m6A甲基化修饰在骨肉瘤中的作用与机制研究进展
The Role and Mechanism of m6A Methylation Modification in Osteosarcoma
DOI: 10.12677/acm.2025.1561746, PDF, HTML, XML,   
作者: 潘艳齐:内蒙古医科大学研究生院,内蒙古 呼和浩特;冯 卫:内蒙古医科大学第二附属医院创伤外科,内蒙古 呼和浩特
关键词: 骨肉瘤甲基化修饰生物学功能放化疗分子机制Osteosarcoma Methylation Modification Biological Function Chemoradiotherapy Molecular Mechanism
摘要: 骨肉瘤(osteosarcoma, OS)是儿童和青少年最常见的原发性骨恶性肿瘤,具有高度侵袭性和转移性,且预后不良,患者的5年生存率较低。N6-甲基腺苷(N6-methyladenosine, m6A)是真核细胞mRNA修饰中最常见的一种,在众多的生物学活动中都起到重要作用。最近研究发现,m6A甲基化修饰在RNA甲基化中扮演了关键角色,通过对“writer”,“eraser”和“reader”等分子的动态调节,参与mRNA的剪接、去核翻译、降解和稳定等生物学过程,对多种疾病产生重要影响,包括癌症。RNA的m6A甲基化与骨肉瘤密切相关,但机制尚未明确。本文就m6A修饰及其相关酶在骨肉瘤生物学功能中的调控机制,以及其在骨肉瘤发病机制、预后中的作用研究进展作一综述,可能为骨肉瘤的治疗提供新的思路与理论依据。
Abstract: Osteosarcoma (OS), the most prevalent primary malignant bone tumor in children and adolescents, exhibits high invasiveness, metastatic potential, and poor prognosis, with notably low 5-year survival rates. N6-methyladenosine (m6A), the predominant post-transcriptional modification in eukaryotic mRNA, plays crucial regulatory roles in diverse biological processes. Emerging evidence reveals that m6A methylation critically modulates RNA metabolism through dynamic coordination of “writer”, “eraser”, and “reader”, thereby governing mRNA splicing, nucleocytoplasmic transport, translation efficiency, degradation, and stability. This epigenetic mechanism significantly impacts various pathological processes, including carcinogenesis. Although RNA m6A methylation demonstrates close associations with osteosarcoma progression, its underlying mechanisms remain incompletely elucidated. This review systematically examines current advances in understanding the regulatory mechanisms of m6A modifications and associated enzymes in osteosarcoma biology, with emphasis on their pathophysiological roles in tumorigenesis, and prognostic evaluation. The synthesis of these findings may provide novel therapeutic strategies and theoretical foundations for improving clinical management of osteosarcoma.
文章引用:潘艳齐, 冯卫. m6A甲基化修饰在骨肉瘤中的作用与机制研究进展[J]. 临床医学进展, 2025, 15(6): 449-455. https://doi.org/10.12677/acm.2025.1561746

1. 引言

骨肉瘤(osteosarcoma, OS)是一种起源于间叶组织的原发性骨恶性肿瘤,占骨和软组织肉瘤的近56% [1]。股骨远端是骨肉瘤的好发部位,因为其具有高度侵袭性,故患者多发生远处转移。尽管治疗骨肉瘤的方法多样,包括了化疗、病灶手术切除及放疗、免疫治疗等,但疗效并不理想。采用综合治疗的患者5年生存率为60~70% [2]。且存在转移性疾病或化疗耐药患者的生存率低于20% [3]。骨肉瘤发病及耐药机制仍不明确,可能包括染色体异常、抑癌基因突变、原癌基因和转化生长因子表达失调、miRNAs通过信号通路影响等[4]。近年来,m6A甲基化调节因子调控OS细胞转录后修饰过程,对OS的发生发展、化疗耐药、免疫治疗等产生影响。

2. m6A甲基化修饰概述

m6A甲基化,即N6-甲基腺苷,是一种在真核生物RNA中最常见的表观遗传修饰[5]。m6A甲基化修饰广泛发生在真核细胞mRNA和非编码RNA中,常在mRNA上的3’非翻译区(3’UTR)和终止密码子处富集,其核心基序多为“GGm6ACU”[6]。m6A甲基化修饰通过调控m6A甲基转移酶、m6A去甲基化酶和m6A甲基化阅读蛋白三类调节因子以实现动态可逆修饰,从而调控基因转录后水平,同时参与DNA修复、细胞重编程以及细胞分化、细胞应激反应及周期调亡等细胞生命活动。

在骨肉瘤中,骨肉瘤肿瘤样本中的总甲基化RNA (m6A)水平高于相应的正常组织,表明m6A修饰在骨肉瘤发生和进展中具有重要作用。如ELAVL1 (也称HUR)是新近发现的一种m6a甲基化阅读蛋白。它调控DRG1基因的稳定性,通过沉默ELAVL1减少m6A介导DRG1的表达来抑制骨肉瘤的进展[7]。到目前为止,人们对骨肉瘤进展过程中m6A修饰的动态调控十分复杂,需要进一步研究证实。

3. m6A甲基化修饰在骨肉瘤发生发展中的作用

越来越多的研究表明,m6A甲基化在肿瘤的发展过程中扮演着重要角色,影响肿瘤增殖、凋亡、迁移、侵袭和转移等进程,还与耐药性与免疫微环境等有关。这些生物学过程对于肿瘤的发展和治疗具有关键意义。可以说,m6A的修饰失常,紧密关联着肿瘤的发生进展及治疗方式。

3.1. m6A甲基化在骨肉瘤细胞增殖和凋亡中的作用

Wang [8]的研究证明METTL3在骨肉瘤中高表达,通过增强促癌基因MYC mRNA的稳定性促进骨肉瘤细胞增殖。METTL3通过m6A修饰增强BCL2、MCL1等抗凋亡基因的翻译效率,抑制线粒体凋亡通路从而抑制骨肉瘤细胞凋亡。也有研究证实METTL3通过m6A修饰增强环状RNA circDLC1的稳定性,后者竞争性结合miR-671-5p,上调CTNNBIP1转录,抑制癌细胞增殖[9]。Liu [10]等发现与正常组织相比,骨肉瘤细胞中METTL14的表达降低,METTL14过表达显著降低了骨肉瘤细胞的增殖、迁移、侵袭和凋亡,而且通过实验证实METTL14激活caspase-3促进骨肉瘤细胞凋亡。Wu [11]团队发现ALKBH5通过降低促癌基因NEAT1的m6A水平,抑制Wnt/β-catenin通路活性,从而减缓肿瘤细胞增殖。Lv [12]的研究证实FTO通过m6a去甲基化降低DACT1的mRNA稳定性,从而降低DACT1表达并进一步激活Wnt信号通路促进骨肉瘤的增殖,且经验证IGF2BP1参与DACT1的调节。YTHDF2和YTHDC1作为阅读蛋白,通过稳定癌基因mRNA或调控糖酵解通路(如LDHA/PFKM)促进骨肉瘤增殖。首先Zhong等[13]确定了N4-乙酰胞苷(ac4C)乙酰化的关键酶NAT10在人骨肉瘤组织中高度表达,其敲除增强了m6A含量,并显著抑制了骨肉瘤细胞的生长、迁移和侵袭。进一步的结果显示,NAT10沉默抑制mRNA稳定性和m6A读取蛋白YTHDC1的翻译,YTHDC1识别糖酵解磷酸果糖激酶(PFKM)和乳酸脱氢酶A (LDHA) mRNA关键酶上的差异m6A位点,它们通过以m6A甲基化依赖性方式增加它们的mRNA稳定性来抑制糖酵解途径。

3.2. m6A甲基化在OS细胞侵袭和转移中的作用

局部侵袭与远处转移是骨肉瘤的关键生物学行为,m6A甲基化修饰在OS细胞侵袭和转移的多个方面发挥关键的作用。糖酵解重编程在骨肉瘤进展中的作用已引起重视[14],m6A甲基化修饰常见于糖酵解重编程过程中,METTL3、ALKBH5和FTO,可调节糖酵解关键酶[15]-[17]。血行转移是骨肉瘤扩散的主要途径。Huang [18]发现WTAP介导的circ_6 m0032463A修饰通过海绵miR-145-5p和调节GFRA1表达促进骨肉瘤侵袭与转移,从而证明了m6A甲基化通过影响血管生成促进骨肉瘤侵袭和转移。m6a不仅影响了OS的侵袭与转移,也在其他肿瘤的侵袭中产生重要作用。如Xu等[19]对于膀胱癌的研究中使用了一种最近开发的化学抑制剂,该抑制剂选择性地破坏YTHDC1与m6A修饰的转录本的相互作用。用这种YTHDC1抑制剂处理尿路上皮细胞概括了YTHDC1耗竭后观察到的迁移和侵袭能力增加,而不会改变YTHDC1或m6A写入器METTL3的蛋白水平。证明了YTHDC1m6A阅读功能缺失促进膀胱癌的侵袭性。也有研究揭示WTAP是SOX1的上游调节因子。WTAP调节m6A修饰,导致SOX1的转录后抑制。YTHDF2在促进mRNA降解中发挥作用。WTAP通过m6A-YTHDF2依赖的方式调控SOX1的表达影响结直肠癌的迁移和侵袭[20]

4. m6A甲基化在骨肉瘤细胞化疗耐药中的作用

化学治疗一直是骨肉瘤的主要治疗方式,常见的化疗药物为甲氨蝶呤、多柔比星、顺铂、异环磷酰胺等。常见辅助化疗方案包括MAP方案(大剂量甲氨蝶呤、多柔比星、顺铂)、AP方案(多柔比星、顺铂)等。尽管在治疗OS中采用了辅助化疗和新的靶向药物可显著提高生存率[21]-[22],但由于骨肉瘤细胞的耐药性,OS患者的副作用和不良反应会导致5年生存率仅为56.31% [23]。m6A甲基化通过多维度机制调控骨肉瘤的化疗耐药性,包括基因表达调控、DNA修复、代谢重编程及免疫微环境重塑。

m6A甲基化修饰参与多种肿瘤的化疗耐药已得到证实。Pan等[24]从机制上证实乳腺癌中,miR-221-3p负向调节HIPK2并上调其直接靶点Che-1,从而导致阿霉素耐药的MCF-7细胞耐药性增强。Wang [25]等对结直肠癌(CRC)化疗耐药靶点及调控机制进行了研究,发现CPSF6为CRC中奥沙利铂耐药的介质,受METTL3/m6A轴调节。具体机制为METTL3敲低降低了CPSF6表达水平和m6A富集,增强了mRNA降解,而其过表达稳定了CPSF6 mRNA,从而提升结直肠癌对奥沙利铂耐药性。Fan等[26]通过单细胞RNA测序法,在胃癌肿瘤微环境(TME)中鉴定出独特的ONECUT2,TFPI奥沙利铂耐药细胞亚群。并证明了YTHDF2介导的ONECUT2的m6A修饰通过转录激活TFPI促进胃癌对奥沙利铂耐药。RBM15在肺腺癌中显著过表达,是促进肿瘤细胞增殖和迁移的独立因素。并确定RBM15通过一种新机制驱动肺腺癌对奥希替尼耐药:增强cwcv和kazal样结构域蛋白聚糖6 (SPOCK1) mRNA的m6A修饰,通过旁路激活途径促进上皮–间充质转化介导的奥希替尼耐药[27]。对于m6A在OS化疗耐药中的作用研究,Zhang等[28]确定编码DNA依赖性蛋白激酶催化亚基(DNA-PKcs)的PRKDC mRNA经m6a修饰,METTL3与PRKDC mRNA结合并正向调节DNA-PKcs表达。从功能层面来说,METTL3增强了骨肉瘤对安罗替尼的耐药性,而PRKDC敲低可逆转耐药性。

由此可见对于m6A甲基化在骨肉瘤的化疗耐药性研究较少,仍需深入探索m6A与其他耐药机制的交互作用。未来研究应聚焦于开发针对m6A网络的精准疗法,以改善OS患者的临床结局。

5. m6A甲基化在骨肉瘤预后评估中的作用

通过分析m6A甲基化调节因子在骨肉瘤组织和正常组织中的表达情况,我们发现m6A甲基化调节因子与骨肉瘤的进展和预后关系密切。有研究证实,m6A甲基化酶METTL3促进骨肉瘤的发生发展,沉默SAOS-2和MG63细胞中的METTL3显著抑制了骨肉瘤细胞的迁移和侵袭能力。然而METTL3的过表达则对U2OS细胞的迁移和侵袭能力没有影响[29]。Jiang [30]等人的研究显示,METTL3在骨肉瘤中高表达,与患者的肿瘤大小、临床分期和远处转移相关。METTL3表达越高,预后越差。METTL3、METTL14和YTHDF2的低表达以及KIAA1429和HNRNPA2B1的高表达与预后不良显著相关[31]。m6A甲基转移酶WTAP通过m6A依赖的方式下调HMBOX1的表达,调控PI3K/AKT通路促进骨肉瘤的发生发展[32]。FTO的低表达可能通过体液免疫反应和细胞周期途径与OS不良预后相关。有研究发现FTO是一种保护基因,FTO的高表达会提高骨肉瘤患者的生存率。相反,IGF2BP2是骨肉瘤的风险基因,IGF2BP2高表达降低了骨肉瘤患者的生存率。因此,FTO和IGF2BP2的异常表达与骨肉瘤的进展显著相关,二者可被认定为能独立预测骨肉瘤患者预后的因素[33]。ALKBH5通过m6A修饰调控pre-miR-181b-1/YAP信号轴可抑制骨肉瘤的恶性表型[34]。以上研究表明m6A修饰相关酶可以作为OS预后的标志物,指导用作临床检测与预后评估。

6. m6A在骨肉瘤微环境中的作用

肿瘤微环境(tumor microenvironment, TME)因其在癌症发生和发展中的重要作用而备受关注。肿瘤微环境高度复杂,涉及细胞成分、细胞外基质和分泌因子等各种成分。这些成分之间的相互作用对于调节OS侵袭与转移至关重要[35]。有研究报道,m6A修饰通过微环境影响肿瘤转移[36] [37]。Zheng [38]通过对TCGA数据库中骨肉瘤样本的转录组数据进行分析,鉴定了352个m6A相关的lncRNA。lncRNA与m6A修饰之间的相关性很复杂。一方面,特异性lncRNA可能被m6A调节因子修饰,导致lncRNA异常表达或功能障碍[39]。另一方面,lncRNA可能作为竞争性内源性RNA靶向m6A调节因子,从而影响m6A修饰水平[40]。Zheng发现在m6A相关lncRNAs中,AC004812.2是一个保护因子,它的表达与IGF2BP1和YTHDF1呈正相关,并据此推测AC004812.2以m6A依赖性方式调节骨肉瘤细胞增殖。而另一项研究证实m6A相关lncRNAs表达与OS免疫浸润水平之间的关联。发现TNS1-AS1和TFPI2-DT与记忆B细胞正相关,LINC01474与CD8T细胞呈正相关,LINC00910与CD8T细胞呈负相关[41]

7. 结论与展望

随着对骨肉瘤的研究逐渐深入,m6A对骨肉瘤的作用研究也日益增多。m6A甲基化调控的分子机制包括:代谢重编程与糖酵解调控、化疗耐药与免疫逃逸、表观遗传与转录后调控网络。本人先总结m6A甲基化相关酶及调节因子的基本功能和它们骨肉瘤细胞产生的影响。具体包括骨肉瘤细胞的发生发展、增殖与凋亡、侵袭与迁移等生物学行为以及化疗耐药机制、肿瘤微环境、预后方面产生影响。但目前相关研究较少,希望能为以后的进一步研究提供研究思路。

m6A不仅与OS关系密切,也参与了其他多种疾病的发生调控中。如:Lai等[42]评估了用UAF1抑制剂治疗的结肠炎小鼠模型的体重、疾病活动指数(DAI)评分、髓过氧化物酶(MPO)活性、隐窝长度、炎症因子和上皮细胞功能。进而揭示METTL3通过m6A甲基化修饰调节UAF1 mRNA,诱导NLRP3促进结肠炎炎症发生发展。m6A也参与了骨关节炎(OA)的调控中。研究证实FTO通过以YTHDF16依赖性方式靶向ATG1L6上的m6A甲基化位点来调节ATG1L2的mRNA稳定性,从而抑制自噬体的形成并导致能量代谢失衡,进而促进半月板变性和OA [43]。对于一些内科疾病,m6A也可能是其诊断和治疗的重要靶点。m6A在糖尿病视网膜病变(DR)中的干预作用仍然未知。Han等[44]研究证实压电型机械敏感离子通道分量1 (PIEZO1)是METTL3的下游靶标,并与YTHDF6之间存在负调控关系。METTL3介导的PIEZO6 mRNA m6A修饰加速了PIEZO6 mRNA的降解,PIEZO1沉默在DR发展中的保护作用。

经过系统性研究,m6A修饰动态调控网络为阐明表观遗传学调控机制在众多疾病发生与干预中的生物学功能提供了重要科学依据。通过全面解析m6A修饰的调控模式,研究者们得以从分子互作层面揭示其在疾病病理进程中的关键调控作用,这也为发展基于RNA表观遗传修饰的精准诊疗策略奠定了关键理论基础。但当前针对m6A修饰在骨肉瘤中的研究维度仍显局限,其动态调控网络在肿瘤发生演进中的特异性作用尚未完全解析。虽然核心酶系统成员如甲基转移酶METTL3与去甲基化酶FTO的促瘤效应已获实验证实,但其他辅助调控元件在骨肉瘤中的生物学功能及其协同作用机制仍存在显著知识缺口。

值得注意的是,作为动态可逆的RNA表观修饰,m6A在骨肉瘤微环境中如何实现精准的基因表达调控仍面临三大科学挑战:其一,动态修饰的时序控制与空间定位规律尚未明确;其二,多靶点协同效应及其分子互作网络缺乏系统阐释;其三,调控网络的稳态维持机制及其失衡阈值有待深入探索。这些关键科学问题的解决将为建立基于m6A表观编辑的骨肉瘤精准干预体系提供关键突破口。随着多维组学技术与基因编辑工具的协同应用,m6A介导的RNA表观遗传调控网络有望在骨肉瘤靶向治疗领域展现其创新价值,推动肿瘤治疗范式向动态可编程调控方向演进。

参考文献

[1] Chen, C., Shi, Q., Xu, J., Ren, T., Huang, Y. and Guo, W. (2022) Current Progress and Open Challenges for Applying Tyrosine Kinase Inhibitors in Osteosarcoma. Cell Death Discovery, 8, Article No. 488.
https://doi.org/10.1038/s41420-022-01252-6
[2] Cao, D., Ge, S. and Li, M. (2022) MiR-451a Promotes Cell Growth, Migration and EMT in Osteosarcoma by Regulating YTHDC1-Mediated M6a Methylation to Activate the AKT/mTOR Signaling Pathway. Journal of Bone Oncology, 33, Article ID: 100412.
https://doi.org/10.1016/j.jbo.2022.100412
[3] Yang, Y., Zhou, Y., Wang, J., Zhou, Y., Watowich, S.S. and Kleinerman, E.S. (2024) CD103+ cDC1 Dendritic Cell Vaccine Therapy for Osteosarcoma Lung Metastases. Cancers, 16, Article 3251.
https://doi.org/10.3390/cancers16193251
[4] de Azevedo, J., Fernandes, T., Fernandes, J., de Azevedo, J., Lanza, D., Bezerra, C., et al. (2019) Biology and Pathogenesis of Human Osteosarcoma (Review). Oncology Letters, 19, 1099-1116.
https://doi.org/10.3892/ol.2019.11229
[5] Luo, Q., Yang, Z., Deng, R., Pang, X., Han, X., Liu, X., et al. (2023) Comprehensive Analysis of Prognosis of Patients with GBM Based on 4 m6A-Related LncRNAs and Immune Cell Infiltration. Heliyon, 9, e12838.
https://doi.org/10.1016/j.heliyon.2023.e12838
[6] Shi, H., Chai, P., Jia, R. and Fan, X. (2020) Novel Insight into the Regulatory Roles of Diverse RNA Modifications: Re-Defining the Bridge between Transcription and Translation. Molecular Cancer, 19, Article No. 78.
https://doi.org/10.1186/s12943-020-01194-6
[7] Ling, Z., Chen, L. and Zhao, J. (2020) m6A-Dependent Up-Regulation of DRG1 by METTL3 and ELAVL1 Promotes Growth, Migration, and Colony Formation in Osteosarcoma. Bioscience Reports, 40, BSR20200282.
https://doi.org/10.1042/bsr20200282
[8] 王闻雪, 谭理, 汤博艺, 等. m6A甲基化修饰与骨肉瘤研究进展[J]. 中国骨与关节杂志, 2022, 11(5): 384-389.
[9] Wu, Q., Yin, X., Zhao, W., Xu, W. and Chen, L. (2022) Molecular Mechanism of m6A Methylation of Circdlc1 Mediated by RNA Methyltransferase METTL3 in the Malignant Proliferation of Glioma Cells. Cell Death Discovery, 8, Article No. 229.
https://doi.org/10.1038/s41420-022-00979-6
[10] Liu, Z., Liu, N., Huang, Z. and Wang, W. (2020) METTL14 Overexpression Promotes Osteosarcoma Cell Apoptosis and Slows Tumor Progression via Caspase 3 Activation. Cancer Management and Research, 12, 12759-12767.
https://doi.org/10.2147/cmar.s284273
[11] Wu, H., Lai, G., Cheng, R., Huang, H., Wang, J., Liu, Z., et al. (2025) Discovery of Covalent and Cell‐Active ALKBH5 Inhibitors with Potent Antileukemia Effects in Vivo. Angewandte Chemie International Edition, 64, e202424928.
https://doi.org/10.1002/anie.202424928
[12] Lv, D., Ding, S., Zhong, L., Tu, J., Li, H., Yao, H., et al. (2022) M6A Demethylase FTO-Mediated Downregulation of DACT1 mRNA Stability Promotes Wnt Signaling to Facilitate Osteosarcoma Progression. Oncogene, 41, 1727-1741.
https://doi.org/10.1038/s41388-022-02214-z
[13] Mei, Z., Shen, Z., Pu, J., Liu, Q., Liu, G., He, X., et al. (2024) NAT10 Mediated ac4C Acetylation Driven m6A Modification via Involvement of YTHDC1-LDHA/PFKM Regulates Glycolysis and Promotes Osteosarcoma. Cell Communication and Signaling, 22, Article No. 51.
https://doi.org/10.1186/s12964-023-01321-y
[14] He, Q., Hao, P., He, G., Mai, H., Liu, W., Zhang, W., et al. (2022) IGF2BP1-Regulated Expression of Errα Is Involved in Metabolic Reprogramming of Chemotherapy Resistant Osteosarcoma Cells. Journal of Translational Medicine, 20, Article No. 348.
https://doi.org/10.1186/s12967-022-03549-7
[15] Liu, X., Yuan, L., Gao, Y., Zhou, L., Yang, J. and Pei, Z. (2020) Overexpression of METTL3 Associated with the Metabolic Status on 18F-FDG PET/CT in Patients with Esophageal Carcinoma. Journal of Cancer, 11, 4851-4860.
https://doi.org/10.7150/jca.44754
[16] Yu, H., Yang, X., Tang, J., Si, S., Zhou, Z., Lu, J., et al. (2021) ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycolysis. Molecular TherapyNucleic Acids, 23, 27-41.
https://doi.org/10.1016/j.omtn.2020.10.031
[17] Quinn, J.M., Greenwade, M.M., Palisoul, M.L., Opara, G., Massad, K., Guo, L., et al. (2019) Therapeutic Inhibition of the Receptor Tyrosine Kinase AXL Improves Sensitivity to Platinum and Taxane in Ovarian Cancer. Molecular Cancer Therapeutics, 18, 389-398.
https://doi.org/10.1158/1535-7163.mct-18-0537
[18] Huang, Z., Chen, P. and Liu, Y. (2024) WTAP‐Mediated m6A Modification of Circ_0032463 Promotes Osteosarcoma Progression by Sponging Mir‐145‐5p and Regulating GFRA1 Expression. Journal of Biochemical and Molecular Toxicology, 38, e23833.
https://doi.org/10.1002/jbt.23833
[19] Xu, J., Koch, J., Schmidt, C., Nientiedt, M., Neuberger, M., Erben, P., et al. (2025) Loss of YTHDC1 m6A Reading Function Promotes Invasiveness in Urothelial Carcinoma of the Bladder. Experimental & Molecular Medicine, 57, 118-130.
https://doi.org/10.1038/s12276-024-01377-x
[20] Tang, W., Kong, X., He, S., Deng, J., Mao, M., Peng, S., et al. (2024) WTAP Regulates SOX1 Expression to Affect the Tumorigenicity of Colorectal Cancer via an m6A-YTHDF2-Dependent Manner. Digestive Diseases and Sciences, 70, 598-611.
https://doi.org/10.1007/s10620-024-08780-4
[21] Zhao, X., Wu, Q., Gong, X., Liu, J. and Ma, Y. (2021) Osteosarcoma: A Review of Current and Future Therapeutic Approaches. BioMedical Engineering OnLine, 20, Article No. 24.
https://doi.org/10.1186/s12938-021-00860-0
[22] Tang, Q., Wang, L., Wang, Y., Gao, H. and Hou, Z. (2019) Efficacy of Methotrexate, Doxorubicin, and Cisplatin for Osteosarcoma: Study Protocol for a Systematic Review of Randomized Controlled Trial. Medicine, 98, e14442.
https://doi.org/10.1097/md.0000000000014442
[23] Qiu, Y.Q. and Chen, Y.L. (2020) Primary Meningeal Osteoblastic Osteosarcoma Containing Fibroblast Osteosarcoma: Clinicopathological Analysis and Literature Review. Osteoporosis International, 32, 1007-1012.
https://doi.org/10.1007/s00198-020-05675-8
[24] Pan, X., Hong, X., Li, S., Meng, P. and Xiao, F. (2021) METTL3 Promotes Adriamycin Resistance in MCF-7 Breast Cancer Cells by Accelerating Pri-MicroRNA-221-3p Maturation in a m6A-Dependent Manner. Experimental & Molecular Medicine, 53, 91-102.
https://doi.org/10.1038/s12276-020-00510-w
[25] Wang, C., Liang, W., Zhong, J., Liu, J., Zhou, C., Ma, C., et al. (2025) M6A-Mediated REGULATION of CPSF6 by METTL3 Promotes Oxaliplatin Resistance in Colorectal Cancer through Enhanced Glycolysis. Cellular Signalling, 130, Article ID: 111676.
https://doi.org/10.1016/j.cellsig.2025.111676
[26] Fan, X., Han, F., Wang, H., Shu, Z., Qiu, B., Zeng, F., et al. (2025) YTHDF2-Mediated m6A Modification of ONECUT2 Promotes Stemness and Oxaliplatin Resistance in Gastric Cancer through Transcriptionally Activating TFPI. Drug Resistance Updates, 79, Article ID: 101200.
https://doi.org/10.1016/j.drup.2024.101200
[27] Li, H., Li, Y., Zheng, X., Chen, F., Zhang, S., Xu, S., et al. (2024) RBM15 Facilitates Osimertinib Resistance of Lung Adenocarcinoma through m6A-Dependent Epigenetic Silencing of SPOCK1. Oncogene, 44, 307-321.
https://doi.org/10.1038/s41388-024-03220-z
[28] Zhang, Y., Shen, G., Zhang, D., Meng, T., Lv, Z., Chen, L., et al. (2025) N6‐Methyladenosine Modification Mediated by METTL3 Promotes DNA‐PKcs Expression to Induce Anlotinib Resistance in Osteosarcoma. Clinical and Translational Medicine, 15, e70228.
https://doi.org/10.1002/ctm2.70228
[29] Zhou, L., Yang, C., Zhang, N., Zhang, X., Zhao, T. and Yu, J. (2020) Silencing METTL3 Inhibits the Proliferation and Invasion of Osteosarcoma by Regulating ATAD2. Biomedicine & Pharmacotherapy, 125, Article ID: 109964.
https://doi.org/10.1016/j.biopha.2020.109964
[30] Jiang, R., Dai, Z., Wu, J., Ji, S., Sun, Y. and Yang, W. (2022) METTL3 Stabilizes HDAC5 mRNA in an m6A-Dependent Manner to Facilitate Malignant Proliferation of Osteosarcoma Cells. Cell Death Discovery, 8, Article No. 179.
https://doi.org/10.1038/s41420-022-00926-5
[31] Li, J., Rao, B., Yang, J., Liu, L., Huang, M., Liu, X., et al. (2020) Dysregulated m6A-Related Regulators Are Associated with Tumor Metastasis and Poor Prognosis in Osteosarcoma. Frontiers in Oncology, 10, Article 769.
https://doi.org/10.3389/fonc.2020.00769
[32] Chen, S., Li, Y., Zhi, S., Ding, Z., Wang, W., Peng, Y., et al. (2020) WTAP Promotes Osteosarcoma Tumorigenesis by Repressing HMBOX1 Expression in an m6A-Dependent Manner. Cell Death & Disease, 11, Article No. 659.
https://doi.org/10.1038/s41419-020-02847-6
[33] Liu, H., Qin, G., Ji, Y., Wang, X., Bao, H., Guan, X., et al. (2021) Potential Role of m6A RNA Methylation Regulators in Osteosarcoma and Its Clinical Prognostic Value. Journal of Orthopaedic Surgery and Research, 16, Article No. 294.
https://doi.org/10.1186/s13018-021-02422-5
[34] Yuan, Y., Yan, G., He, M., Lei, H., Li, L., Wang, Y., et al. (2021) ALKBH5 Suppresses Tumor Progression via an m6A-Dependent Epigenetic Silencing of Pre-miR-181b-1/Yap Signaling Axis in Osteosarcoma. Cell Death & Disease, 12, Article No. 60.
https://doi.org/10.1038/s41419-020-03315-x
[35] Xu, M., Zhang, T., Xia, R., Wei, Y. and Wei, X. (2022) Targeting the Tumor Stroma for Cancer Therapy. Molecular Cancer, 21, Article No. 208.
https://doi.org/10.1186/s12943-022-01670-1
[36] Si, C., Chen, C., Guo, Y., Kang, Q. and Sun, Z. (2021) Effect, Mechanism, and Applications of Coding/Non-Coding RNA m6A Modification in Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 9, Article 711815.
https://doi.org/10.3389/fcell.2021.711815
[37] Wang, D., Han, Y., Peng, L., Huang, T., He, X., Wang, J., et al. (2023) Crosstalk between N6-Methyladenosine (m6A) Modification and Noncoding RNA in Tumor Microenvironment. International Journal of Biological Sciences, 19, 2198-2219.
https://doi.org/10.7150/ijbs.79651
[38] Di, Z., Ling, Y., Zhun, W., et al. (2022) N6-Methyladenosine-Related lncRNAs Are Potential Prognostic Biomarkers and Correlated with Tumor Immune Microenvironment in Osteosarcoma. Frontiers in Genetics, 12, Article 805607.
[39] Chen, S., Zhou, L. and Wang, Y. (2020) ALKBH5-Mediated m6A Demethylation of LncRNA PVT1 Plays an Oncogenic Role in Osteosarcoma. Cancer Cell International, 20, Article No. 34.
https://doi.org/10.1186/s12935-020-1105-6
[40] Wang, Y., Lu, J., Wu, Q., Jin, Y., Wang, D., Chen, Y., et al. (2019) LncRNA LINRIS Stabilizes IGF2BP2 and Promotes the Aerobic Glycolysis in Colorectal Cancer. Molecular Cancer, 18, Article No. 174.
https://doi.org/10.1186/s12943-019-1105-0
[41] Bi, Y., Meng, D., Wan, M., Xu, N., Xu, Y., Yuan, K., et al. (2022) m6A-Related LncRNAs Predict Overall Survival of Patients and Regulate the Tumor Immune Microenvironment in Osteosarcoma. Computational Intelligence and Neuroscience, 2022, Article ID: 9315283.
https://doi.org/10.1155/2022/9315283
[42] Lai, Y., Liu, J., Hu, X., Zeng, X. and Gao, P. (2025) N6-Methyladenosine (m6A)-Forming Enzyme METTL3 Controls UAF1 Stability to Promote Inflammation in a Model of Colitis by Stimulating NLRP3. Scientific Reports, 15, Article No. 5876.
https://doi.org/10.1038/s41598-025-88435-0
[43] Jiang, Z., Zhang, C., Liu, R., Zhu, Z., Long, D., Wen, X., et al. (2025) M6A Demethyltransferase FTO Attenuates Meniscus Degeneration and Osteoarthritis via Orchestrating Autophagy and Energetic Metabolism. Advanced Science, 12, Article ID: 2412379.
https://doi.org/10.1002/advs.202412379
[44] Han, N., Yu, N. and Yu, L. (2025) The mRNA Stability of PIEZO1, Regulated by Methyltransferase-Like 3 via N6-Methylation of Adenosine Modification in a YT521-B Homology Domain Family 2-Dependent Manner, Facilitates the Progression of Diabetic Retinopathy. The American Journal of Pathology, 195, 265-280.
https://doi.org/10.1016/j.ajpath.2024.10.007