急性心肌梗死对猪骨代谢的影响及潜在机制
The Influence and Potential Mechanism of Acute Myocardial Infarction on Bone Metabolism in Pigs
DOI: 10.12677/acm.2025.1561750, PDF, HTML, XML,   
作者: 冷楠楠:青岛大学附属医院心血管内科,山东 青岛;青岛西海岸新区人民医院心血管内科,山东 青岛;房 辉:青岛市市南区八大湖街道巢湖路社区卫生服务中心全科门诊,山东 青岛;宋志洁:淄博市沂源县人民医院心电图诊断科,山东 淄博;赵 丹:胶州市阜安街道社区卫生服务中心,山东 青岛;张文忠*:青岛大学附属医院心血管内科,山东 青岛
关键词: 急性心肌梗死骨代谢骨密度单核细胞甲状旁腺素Acute Myocardial Infarction Bone Metabolism Bone Density Monocytes Parathyroid Hormone
摘要: 目的:本研究旨在探究急性心肌梗死(AMI)对猪骨代谢的影响及潜在机制。方法:本研究用12头8周龄雄性约克夏猪作为实验动物,随机分为手术组(n = 6)及假手术组(n = 6)。手术组猪使用左前降支动脉结扎法建立心肌梗死模型,假手术组进行相同的手术,但未结扎左前降支。(1) 测量并比较两组猪的基线数据;(2) 两组猪术前及术后30 d LVEF的检测、白细胞分析、血清钙、磷及PTH水平的及骨代谢指标检测;(3) 双能X射线吸收法测定两组实验猪术后30 d腰椎(L1~L4)及左股骨骨密度。(4) 对两组猪于术后30 d取右股骨进行H&E染色,显微镜下观察并比较两组实验猪骨小梁面积。结果:1) 两组猪基线数据比较均无统计学差异(P > 0.05)。2) 手术前,两组LVEF值无显著差异(P > 0.05);手术后,与假手术组相比较,手术组的LVEF值显著下降(P < 0.05)。3) ① 术前和术后,两组猪淋巴细胞、中性粒细胞计数和百分比及单核细胞百分比均无统计学差异(P > 0.05)。② 手术前两组单核细胞计数无显著差异(P > 0.05);手术后30 d手术组单核细胞计数显著升高(P < 0.05)。4) ① 手术前,两组猪血钙、血磷无显著差异(P > 0.05);与假手术组相比,术后30 d手术组血钙、血磷水平显著下降(P < 0.05)。② 手术前,假手术组与手术组的甲状旁腺素水平比较无显著差异(P > 0.05);手术组在术后30 d的甲状旁腺素水平显著高于假手术组(P < 0.05)。5) 手术前,假手术组与手术组的25-(OH)D、骨钙素N端中分子片段水平无显著差异(P > 0.05);手术组在术后30 d的25-(OH)D、骨钙素N端中分子片段水平显著低于假手术组(P < 0.05)。6) 术后30 d,手术组腰椎及左股骨骨密度显著低于假手术组(P < 0.05)。7) 显微镜下观察,同等放大倍数单个视野中手术组右股骨骨小梁面积小于假手术组。结论:本研究显示心肌梗死可导致猪全身骨吸收标志物增加,从而骨量减低,骨密度下降。
Abstract: Objective: The purpose of this study is to investigate the effects of acute myocardial infarction (AMI) on bone metabolism in pigs and its potential mechanisms. Methods: This study used 12 8-week-old male Yorkshire pigs as experimental animals, divided into surgical group (n = 6) and sham surgery group (n = 6). The surgical group of pigs was subjected to a left anterior descending artery ligation method to a myocardial infarction model, and the sham surgery group underwent the same surgery but did not ligate the left anterior descending branch. (1) The baseline data in the two groups of pigs were measured and compared; (2) The detection of LVEF of the two groups of pigs before and after 30 days of surgery, white blood cell analysis, levels of serum, phosphorus and PTH, and detection of bone metabolism indicators; (3) The bone mineral density of the lum spine (L1~L4) and left femur of the two groups of experimental pigs was measured by dual-energy X-ray absorptiometry 30 days surgery. (4) The right femur of the two groups of pigs was taken for H&E staining on postoperative day 30, and the trabecular of the two groups of experimental pigs was observed and compared under the microscope. Results: 1) There was no statistically significant difference in the baseline data size of the two groups of (P > 0.05). 2) There was no significant difference in the LVEF value size of the two groups before surgery (P > 0.05); the LVEF value size of the surgical group was significantly lower than that of the sham surgery group after surgery (P < 0.05). 3) ① Pre- and post-operation, no statistically significant differences were observed in lymphocyte count, neutrophil count (and percentages), or monocyte percentage between the two groups (P > 0.05). ② Preoperatively, monocyte counts showed no significant difference between groups (P > 0.05); the monocyte count of the two groups was significantly higher after 30 days of surgery and was statistically significant (P < 0.05). 4) ① There was no significant difference in the blood calcium and blood phosph size of the two groups of pigs before surgery (P > 0.05); the blood calcium and blood phosphorus size of the surgical group was significantly lower than that the sham surgery group after surgery (P < 0.05). ② There was no significant difference in the parathyroid hormone levels between the sham group and the surgical group before surgery (P > 0.05); the parathyroid hormone levels of the surgical group were significantly higher than those of the sham surgery at 30 days after surgery (P < 0.05). 5) ① There was no significant difference in the of 25-(OH)D and N-terminal mid-molecular fragment of osteocalcin between the sham surgery group and the surgical group before surgery (P > 0.05); the levels of 25-(OH)D and N-terminal mid-molecular fragment of osteocalcin in the surgical group were significantly lower than of the sham surgery group at 30 days after surgery (P < 0.05). 6) At 30 days surgery, the bone mineral density of the lumbar spine and left femur in the surgical group was significantly lower than that in the sham operation group (P < 0.05). 7) Under the microscope, the trabecular area of the right femur in the surgical group was smaller than that in the sham surgery group in a single field of. Conclusion: This study shows that myocardial infarction can lead to an increase in the overall bone resorption markers in pigs, resulting in a decrease in bone mass and bone density.
文章引用:冷楠楠, 房辉, 宋志洁, 赵丹, 张文忠. 急性心肌梗死对猪骨代谢的影响及潜在机制[J]. 临床医学进展, 2025, 15(6): 479-490. https://doi.org/10.12677/acm.2025.1561750

1. 引言

急性心肌梗死(Acute Myocardial Infarction, AMI)是最常见的急性心肌损伤疾病。据统计,我国每年因心血管疾病死亡人数高达1800万人,而心肌梗死在其中占据了相当大的比例[1]。流行病学调查表明,心肌梗死男性发病率显著高于女性,且随着年龄的增长而增长。以韩国为例,2016年,心肌梗死的住院发生率为每10万人中43.2例,其中男性比女性高2.4倍[2]。AMI是由于冠状动脉血流突然中断,导致心肌细胞缺血、缺氧并发生坏死。其病理机制包括氧化应激、炎症反应和细胞凋亡等多种复杂的生物学过程[3]。目前,介入治疗、药物治疗以及外科手术是治疗急性心肌梗死的常用方法,然而这些方法并不能完全消除急性心肌梗死对患者全身健康的影响[4] [5]

骨代谢(Bone Metabolism)是一个复杂而动态的生理过程,涉及骨组织的形成与重塑,这一过程由成骨细胞和破骨细胞共同调控,维持骨骼的结构完整性和矿物质平衡。研究表明,骨代谢的平衡对于维持骨骼健康至关重要,任何一方的失衡都可能导致骨质疏松等疾病的发生[6] [7]。骨代谢的调节因子包括甲状旁腺素、维生素D、骨钙素、性激素、糖皮质激素等,在维持骨密度和骨质量方面起着至关重要的作用[8] [9]

近年来,许多研究表明,心血管疾病与骨代谢之间存在密切的相互关系[10]-[14]。急性心肌梗死后,患者的骨代谢可能受到影响,导致骨质疏松(Osteoporosis)和骨量减少(Osteopenia),这一现象在临床观察中逐渐引起重视。然而,急性心肌梗死对骨代谢的具体影响机制仍不清楚。现有研究主要集中在急性心肌梗死对心脏功能的影响,而其对骨代谢的影响研究相对较少。

本研究旨在探讨心肌梗死对猪骨代谢的影响及其潜在机制。通过建立猪急性心肌梗死模型,观察心肌梗死后猪的骨密度变化、骨小梁形态及相关生化指标的变化,以揭示心肌梗死对骨代谢的具体影响,同时为临床心肌梗死后骨健康管理提供科学依据。

2. 对象与方法

2.1. 实验动物分组及急性心肌梗死(AMI)动物模型的建立

8周龄雄性约克夏猪12头,体重约20 kg~30 kg,体长约60 cm~70 cm。将实验猪随机分为手术组(n = 6)和假手术组(n = 6)。手术组在冠状动脉左前降支(left descending artery, LAD)中远段(距LAD远端1/4~1/3处)进行结扎,建立急性心肌梗死动物模型,完善术前及术后心电图,手术组术后心电图可见胸前导联ST段抬高,明确其发生心肌梗死。假手术组进行相同手术,但未结扎LAD。

手术组猪臀部肌肉注射艾司氯胺酮(2 mg/kg)、咪达唑仑(5 mg/头)、阿托品(0.25 mg/头),观察2 min,开放耳缘静脉后静推丙泊酚(4 ml/头)。将实验猪取仰卧位置于手术台,固定四肢后给予可视喉镜下气管插管,接呼吸机机械通气,予七氟烷2%持续吸入辅助麻醉,静脉间断给予丙泊酚维持麻醉。完善术前十二通道心电图后于左前胸第4肋间入胸,打开心包暴露心脏。明确血管走行后选择LAD中远段(距LAD远端1/4~1/3处)为结扎位点,结扎血管。观察10 min后再次完善十二通道心电图,逐层关闭胸腔。建模成功标准:心电图示胸前导联ST段抬高(见图1)。

注:A. 实验猪完善术前十二通道心电图;B. 手术组猪结扎前降支后再次完善十二通道心电图,见胸前导联ST段弓背向上抬高,明确心肌梗死模型建立成功。

Figure 1. Establish an animal model of acute myocardial infarction

1. 建立急性心肌梗死动物模型

2.2. 检测指标

测量两组猪基本资料;术前及术后30 d检测左室射血分数(LVEF);检测白细胞分析(包括淋巴细胞、单核细胞、中性粒细胞计数及百分比);检测血清钙、磷、甲状旁腺素水平;骨代谢指标(25-羟基维生素D、β-胶原特殊序列、骨钙素N端中分子片段)的检测;术后30 d测定腰椎(L1~L4)及左股骨骨密度(用T值表示);术后30 d取右股骨进行H&E染色,观察骨小梁面积。

2.3. 统计方法

根据本研究的特点,数据分析采用了适当的统计方法。对于符合正态分布且方差齐性的定量数据,组内比较采用配对样本t检验,组间比较采用两独立样本t检验。若数据不满足正态分布或方差齐性的假设,组内比较则采用配对样本Wilcoxon符号秩和检验,组间比较采用两独立样本Wilcoxon秩和检验。对于分类变量数据,采用频数表展示,并根据情况使用卡方检验或Fisher精确检验进行组间比较。所有统计分析均使用SPSS 26.0软件进行,数据结果以均值 ± 标准差( x ¯ ±s )呈现。采用皮尔逊相关系数在各变量之间进行了相关性分析。

3. 结果

3.1. 基线资料分析

对手术组及假手术组的基线数据进行整理与统计分析,基于Rversion4.3.0平台完成。比较两组基线数据无明显变化(P > 0.05),其差异无统计学意义(见图2)。

Figure 2. Baseline data of two groups of pigs

2. 两组猪的基线数据

3.2. 两组左室射血分数(LVEF)比较结果

手术前,两组LVEF值无显著差异,P > 0.05 (P = 0.603)。手术后30 d,手术组LVEF值显著低于假手术组,P < 0.05 (P = 0.002),具有统计学意义。表明心肌梗死导致心脏功能减低,LVEF值降低(见表1)。

Table 1. Comparison of the size of LVEF in the two groups of pigs before and after surgery ( x ¯ ±s )

1. 两组猪在前后测的LVEF大小比较( x ¯ ±s )

分组

前测

后测

假手术组(n = 6)

70.652 ± 0.747

70.1733 (69.875, 70.535)

手术组(n = 6)

70.902 ± 0.861

58.8183 (57.915, 59.8275)

统计值

t = −0.537

Z = −2.882

P

0.603

0.002

3.3. 白细胞分析

3.3.1. 两组淋巴细胞计数及百分比比较结果

对于淋巴细胞计数及百分比,手术前,假手术组与手术组的淋巴细胞计数及百分比无显著差异,P > 0.05。手术后,手术组与假手术组的淋巴细胞计数及百分比也无显著差异,P > 0.05。这表明,两组手术前后测得的淋巴细胞计数及百分比的变化无统计学意义(见表2)。

Table 2. Comparison of lymphocyte counts and percentages in two groups of pigs before and after surgery

2. 两组猪在术前后测的淋巴细胞计数及百分比比较

分组

淋巴细胞计数

淋巴细胞百分比

前测

后测

前测

后测

假手术组(n = 6)

2.5933 (1.6125, 3.98)

5.245 ± 2.549

42.933 ± 3.916

42.183 (37.85, 47.775)

手术组(n = 6)

2.38 (1.27, 3.96)

5.312 ± 2.931

44.667 ± 3.026

45.6 (38.675, 53.475)

统计值

Z = 0.423

t = 0.042

t = −0.858

Z = −0.962

P

0.485

0.967

0.411

0.394

3.3.2. 两组单核细胞计数及百分比的比较结果

手术前,假手术组与手术组的单核细胞计数及百分比无显著差异(P > 0.05)。手术后,手术组较假手术组的单核细胞计数显著升高(P < 0.05),这表明心肌梗死可能对单核细胞水平产生影响,但术后两组的单核细胞百分比无统计学差异(P > 0.05) (见表3)。

Table 3. Comparison of the number of mononuclear cells and percentages measured pre- and post-operatively in the two groups of pigs

3. 两组猪在前后测的单核细胞计数百分比比较

分组

单核细胞计数

单核细胞百分比

前测

后测

前测

后测

假手术组(n = 6)

0.0817 (0.0375, 0.155)

0.163 ± 0.066

1.217 (1, 1.475)

1.417 ± 0.343

手术组(n = 6)

0.0817 (0.03, 0.17)

0.447 ± 0.242

1.4 (1, 1.775)

8.533 ± 13.534

统计值

Z = −0.246

t = −2.766

Z = −0.335

t = −1.288

P

0.818

0.034

0.818

0.254

3.3.3. 两组中性粒细胞计数及百分比比较结果

对于中性粒细胞计数及百分比,手术前,假手术组与手术组的中性粒细胞计数及百分比无显著差异,P > 0.05。手术后,两组的中性粒细胞计数及百分比也无显著差异,P > 0.05。这表明,两组在手术前后测得的中性粒细胞计数及百分比的变化无统计学意义(见表4)。

Table 4. Comparison of the number and percentage of neutrophils in the two groups of pigs before and after the operation

4. 两组猪在前后测的中性粒细胞计数及百分比比较

分组

中性粒细胞计数

中性粒细胞百分比

前测

后测

前测

后测

假手术组(n = 6)

3.077 ± 1.607

6.59 ± 1.707

54.667 ± 3.808

55.2 ± 5.111

手术组(n = 6)

2.658 ± 1.536

5.047 ± 2.758

52.117 ± 3.189

42.25 ± 7.429

统计值

t = 0.461

t = 0.655

t = 0.461

t = 0.655

P

0.655

0.271

0.655

0.271

3.4. 血清钙、磷及甲状旁腺素的比较结果

3.4.1. 两组血钙的比较结果

关于血钙,手术前,假手术组与手术组的血钙水平无显著差异(P > 0.05)。然而,手术后,手术组与假手术组的血钙水平差异显著,手术组在术后30 d的血钙水平显著低于假手术组(P < 0.05)。这表明心肌梗死后血钙水平降低(见表5)。

Table 5. Comparison of blood calcium levels in two groups of pigs before and after surgery

5. 两组猪在前后测的血钙水平比较

分组

前测

后测

假手术组(n = 6)

2.435 ± 0.01

2.405 ± 0.01

手术组(n = 6)

2.448 ± 0.013

2.342 ± 0.041

统计值

t = 1.929

t = 3.650

P

0.083

0.012

3.4.2. 两组血磷的比较结果

对于血磷,手术前,假手术组与手术组的血磷水平无显著差异(P > 0.05)。然而,手术后,手术组与假手术组的血磷水平差异显著(P < 0.05),手术组在术后30 d的血磷水平显著低于假手术组。这表明,心肌梗死可能通过调节血磷水平影响骨代谢(见表6)。

Table 6. Comparison of blood phosphorus in pigs before and after surgery in the two groups

6. 两组猪在前后测的血磷比较

分组

前测

后测

假手术组(n = 6)

3.075 (3.0375, 3.1125)

3.072 ± 0.046

手术组(n = 6)

3.105 (2.83, 2.9225)

2.882 ± 0.114

统计值

Z = −1.398

t = 3.796

P

0.180

0.004

3.4.3. 两组甲状旁腺素的比较结果

对于甲状旁腺素水平,手术前,假手术组与手术组的甲状旁腺素水平无显著差异(P > 0.05)。然而,手术后30 d,手术组在术后30 d的甲状旁腺素水平显著高于假手术组(P < 0.05)。这表明,心肌梗死可能通过过度激活甲状旁腺功能影响骨代谢(见表7)。

Table 7. Comparison of parathyroid hormone levels in two groups of pigs before and after surgery

7. 两组猪在前后测的甲状旁腺素水平比较

分组

前测

后测

假手术组(n = 6)

61.913 ± 1.052

64.3967 (63.6575, 64.915)

手术组(n = 6)

61.485 ± 0.649

105.6033 (95.735, 117.305)

统计值

t = 0.849

Z = −2.882

P

0.416

0.002

3.5. 骨代谢指标

3.5.1. 两组25-羟基维生素D的比较结果

对于25-(OH)D水平,手术前,假手术组与手术组的25-(OH)D水平无显著差异(P = 0.149)。然而,手术后,手术组与假手术组的25-(OH)D水平降低且手术组低于假手术组(P = 0.002),具有统计学意义。表明心肌梗死可能导致维生素D水平降低(见表8)。

Table 8. Comparison of 25-(OH)D levels in two groups of pigs before and after surgery

8. 两组猪在前后测的25-(OH)D水平比较

分组

前测

后测

假手术组(n = 6)

40.655 ± 0.703

39.3583 (38.775, 39.955)

手术组(n = 6)

41.282 ± 0.685

22.73 (20.88, 24.6225)

统计值

t = −1.564

Z = −2.882

P

0.149

0.002

3.5.2. 两组骨钙素N端中分子片段的比较结果

经检验,手术前,假手术组与手术组的骨钙素N端中分子片段水平无显著差异(P = 0.589)。手术后,手术组骨钙素N端中分子片段水平显著低于假手术组(P = 0.001)。这表明,心肌梗死对骨代谢的影响较为明显(见表9)。

Table 9. Comparison of N-Mid OC levels in two groups of pigs before and after surgery

9. 两组猪在前后测的N-Mid OC水平比较

分组

前测

后测

假手术组(n = 6)

72.3483 (69.9875, 73.835)

70.017 ± 1.554

手术组(n = 6)

72.7733 (71.4125, 74.0275)

64.355 ± 2.524

统计值

Z = −0.563

t = 4.678

P

0.589

0.001

3.6. 两组术后30 d腰椎(L1~L4)及左股骨骨密度测定

经检验,手术组与假手术组腰椎及左股骨骨密度差异显著,手术组腰椎及左股骨骨密度显著低于假手术组(P = 0.001),具有统计学意义,表明心肌梗死导致骨密度减低(见表10)。

Table 10. Comparison of the size differences of L-T and LF-T between the two groups at 30 days after the operation

10. 术后30 d测两组在L-T、LF-T大小差异

分组

L-T

LF-T

假手术组

−6.417 ± 0.691

−6.85 ± 0.957

手术组

−7.933 ± 0.455

−8.15 ± 0.409

统计值

t = 4.091

t = 3.061

P

0.001

0.019

3.7. 骨H&E染色比较两组骨小梁面积

术后30 d,取两组实验猪右股骨进行H&E染色,在显微镜下观察同等放大倍数单个视野中两组猪右股骨骨小梁面积的大小。手术组右股骨H&E染色后单个视野中骨小梁面积小于假手术组(见图3)。

注:A:假手术组;B:手术组。

Figure 3. H&E stained image of the right femur at 30 days postoperatively (100×)

3. 术后30 d右股骨H&E染色图片(100×)

3.8. 相关性分析

在各变量之间,引用皮尔逊相关系数进行了相关性分析。结果显示,EF下降百分比(EF↓%)与变化的β-CTX、iPTH、Ca和P均有显著相关性。具体而言,变化的β-CTX (r = 0.354, P < 0.05)、变化的iPTH (r = 0.843, P < 0.01)与EF↓%呈显著正相关,变化的Ca (r = −0.778, P < 0.01)和P (r = −0.713, P < 0.01)与EF↓%呈显著负相关。该分析表明,EF↓%和多项骨代谢指标之间存在相关性,心肌梗死可能由于心功能减低进而对骨代谢产生影响(见表11)。

Table 11. Pearson correlation analysis

11. 皮尔逊相关性分析

EF↓%

变化β-CTX (ng/ml)

变化iPTH (pg/ml)

变化Ca (mmol/L)

变化P (mmol/L)

EF↓%

1

变化β-CTX (ng/ml)

0.354*

1

变化iPTH (pg/ml)

0.843**

0.578*

1

变化Ca (mmol/L)

−0.778**

−0.046

−0.775**

1

变化P (mmol/L)

−0.713**

−0.319

−0.826**

0.829**

1

注:**表示0.01级别(双尾)的相关性显著。*表示0.05级别(双尾)的相关性显著。

4. 讨论

4.1. 自主活动减少与日照时间缩短

研究发现,机械负荷会影响骨代谢的生理过程。骨组织对机械刺激的反应是通过机械转导机制实现的,这一机制涉及到骨细胞的信号传导和基因表达的变化。当骨骼受到机械负荷时,骨细胞会感知到这些机械信号,并通过调节成骨细胞和破骨细胞的活性来适应这些变化,从而促进骨的重塑和强化。例如,运动可以增加骨密度,降低骨折风险,在运动员和活跃人群中尤为明显。相反,长期卧床或缺乏运动则会导致骨密度下降,从而增加骨折的风险[15]

既往研究分析了骨折后4天的小鼠自愿笼活动(机械负荷)的一些显著变化。包括骨折小鼠总体行走减少以及饲养的发生率显著降低。这些变化可能导致全身性骨丢失,机械负荷与骨吸收之间的关系已得到证实[16]。因此,我们认为自主运动减少、骨负荷减低,是导致系统性骨质流失的相关因素。本研究通过观察发现,两组实验猪术后自主活动均有所减少,日照时间减少,手术组猪自主活动减少较假手术组更加显著,心肌梗死猪的左股骨及腰椎骨密度减低且H&E染色后显示骨小梁面积减少。从而影响猪的骨骼代谢。

4.2. 单核细胞增多

研究发现,心肌梗死后,由于疼痛、焦虑和心力衰竭等刺激引发交感神经系统(SNS)活动增强,造血祖细胞(HSPCs)离开骨髓微环境,在冠状动脉结扎后的小鼠中产生了大量的髓外单核细胞[17]。髓外单核细胞作为破骨细胞的前体细胞,它的大量生成导致分化出大量的破骨细胞,同时其活性增强,进而加剧了骨质流失。因此本研究发现,是因为心肌梗死后猪循环中单核细胞计数增加,分化出更多的破骨细胞,导致骨质流失加剧,骨密度减低以及骨小梁面积减少。

4.3. 交感神经兴奋,继发性甲状旁腺功能亢进

肾素–血管紧张素–醛固酮系统(RAAS)的过度激活是心血管疾病发病和病情恶化的重要因素。甲状旁腺激素(PTH)是一种由甲状旁腺主要细胞分泌的肽,可促进血钙(Ca2+)水平升高和血磷(P)水平降低。研究表明RAAS和PTH之间存在联系。甲状旁腺功能亢进可增加PTH水平,促进骨吸收,说明肾血管紧张素–醛固酮系统(RAAS)与骨质疏松有关。同时,RAAS还可通过其他机制引起骨质疏松。Hatton et al.和Beavan et al.的研究表明,血管紧张素I (Ang I)、血管紧张素II (Ang II)和醛固酮可有效刺激破骨细胞的骨吸收,引起骨溶解,从而导致骨质疏松症[18]。矿化皮质激素受体拮抗剂(MRA)可直接或间接通过PTH影响人体骨骼健康[19] [20]。PTH的分泌主要受血清Ca2+浓度的调节。当血清Ca2+浓度较低时,甲状旁腺激素的分泌增加。当血清Ca2+浓度高时,PTH的分泌减少[21] [22]。这种关系是通过Ca2+和甲状旁腺细胞表面钙敏感受体(CASR)之间的相互作用介导的[23] [24]。血清磷(P)水平是调节PTH分泌的另一个重要因素。血磷可以间接刺激甲状旁腺细胞的增殖和PTH的分泌,从而降低血清Ca2+浓度。血磷还可以通过增加PTH的稳定性,直接增强甲状旁腺细胞的分泌功能。心肌梗死后,猪体内RAAS系统过度激活,导致24 h肾脏钙排泄增加和血清钙减少,进而导致继发性甲状腺功能亢进,PTH的分泌增加,PTH可以动员骨钙进入血液,促进肾小管Ca和P的重吸收,同时反馈性抑制血磷的升高,进而加剧甲状旁腺功能亢进。PTH促进肾脏中25-羟基维生素D (25OHD)转化为1,25二羟基维生素D (1,25[OH]2D3)。多项研究表明,较低的血钙水平可能导致继发性甲状旁腺功能亢进症,并最终影响骨量和强度[25]。研究发现外源性DEX在年轻仔猪中刺激PTH水平上升,抑制骨钙素的释放[26]。本研究结果显示,EF下降百分比(EF↓%)与变化的β-CTX、iPTH、Ca和P均有显著相关性,尤其是iPTH、Ca和P水平,表明交感神经系统的激活导致继发性甲状旁腺功能亢进,可能在这一反应中发挥重要作用。

4.4. 心力衰竭

骨钙素和I型前胶原N端前肽(PINP)是骨形成的特异性标志物,而骨吸收的特异性标志物包括β-胶原特殊序列(β-CTX)。研究显示,心力衰竭(HF)患者血清中骨钙素和β-CTX水平的升高,表明骨转换率高[27] [28]。另一项研究表明,HF患者的骨吸收标志物显著升高,与左心室射血分数呈负相关[29]。其他研究显示β-CTX与HF的严重程度以及骨密度(BMD)的降低相关[30]。本研究结果显示,心肌梗死后循环中的β-胶原特殊序列和骨钙素N端中分子片段都减少了,其中骨钙素的减少幅度大于β-胶原特殊序列,使手术组猪骨吸收程度大于骨形成,进而导致其骨密度减低。

本研究显示心肌梗死对猪的骨代谢存在显著影响,心肌梗死可导致猪全身骨量减低,与猪心肌梗死后活动减少、骨负荷减低与日照时间减少有关。与此同时,通过交感神经系统释放出造血干细胞和祖细胞,随后在脾脏中聚集,导致单核细胞生产增加,进而分化出大量的破骨细胞,同时其活性增强,进而加剧了骨质流失。心肌梗死还可导致猪交感神经兴奋,促使继发性甲状旁腺功能亢进的发生,最终影响骨量和强度。同时,心肌梗死后猪心功能减低,骨吸收标志物显著升高,进而导致骨吸收增加,骨量减低。

5. 局限与不足

本研究样本量较少,结果存在偏倚,后续研究有待进一步扩大样本量,结合临床数据,以增强本研究对临床工作的指导意义。实验结论通过检测的血常规、生化及骨代谢指标,结合文献数据进行解释说明,机制探讨尚浅显,后续研究可尝试从信号通路等更深入的层面分析急性心肌梗死对骨代谢的影响机制,使研究更有深度。

利益冲突

作者声明没有利益冲突。

作者贡献

冷楠楠进行实验并撰写文章。房辉、宋志洁和赵丹共同参与了实验。冷楠楠和张文忠设计实验、审阅文章并修改文章。所有作者均阅读并同意了最终提交的稿件。

NOTES

*通讯作者。

参考文献

[1] Basara, G., Bahcecioglu, G., Ozcebe, S.G., Ellis, B.W., Ronan, G. and Zorlutuna, P. (2022) Myocardial Infarction from a Tissue Engineering and Regenerative Medicine Point of View: A Comprehensive Review on Models and Treatments. Biophysics Reviews, 3, Article No. 31305.
https://doi.org/10.1063/5.0093399
[2] Kim, R.B., Kim, J. and Hwang, J.Y. (2022) Epidemiology of Myocardial Infarction in Korea: Hospitalization Incidence, Prevalence, and Mortality. Epidemiology and Health, 44, e2022057.
https://doi.org/10.4178/epih.e2022057
[3] 马清玉, 马艺萍, 阿卜拉江·艾合麦提, 等. 急性心肌梗死患者外周血内皮细胞微粒中miR-126和P-选择素及E-选择素水平特点及其临床意义[J]. 中国心血管病研究, 2024, 22(7): 600-605.
[4] 刘永, 赵彤, 罗晓亮, 等. 不同部位室间隔穿孔对急性心肌梗死患者30天预后的影响[J]. 中国循环杂志, 2025, 40(2): 151-156.
[5] 夏经钢, 袁明霞, 蔡晓凌, 等. 心血管-肾脏-代谢综合征患者的综合管理中国专家共识[J]. 中国心血管病研究, 2025, 23(3): 193-228.
[6] Donat, A., Knapstein, P., Jiang, S., Baranowsky, A., Ballhause, T., Frosch, K., et al. (2021) Glucose Metabolism in Osteoblasts in Healthy and Pathophysiological Conditions. International Journal of Molecular Sciences, 22, Article No. 4120.
https://doi.org/10.3390/ijms22084120
[7] Kostrzewa, M., Mahmoud, A.M., Verde, R., Scotto di Carlo, F., Gianfrancesco, F., Piscitelli, F., et al. (2021) Modulation of Endocannabinoid Tone in Osteoblastic Differentiation of MC3T3-E1 Cells and in Mouse Bone Tissue over Time. Cells, 10, Article No. 1199.
https://doi.org/10.3390/cells10051199
[8] Grant-McDonald, L. and Grant, W. (2022) Bone Metabolism in Charcot. Clinics in Podiatric Medicine and Surgery, 39, 543-557.
https://doi.org/10.1016/j.cpm.2022.05.002
[9] Chen, Q. and Zhang, Y. (2022) The Role of NPY in the Regulation of Bone Metabolism. Frontiers in Endocrinology, 13, Article ID: 833485.
https://doi.org/10.3389/fendo.2022.833485
[10] Xiang, C., Zhu, Y., Xu, M. and Zhang, D. (2022) Fasudil Ameliorates Osteoporosis Following Myocardial Infarction by Regulating Cardiac Calcitonin Secretion. Journal of Cardiovascular Translational Research, 15, 1352-1365.
https://doi.org/10.1007/s12265-022-10271-8
[11] Zhang, S., Paccalet, A., Rohde, D., Cremer, S., Hulsmans, M., Lee, I., et al. (2023) Bone Marrow Adipocytes Fuel Emergency Hematopoiesis after Myocardial Infarction. Nature Cardiovascular Research, 2, 1277-1290.
https://doi.org/10.1038/s44161-023-00388-7
[12] Chen, K., Bai, L., Lu, J., Chen, W., Liu, C., Guo, E., et al. (2022) Human Decidual Mesenchymal Stem Cells Obtained from Early Pregnancy Improve Cardiac Revascularization Postinfarction by Activating Ornithine Metabolism. Frontiers in Cardiovascular Medicine, 9, Article ID: 837780.
https://doi.org/10.3389/fcvm.2022.837780
[13] Yajima, R., Matsumoto, M., Iida, M., et al. (2024) Validity Assessment of Self-Reported Medication Use in a Pharmacoepidemiologic Study by Comparison with Prescription Record Review. Nihon Koshu Eisei Zasshi, 71, 430-437.
[14] Shavadia, J.S., Alemayehu, W., deFilippi, C., Westerhout, C.M., Tromp, J., Granger, C.B., et al. (2021) Novel Multi-Marker Proteomics in Phenotypically Matched Patients with ST-Segment Myocardial Infarction: Association with Clinical Outcomes. Journal of Thrombosis and Thrombolysis, 53, 841-850.
https://doi.org/10.1007/s11239-021-02582-5
[15] Osipov, B., Paralkar, M.P., Emami, A.J., Cunningham, H.C., Tjandra, P.M., Pathak, S., et al. (2021) Sex Differences in Systemic Bone and Muscle Loss Following Femur Fracture in Mice. Journal of Orthopaedic Research, 40, 878-890.
https://doi.org/10.1002/jor.25116
[16] Ely, E.V., Osipov, B., Emami, A.J. and Christiansen, B.A. (2020) Region-Dependent Bone Loss in the Lumbar Spine Following Femoral Fracture in Mice. Bone, 140, Article ID: 115555.
https://doi.org/10.1016/j.bone.2020.115555
[17] Tjandra, P.M., Ripplinger, C.M. and Christiansen, B.A. (2024) The Heart-Bone Connection: Relationships between Myocardial Infarction and Osteoporotic Fracture. American Journal of Physiology-Heart and Circulatory Physiology, 326, H845-H856.
https://doi.org/10.1152/ajpheart.00576.2023
[18] Zheng, M., Li, F., Xu, F., Lin, X., Wang, Y., Xu, Q., et al. (2020) The Interplay between the Renin-Angiotensin-Aldosterone System and Parathyroid Hormone. Frontiers in Endocrinology, 11, Article No. 539.
https://doi.org/10.3389/fendo.2020.00539
[19] Tang, W., Chai, Y., Jia, H., Wang, B., Liu, T., Wang, H., et al. (2022) Different Roles of the RAAS Affect Bone Metabolism in Patients with Primary Aldosteronism, Gitelman Syndrome and Bartter Syndrome. BMC Endocrine Disorders, 22, Article No. 38.
https://doi.org/10.1186/s12902-022-00955-2
[20] Bonecka, J., Turek, B., Jankowski, K., Borowska, M., Jasiński, T., Skierbiszewska, K., et al. (2024) Selection of X-Ray Tube Settings for Relative Bone Density Quantification in the Knee Joint of Cats Using Computed Digital Absorptiometry. Sensors, 24, Article No. 5774.
https://doi.org/10.3390/s24175774
[21] Kurtom, S. and Carty, S.E. (2024) Primary Hyperparathyroidism: Part One: Evaluation. Surgical Clinics of North America, 104, 791-798.
https://doi.org/10.1016/j.suc.2024.02.008
[22] Minisola, S., Arnold, A., Belaya, Z., Brandi, M.L., Clarke, B.L., Hannan, F.M., et al. (2020) Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. Journal of Bone and Mineral Research, 37, 2315-2329.
https://doi.org/10.1002/jbmr.4665
[23] Bayomy, O., Zaheer, S., Williams, J.S., Curhan, G. and Vaidya, A. (2020) Disentangling the Relationships between the Renin-Angiotensin-Aldosterone System, Calcium Physiology, and Risk for Kidney Stones. The Journal of Clinical Endocrinology & Metabolism, 105, 1937-1946.
https://doi.org/10.1210/clinem/dgaa123
[24] 陈钡钡, 李佳, 谭文彬. 内分泌代谢系统疾病与继发性骨质疏松症的研究新进展[J]. 中国全科医学, 2025, 28(17): 2082-2091.
[25] 张旭. 甲状旁腺自体移植与原位保留在甲状腺全切术中低钙发生率的比较[D]: [硕士学位论文]. 西宁: 青海大学, 2020.
[26] 王红丽, 李晓青. PTH(1-34)诱导骨矿化小鼠实验动物模型的构建及鉴定[J]. 天津医科大学学报, 2025, 31(2): 134-138.
[27] Hsu, W.W.Q., Zhang, X., Sing, C., Tan, K.C.B., Wong, I.C., Lau, W.C.Y., et al. (2024) Unveiling Unique Clinical Phenotypes of Hip Fracture Patients and the Temporal Association with Cardiovascular Events. Nature Communications, 15, Article No. 4353.
https://doi.org/10.1038/s41467-024-48713-3
[28] Loncar, G., Garfias‐Veitl, T., Valentova, M., Vatic, M., Lainscak, M., Obradović, D., et al. (2023) Bone Status in Men with Heart Failure: Results from the Studies Investigating Co‐Morbidities Aggravating Heart Failure. European Journal of Heart Failure, 25, 714-723.
https://doi.org/10.1002/ejhf.2794
[29] Guan, Z., Yuan, W., Jia, J., Zhang, C., Zhu, J., Huang, J., et al. (2023) Bone Mass Loss in Chronic Heart Failure Is Associated with Sympathetic Nerve Activation. Bone, 166, Article ID: 116596.
https://doi.org/10.1016/j.bone.2022.116596
[30] 李欣, 何雪莲, 王刚, 等. 老年慢性心衰患者骨代谢指标和心功能与心血管事件发生风险的相关性[J]. 心脏杂志, 2025(3): 282-286.