剂可通过改善自主神经调节活性进行治疗。自主神经活性调节改善患儿的生活质量在近年来的研究中也取得了较大的进展。在VVS的诊疗过程中,HUTT试验效能高于传统心电图,是对患儿进行诊治及分型的主要方法,这点在上述已进行了详细阐明。心率变速力也逐渐成为辅诊VVS的新热点,个体化分析,个体化治疗,为进一步诊治提供强有力的依据及思路,改善患者生活质量。

参考文献

[1] Zimmermann, T., du Fay de Lavallaz, J., Nestelberger, T., Gualandro, D.M., Strebel, I., Badertscher, P., et al. (2020) Incidence, Characteristics, Determinants, and Prognostic Impact of Recurrent Syncope. EP Europace, 22, 1885-1895.
https://doi.org/10.1093/europace/euaa227
[2] 中华医学会儿科学分会心血管组, 《中华儿科杂志》编辑委员会. 儿童晕厥诊断指南[J]. 中华儿科杂志, 2009, 47(2): 99-101.
[3] 刘文玲. 晕厥诊断与治疗中国专家共识(2018)解读[J]. 中国实用内科杂志, 2019, 39(11): 949-955.
[4] Brignole, M., Moya, A., De Lange, F.J., et al. (2018) 2018 ESC Guidelines for the Diagnosis and Management of Syncope. European Heart Journal, 39, 1883-1948.
[5] 赵正秋, 付印强, 朱莉莉, 等. 诊儿童晕厥的病因与临床特征回顾性分析[J]中国实用神经疾病杂志, 2015, 18(7): 66-67.
[6] 余姝彦, 郁继诚, 梁虹, 等. 血管迷走神经性晕厥健康受试者医学理论的分析[J]. 中国临床药理学杂志, 2021, 37(8): 1011.
[7] Benditt, D.G., van Dijk, J.G., Krishnappa, D., et al. (2020) Neurohormones in the Pathophysiology of Vasovagal Syncope in Adults. Frontiers in Cardiovascular Medicine, 7, Article 76.
[8] 巢天闻, 翟晓鑫, 肖国民. 物理反压动作在Ⅰ期临床试验血管迷走性晕厥现场急救的应用研究进展[J]. 现代医药卫生, 2025, 41(2): 518-521.
[9] Stewart, J.M. (2006) Midodrine for the Treatment of Vasovagal Syncope (Simple Faint). The Journal of Pediatrics, 149, 740-742.
https://doi.org/10.1016/j.jpeds.2006.08.026
[10] Barón-Esquivias, G., Cayuela, A., Gómez, S., et al. (2003) Quality of Life in Patients with Vasovagal Syncope. Clinical Parameters Influence. Medicina Clínica, 121, 245-249.
https://doi.org/10.1016/S0025-7753(03)75188-4
[11] Rose, M.S., Koshman, M.L., Spreng, S. and Sheldon, R. (2000) The Relationship between Health-Related Quality of Life and Frequency of Spells in Patients with Syncope. Journal of Clinical Epidemiology, 53, 1209-1216.
https://doi.org/10.1016/s0895-4356(00)00257-2
[12] 郝洁, 刘艳阳, 田海萍. 血管迷走性晕厥研究进展[J]. 实用心脑肺血管病杂志, 2025, 33(1): 127-131.
[13] 梁敏, 刘晓燕. 儿童血管迷走神经性晕厥的发病机制及治疗[J]. 儿科药学杂志, 2017, 23(6): 59-62.
[14] 肖要, 张小华, 魏红芳, 等. 儿童直立不耐受的发病机制研究进展[J]. 兰州大学学报(医学版), 2021, 47(6): 82-88.
[15] Fu, Q. and Levine, B.D. (2014) Pathophysiology of Neurally Mediated Syncope: Role of Cardiac Output and Total Peripheral Resistance. Autonomic Neuroscience, 184, 24-26.
https://doi.org/10.1016/j.autneu.2014.07.004
[16] Li, H., Liao, Y., Han, Z., Wang, Y., Liu, P., Zhang, C., et al. (2018) Head‐Up Tilt Test Provokes Dynamic Alterations in Total Peripheral Resistance and Cardiac Output in Children with Vasovagal Syncope. Acta Paediatrica, 107, 1786-1791.
https://doi.org/10.1111/apa.14342
[17] Mosqueda-Garcia, R., Furlan, R., MD, J.T. and Fernandez-Violante, R. (2000) The Elusive Pathophysiology of Neurally Mediated Syncope. Circulation, 102, 2898-2906.
https://doi.org/10.1161/01.cir.102.23.2898
[18] 李旭, 刘文玲. 神经内分泌激素在血管迷走性晕厥发生中的作用[J]. 中国循环杂志, 2022, 37(1): 97-100.
[19] Benditt, D.G., Ermis, C., Padanilam, B., et al. (2003) Catecholamine Response during Haemodynamically Stable Upright Posture in Individuals with and without Tilt-Table Induced Vasovagal Syncope. EP Europace, 5, 65-70.
https://doi.org/10.1053/eupc.2002.0271
[20] 徐萌, 谢利剑. 心脏自主神经系统调节在儿童血管迷走性晕厥中的研究现状[J]. 临床儿科杂志, 2022, 40(7): 494-499.
[21] Lakkireddy, D. (2020) Vagal Stimulation and Arrhythmias. Journal of Atrial Fibrillation, 13, 89-97.
https://doi.org/10.4022/jafib.2398
[22] Mitro, P., Simurda, M., Evin, L., Murin, P. and Muller, E. (2015) Reduced Baroreflex Sensitivity in Patients with Vasovagal Syncope. Bratislava Medical Journal, 116, 582-586.
https://doi.org/10.4149/bll_2015_113
[23] 夏光. 血管迷走性晕厥与基因多态性研究进展[J]. 中国循环杂志, 2022, 37(9): 959-963.
[24] Yao, Y., Shi, R., Wong, T., Zheng, L., Chen, W., Yang, L., et al. (2012) Endocardial Autonomic Denervation of the Left Atrium to Treat Vasovagal Syncope: An Early Experience in Humans. Circulation: Arrhythmia and Electrophysiology, 5, 279-286.
https://doi.org/10.1161/circep.111.966465
[25] Sun, W., Zheng, L., Qiao, Y., Shi, R., Hou, B., Wu, L., et al. (2016) Catheter Ablation as a Treatment for Vasovagal Syncope: Long-Term Outcome of Endocardial Autonomic Modification of the Left Atrium. Journal of the American Heart Association, 5, e003471.
https://doi.org/10.1161/JAHA.116.003471
[26] Hu, F., Zheng, L., Liang, E., Ding, L., Wu, L., Chen, G., et al. (2019) Right Anterior Ganglionated Plexus: The Primary Target of Cardioneuroablation? Heart Rhythm, 16, 1545-1551.
https://doi.org/10.1016/j.hrthm.2019.07.018
[27] Zheng, L., Sun, W., Qiao, Y., Hou, B., Guo, J., Killu, A., et al. (2021) Symptomatic Premature Ventricular Contractions in Vasovagal Syncope Patients: Autonomic Modulation and Catheter Ablation. Frontiers in Physiology, 12, Article 653225.
https://doi.org/10.3389/fphys.2021.653225
[28] 黄敏虎, 沈松林, 蔡国才, 等. 氯米帕明联合硝酸甘油激发直立倾斜试验对血管迷走性晕厥的诊断价值[J]. 中西医结合心脑血管病杂志, 2023, 21(17): 3252-3257.
[29] Kouakam, C., Lacroix, D., Zghal, N., Logier, R., Klug, D., Le Franc, P., et al. (1999) Inadequate Sympathovagal Balance in Response to Orthostatism in Patients with Unexplained Syncope and a Positive Head up Tilt Test. Heart, 82, 312-318.
https://doi.org/10.1136/hrt.82.3.312
[30] Akizuki, H. and Hashiguchi, N. (2020) Heart Rate Variability in Patients Presenting with Neurally Mediated Syncope in an Emergency Department. The American Journal of Emergency Medicine, 38, 211-216.
https://doi.org/10.1016/j.ajem.2019.02.005
[31] 何坤, 董湘玉. 儿童血管迷走性晕厥研究进展[J]. 兰州大学学报(医学版), 2019, 45(2): 81-8792.
[32] Brignole, M., Moya, A., de Lange, F.J., Deharo, J., Elliott, P.M., Fanciulli, A., et al. (2018) 2018 ESC Guidelines for the Diagnosis and Management of Syncope. European Heart Journal, 39, 1883-1948.
https://doi.org/10.1093/eurheartj/ehy037
[33] 代琦, 郑黎晖. 血管迷走性晕厥的诊断现状[J]. 中国心血管病研究, 2024, 22(7): 648-651.
[34] 孙巍. 血管迷走性晕厥患者的心率减速力特征及射频导管消融的长期疗效[D]: [博士学位论文]. 北京: 北京协和医学院, 2016.
[35] Brignole, M., Croci, F., Menozzi, C., Solano, A., Donateo, P., Oddone, D., et al. (2002) Isometric Arm Counter-Pressure Maneuvers to Abort Impending Vasovagal Syncope. Journal of the American College of Cardiology, 40, 2053-2059.
https://doi.org/10.1016/s0735-1097(02)02683-9
[36] Williams, E.L., Khan, F.M. and Claydon, V.E. (2022) Counter Pressure Maneuvers for Syncope Prevention: A Semi-Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 9, Article 1016420.
https://doi.org/10.3389/fcvm.2022.1016420
[37] Krediet, C.T.P., van Dijk, N., Linzer, M., van Lieshout, J.J. and Wieling, W. (2002) Management of Vasovagal Syncope: Controlling or Aborting Faints by Leg Crossing and Muscle Tensing. Circulation, 106, 1684-1689.
https://doi.org/10.1161/01.cir.0000030939.12646.8f
[38] Krediet, C.T.P., de Bruin, I.G.J.M., Ganzeboom, K.S., Linzer, M., van Lieshout, J.J. and Wieling, W. (2005) Leg Crossing, Muscle Tensing, Squatting, and the Crash Position Are Effective against Vasovagal Reactions Solely through Increases in Cardiac Output. Journal of Applied Physiology, 99, 1697-1703.
https://doi.org/10.1152/japplphysiol.01250.2004
[39] Faghri, P.D. and Yount, J. (2002) Electrically Induced and Voluntary Activation of Physiologic Muscle Pump: A Comparison between Spinal Cord-Injured and Able-Bodied Individuals. Clinical Rehabilitation, 16, 878-885.
https://doi.org/10.1191/0269215502cr570oa
[40] Kenny, R.A., Bhangu, J. and King-Kallimanis, B.L. (2013) Epidemiology of Syncope/Collapse in Younger and Older Western Patient Populations. Progress in Cardiovascular Diseases, 55, 357-363.
https://doi.org/10.1016/j.pcad.2012.11.006
[41] Lei, L.Y., Raj, S.R. and Sheldon, R.S. (2022) Midodrine for the Prevention of Vasovagal Syncope: A Systematic Review and Meta-Analysis. EP Europace, 24, 1171-1178.
https://doi.org/10.1093/europace/euab323