[1]
|
Chen, C., Shi, Q., Xu, J., Ren, T., Huang, Y. and Guo, W. (2022) Current Progress and Open Challenges for Applying Tyrosine Kinase Inhibitors in Osteosarcoma. Cell Death Discovery, 8, Article No. 488. https://doi.org/10.1038/s41420-022-01252-6
|
[2]
|
Cao, D., Ge, S. and Li, M. (2022) MiR-451a Promotes Cell Growth, Migration and EMT in Osteosarcoma by Regulating YTHDC1-Mediated M6a Methylation to Activate the AKT/mTOR Signaling Pathway. Journal of Bone Oncology, 33, Article ID: 100412. https://doi.org/10.1016/j.jbo.2022.100412
|
[3]
|
Yang, Y., Zhou, Y., Wang, J., Zhou, Y., Watowich, S.S. and Kleinerman, E.S. (2024) CD103+ cDC1 Dendritic Cell Vaccine Therapy for Osteosarcoma Lung Metastases. Cancers, 16, Article 3251. https://doi.org/10.3390/cancers16193251
|
[4]
|
de Azevedo, J., Fernandes, T., Fernandes, J., de Azevedo, J., Lanza, D., Bezerra, C., et al. (2019) Biology and Pathogenesis of Human Osteosarcoma (Review). Oncology Letters, 19, 1099-1116. https://doi.org/10.3892/ol.2019.11229
|
[5]
|
Luo, Q., Yang, Z., Deng, R., Pang, X., Han, X., Liu, X., et al. (2023) Comprehensive Analysis of Prognosis of Patients with GBM Based on 4 m6A-Related LncRNAs and Immune Cell Infiltration. Heliyon, 9, e12838. https://doi.org/10.1016/j.heliyon.2023.e12838
|
[6]
|
Shi, H., Chai, P., Jia, R. and Fan, X. (2020) Novel Insight into the Regulatory Roles of Diverse RNA Modifications: Re-Defining the Bridge between Transcription and Translation. Molecular Cancer, 19, Article No. 78. https://doi.org/10.1186/s12943-020-01194-6
|
[7]
|
Ling, Z., Chen, L. and Zhao, J. (2020) m6A-Dependent Up-Regulation of DRG1 by METTL3 and ELAVL1 Promotes Growth, Migration, and Colony Formation in Osteosarcoma. Bioscience Reports, 40, BSR20200282. https://doi.org/10.1042/bsr20200282
|
[8]
|
王闻雪, 谭理, 汤博艺, 等. m6A甲基化修饰与骨肉瘤研究进展[J]. 中国骨与关节杂志, 2022, 11(5): 384-389.
|
[9]
|
Wu, Q., Yin, X., Zhao, W., Xu, W. and Chen, L. (2022) Molecular Mechanism of m6A Methylation of Circdlc1 Mediated by RNA Methyltransferase METTL3 in the Malignant Proliferation of Glioma Cells. Cell Death Discovery, 8, Article No. 229. https://doi.org/10.1038/s41420-022-00979-6
|
[10]
|
Liu, Z., Liu, N., Huang, Z. and Wang, W. (2020) METTL14 Overexpression Promotes Osteosarcoma Cell Apoptosis and Slows Tumor Progression via Caspase 3 Activation. Cancer Management and Research, 12, 12759-12767. https://doi.org/10.2147/cmar.s284273
|
[11]
|
Wu, H., Lai, G., Cheng, R., Huang, H., Wang, J., Liu, Z., et al. (2025) Discovery of Covalent and Cell‐Active ALKBH5 Inhibitors with Potent Antileukemia Effects in Vivo. Angewandte Chemie International Edition, 64, e202424928. https://doi.org/10.1002/anie.202424928
|
[12]
|
Lv, D., Ding, S., Zhong, L., Tu, J., Li, H., Yao, H., et al. (2022) M6A Demethylase FTO-Mediated Downregulation of DACT1 mRNA Stability Promotes Wnt Signaling to Facilitate Osteosarcoma Progression. Oncogene, 41, 1727-1741. https://doi.org/10.1038/s41388-022-02214-z
|
[13]
|
Mei, Z., Shen, Z., Pu, J., Liu, Q., Liu, G., He, X., et al. (2024) NAT10 Mediated ac4C Acetylation Driven m6A Modification via Involvement of YTHDC1-LDHA/PFKM Regulates Glycolysis and Promotes Osteosarcoma. Cell Communication and Signaling, 22, Article No. 51. https://doi.org/10.1186/s12964-023-01321-y
|
[14]
|
He, Q., Hao, P., He, G., Mai, H., Liu, W., Zhang, W., et al. (2022) IGF2BP1-Regulated Expression of Errα Is Involved in Metabolic Reprogramming of Chemotherapy Resistant Osteosarcoma Cells. Journal of Translational Medicine, 20, Article No. 348. https://doi.org/10.1186/s12967-022-03549-7
|
[15]
|
Liu, X., Yuan, L., Gao, Y., Zhou, L., Yang, J. and Pei, Z. (2020) Overexpression of METTL3 Associated with the Metabolic Status on 18F-FDG PET/CT in Patients with Esophageal Carcinoma. Journal of Cancer, 11, 4851-4860. https://doi.org/10.7150/jca.44754
|
[16]
|
Yu, H., Yang, X., Tang, J., Si, S., Zhou, Z., Lu, J., et al. (2021) ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycolysis. Molecular Therapy—Nucleic Acids, 23, 27-41. https://doi.org/10.1016/j.omtn.2020.10.031
|
[17]
|
Quinn, J.M., Greenwade, M.M., Palisoul, M.L., Opara, G., Massad, K., Guo, L., et al. (2019) Therapeutic Inhibition of the Receptor Tyrosine Kinase AXL Improves Sensitivity to Platinum and Taxane in Ovarian Cancer. Molecular Cancer Therapeutics, 18, 389-398. https://doi.org/10.1158/1535-7163.mct-18-0537
|
[18]
|
Huang, Z., Chen, P. and Liu, Y. (2024) WTAP‐Mediated m6A Modification of Circ_0032463 Promotes Osteosarcoma Progression by Sponging Mir‐145‐5p and Regulating GFRA1 Expression. Journal of Biochemical and Molecular Toxicology, 38, e23833. https://doi.org/10.1002/jbt.23833
|
[19]
|
Xu, J., Koch, J., Schmidt, C., Nientiedt, M., Neuberger, M., Erben, P., et al. (2025) Loss of YTHDC1 m6A Reading Function Promotes Invasiveness in Urothelial Carcinoma of the Bladder. Experimental & Molecular Medicine, 57, 118-130. https://doi.org/10.1038/s12276-024-01377-x
|
[20]
|
Tang, W., Kong, X., He, S., Deng, J., Mao, M., Peng, S., et al. (2024) WTAP Regulates SOX1 Expression to Affect the Tumorigenicity of Colorectal Cancer via an m6A-YTHDF2-Dependent Manner. Digestive Diseases and Sciences, 70, 598-611. https://doi.org/10.1007/s10620-024-08780-4
|
[21]
|
Zhao, X., Wu, Q., Gong, X., Liu, J. and Ma, Y. (2021) Osteosarcoma: A Review of Current and Future Therapeutic Approaches. BioMedical Engineering OnLine, 20, Article No. 24. https://doi.org/10.1186/s12938-021-00860-0
|
[22]
|
Tang, Q., Wang, L., Wang, Y., Gao, H. and Hou, Z. (2019) Efficacy of Methotrexate, Doxorubicin, and Cisplatin for Osteosarcoma: Study Protocol for a Systematic Review of Randomized Controlled Trial. Medicine, 98, e14442. https://doi.org/10.1097/md.0000000000014442
|
[23]
|
Qiu, Y.Q. and Chen, Y.L. (2020) Primary Meningeal Osteoblastic Osteosarcoma Containing Fibroblast Osteosarcoma: Clinicopathological Analysis and Literature Review. Osteoporosis International, 32, 1007-1012. https://doi.org/10.1007/s00198-020-05675-8
|
[24]
|
Pan, X., Hong, X., Li, S., Meng, P. and Xiao, F. (2021) METTL3 Promotes Adriamycin Resistance in MCF-7 Breast Cancer Cells by Accelerating Pri-MicroRNA-221-3p Maturation in a m6A-Dependent Manner. Experimental & Molecular Medicine, 53, 91-102. https://doi.org/10.1038/s12276-020-00510-w
|
[25]
|
Wang, C., Liang, W., Zhong, J., Liu, J., Zhou, C., Ma, C., et al. (2025) M6A-Mediated REGULATION of CPSF6 by METTL3 Promotes Oxaliplatin Resistance in Colorectal Cancer through Enhanced Glycolysis. Cellular Signalling, 130, Article ID: 111676. https://doi.org/10.1016/j.cellsig.2025.111676
|
[26]
|
Fan, X., Han, F., Wang, H., Shu, Z., Qiu, B., Zeng, F., et al. (2025) YTHDF2-Mediated m6A Modification of ONECUT2 Promotes Stemness and Oxaliplatin Resistance in Gastric Cancer through Transcriptionally Activating TFPI. Drug Resistance Updates, 79, Article ID: 101200. https://doi.org/10.1016/j.drup.2024.101200
|
[27]
|
Li, H., Li, Y., Zheng, X., Chen, F., Zhang, S., Xu, S., et al. (2024) RBM15 Facilitates Osimertinib Resistance of Lung Adenocarcinoma through m6A-Dependent Epigenetic Silencing of SPOCK1. Oncogene, 44, 307-321. https://doi.org/10.1038/s41388-024-03220-z
|
[28]
|
Zhang, Y., Shen, G., Zhang, D., Meng, T., Lv, Z., Chen, L., et al. (2025) N6‐Methyladenosine Modification Mediated by METTL3 Promotes DNA‐PKcs Expression to Induce Anlotinib Resistance in Osteosarcoma. Clinical and Translational Medicine, 15, e70228. https://doi.org/10.1002/ctm2.70228
|
[29]
|
Zhou, L., Yang, C., Zhang, N., Zhang, X., Zhao, T. and Yu, J. (2020) Silencing METTL3 Inhibits the Proliferation and Invasion of Osteosarcoma by Regulating ATAD2. Biomedicine & Pharmacotherapy, 125, Article ID: 109964. https://doi.org/10.1016/j.biopha.2020.109964
|
[30]
|
Jiang, R., Dai, Z., Wu, J., Ji, S., Sun, Y. and Yang, W. (2022) METTL3 Stabilizes HDAC5 mRNA in an m6A-Dependent Manner to Facilitate Malignant Proliferation of Osteosarcoma Cells. Cell Death Discovery, 8, Article No. 179. https://doi.org/10.1038/s41420-022-00926-5
|
[31]
|
Li, J., Rao, B., Yang, J., Liu, L., Huang, M., Liu, X., et al. (2020) Dysregulated m6A-Related Regulators Are Associated with Tumor Metastasis and Poor Prognosis in Osteosarcoma. Frontiers in Oncology, 10, Article 769. https://doi.org/10.3389/fonc.2020.00769
|
[32]
|
Chen, S., Li, Y., Zhi, S., Ding, Z., Wang, W., Peng, Y., et al. (2020) WTAP Promotes Osteosarcoma Tumorigenesis by Repressing HMBOX1 Expression in an m6A-Dependent Manner. Cell Death & Disease, 11, Article No. 659. https://doi.org/10.1038/s41419-020-02847-6
|
[33]
|
Liu, H., Qin, G., Ji, Y., Wang, X., Bao, H., Guan, X., et al. (2021) Potential Role of m6A RNA Methylation Regulators in Osteosarcoma and Its Clinical Prognostic Value. Journal of Orthopaedic Surgery and Research, 16, Article No. 294. https://doi.org/10.1186/s13018-021-02422-5
|
[34]
|
Yuan, Y., Yan, G., He, M., Lei, H., Li, L., Wang, Y., et al. (2021) ALKBH5 Suppresses Tumor Progression via an m6A-Dependent Epigenetic Silencing of Pre-miR-181b-1/Yap Signaling Axis in Osteosarcoma. Cell Death & Disease, 12, Article No. 60. https://doi.org/10.1038/s41419-020-03315-x
|
[35]
|
Xu, M., Zhang, T., Xia, R., Wei, Y. and Wei, X. (2022) Targeting the Tumor Stroma for Cancer Therapy. Molecular Cancer, 21, Article No. 208. https://doi.org/10.1186/s12943-022-01670-1
|
[36]
|
Si, C., Chen, C., Guo, Y., Kang, Q. and Sun, Z. (2021) Effect, Mechanism, and Applications of Coding/Non-Coding RNA m6A Modification in Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 9, Article 711815. https://doi.org/10.3389/fcell.2021.711815
|
[37]
|
Wang, D., Han, Y., Peng, L., Huang, T., He, X., Wang, J., et al. (2023) Crosstalk between N6-Methyladenosine (m6A) Modification and Noncoding RNA in Tumor Microenvironment. International Journal of Biological Sciences, 19, 2198-2219. https://doi.org/10.7150/ijbs.79651
|
[38]
|
Di, Z., Ling, Y., Zhun, W., et al. (2022) N6-Methyladenosine-Related lncRNAs Are Potential Prognostic Biomarkers and Correlated with Tumor Immune Microenvironment in Osteosarcoma. Frontiers in Genetics, 12, Article 805607.
|
[39]
|
Chen, S., Zhou, L. and Wang, Y. (2020) ALKBH5-Mediated m6A Demethylation of LncRNA PVT1 Plays an Oncogenic Role in Osteosarcoma. Cancer Cell International, 20, Article No. 34. https://doi.org/10.1186/s12935-020-1105-6
|
[40]
|
Wang, Y., Lu, J., Wu, Q., Jin, Y., Wang, D., Chen, Y., et al. (2019) LncRNA LINRIS Stabilizes IGF2BP2 and Promotes the Aerobic Glycolysis in Colorectal Cancer. Molecular Cancer, 18, Article No. 174. https://doi.org/10.1186/s12943-019-1105-0
|
[41]
|
Bi, Y., Meng, D., Wan, M., Xu, N., Xu, Y., Yuan, K., et al. (2022) m6A-Related LncRNAs Predict Overall Survival of Patients and Regulate the Tumor Immune Microenvironment in Osteosarcoma. Computational Intelligence and Neuroscience, 2022, Article ID: 9315283. https://doi.org/10.1155/2022/9315283
|
[42]
|
Lai, Y., Liu, J., Hu, X., Zeng, X. and Gao, P. (2025) N6-Methyladenosine (m6A)-Forming Enzyme METTL3 Controls UAF1 Stability to Promote Inflammation in a Model of Colitis by Stimulating NLRP3. Scientific Reports, 15, Article No. 5876. https://doi.org/10.1038/s41598-025-88435-0
|
[43]
|
Jiang, Z., Zhang, C., Liu, R., Zhu, Z., Long, D., Wen, X., et al. (2025) M6A Demethyltransferase FTO Attenuates Meniscus Degeneration and Osteoarthritis via Orchestrating Autophagy and Energetic Metabolism. Advanced Science, 12, Article ID: 2412379. https://doi.org/10.1002/advs.202412379
|
[44]
|
Han, N., Yu, N. and Yu, L. (2025) The mRNA Stability of PIEZO1, Regulated by Methyltransferase-Like 3 via N6-Methylation of Adenosine Modification in a YT521-B Homology Domain Family 2-Dependent Manner, Facilitates the Progression of Diabetic Retinopathy. The American Journal of Pathology, 195, 265-280. https://doi.org/10.1016/j.ajpath.2024.10.007
|