JMJD3在心血管疾病中的研究进展
Research Progress of JMJD3 in Cardiovascular Diseases
DOI: 10.12677/acm.2025.1561753, PDF, HTML, XML,    科研立项经费支持
作者: 张红业, 郑昌博:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明;郑永唐*:中国科学院昆明动物研究所,中国科学院动物模型与人类疾病机理重点实验室,云南 昆明
关键词: 心血管疾病DNA甲基化组蛋白修饰JMJD3Cardiovascular Diseases DNA Methylation Histone Modification JMJD3
摘要: 近年来,心血管疾病已成为全球范围内导致人类死亡的主要原因之一,其死亡率高居各类疾病之首。DNA甲基化和组蛋白修饰等表观遗传机制在心血管疾病的发生与发展过程中发挥了重要作用。JMJD3作为一种含有JmjC结构域的组蛋白去甲基化酶,已在胚胎发育、细胞分化、衰老、免疫系统功能、神经退行性疾病及癌症等多个领域中被广泛研究。但目前关于JMJD3在心血管疾病中的具体作用的研究仍然较少。因此,本文旨在综述JMJD3在心血管疾病中的最新研究进展,以期为未来深入探讨JMJD3在心血管疾病中的潜在应用提供理论基础。
Abstract: In recent years, cardiovascular diseases have become one of the leading causes of human death worldwide, with the highest mortality rate among all diseases. Epigenetic mechanisms such as DNA methylation and histone modification play significant roles in the occurrence and development of cardiovascular diseases. JMJD3, a histone demethylase containing the JmjC domain, has been extensively studied in multiple fields including embryonic development, cell differentiation, aging, immune system function, neurodegenerative diseases, and cancer. However, current research on the specific role of JMJD3 in cardiovascular diseases is still limited. Therefore, this article aims to review the latest research progress of JMJD3 in cardiovascular diseases, with the expectation of providing a theoretical basis for future in-depth exploration of the potential application of JMJD3 in cardiovascular diseases.
文章引用:张红业, 郑昌博, 郑永唐. JMJD3在心血管疾病中的研究进展[J]. 临床医学进展, 2025, 15(6): 503-511. https://doi.org/10.12677/acm.2025.1561753

1. 引言

心血管疾病(Cardiovascular Diseases, CVDs)的发病率和死亡率居世界首位。CVDs是指影响心脏和血管的一系列疾病,其死亡的主要原因包括高血压、冠心病、房颤、脑血管疾病以及各种其他心脏疾病[1]。近年来的研究揭示,表观遗传修饰在心血管疾病的形成与进展中扮演了关键角色[2]。表观遗传学主要通过调控心血管疾病相关基因的功能和表达水平来影响心血管疾病的进展[3]

表观遗传修饰指的是在不改变基因组DNA序列的前提下,通过多种机制如组蛋白的翻译后修饰、DNA甲基化、非编码RNA的作用以及组蛋白修饰调控等,使基因表达频率和速度可遗传变化,进而广泛影响各种生物过程[4]。其中,组蛋白赖氨酸甲基化是一种常见的蛋白质翻译后修饰形式,其赖氨酸残基的不同甲基化状态(包括单甲基化、二甲基化和三甲基化)能够促进或抑制基因的转录[5]。组蛋白甲基化的动态调控由甲基转移酶和去甲基化酶共同完成。目前,已确认了两种主要的去甲基化酶:赖氨酸特异性去甲基化酶6A和含有JmjC结构域的含十字形结构域蛋白-3 (Jumonji Domain-Containing Protein 3, JMJD3) [6]

JMJD3是一种主要位于细胞核内的组蛋白去甲基化酶[7],属于含有JmjC结构域的JMJD家族成员之一,亦被称为赖氨酸特异性去甲基化酶6B [8]。作为一种依赖于铁离子作为辅助因子,并需要氧气和α-酮戊二酸参与的表观遗传修饰酶,JMJD3的主要功能是去除组蛋白H3第27位赖氨酸的甲基化标记。组蛋白H3第27位赖氨酸的三甲基化状态通常与基因转录抑制相关联,而去甲基化过程则有助于相应基因表达的激活[9] [10]。在基因启动子区域发现的组蛋白H3第27位赖氨酸三甲基化(trimethylated histone H3 at lysine 27, H3K27me3)常被视为转录抑制的一个标志。然而,通过与JMJD3相互作用实现其去甲基化,可以促进基因的转录激活,从而发挥特定生理功能[11]。JMJD3蛋白质在其C端包含一个保守的JmjC结构域,这是催化组蛋白去甲基化的活性中心,能够对基因启动子进行修饰并调控目标基因的表达[12]。鉴于JMJD3在调控涉及分化、增殖、衰老及凋亡等关键过程中扮演的角色,它在应对环境和细胞应激反应中显得尤为重要[13]。此外,JMJD3还在胚胎发育、炎症反应、老化以及肿瘤形成等多种生物学进程中发挥着核心作用[14]。尽管如此,目前关于JMJD3在心血管疾病中的具体作用的研究仍然较少。因此,本文旨在综述JMJD3在心血管疾病领域的作用及其研究进展,以期为未来的研究提供理论依据和支持。

2. JMJD3在动脉粥样硬化中的作用

动脉粥样硬化是一类严重威胁人类健康的慢性炎症性疾病,其发病机制复杂且涉及多个病理生理过程。从病理特征来看,动脉粥样硬化以动脉壁内的脂质异常沉积为起始标志,其特征为白细胞浸润及血管平滑肌细胞增殖,最终造成动脉粥样斑块形成、纤维组织增生和动脉内膜增厚[15]。随着动脉粥样硬化病变进展至晚期,动脉粥样斑块的结构变得不稳定。斑块中的脂质核心不断增大,而纤维帽则逐渐变薄。这种脆弱的斑块极易破裂,一旦破裂,斑块内的组织暴露于血液中,会迅速激活血小板,形成血栓,血栓阻塞血管,就会引发急性心血管事件,如严重威胁生命的缺血性卒中和心肌梗死[16] [17]。现有研究证据显示,动脉粥样硬化不仅涉及多种传统病理因素,还受到多类表观遗传机制的交互影响,表明其本质上是一种复杂的表观遗传疾病[18]

在众多表观遗传修饰中,赖氨酸去甲基化在动脉粥样硬化的表观遗传调控中扮演着关键角色。既往研究表明,表观遗传修饰在动脉粥样硬化的发生与发展中扮演了重要角色[4]。其中赖氨酸去甲基化在动脉粥样硬化的表观遗传调控中发挥重要作用。有研究评估动脉粥样硬化斑块不同发展阶段的血管中H3K27me3的总体水平,在动脉粥样硬化斑块的血管中,H3K27me3的状态与动脉粥样硬化疾病相关的平滑肌细胞分化和增殖的动态模式有关[19]。此外,关于JMJD3在动脉粥样硬化中的作用也有不少实验研究。在探讨JMJD3在新内膜形成中的作用时发现,在人颈动脉粥样硬化斑块中,JMJD3、基质金属蛋白酶2 (Matrix Metalloproteinase 2, MMP2)、基质金属蛋白酶9 (Matrix Metalloproteinase 9, MMP9)、增殖细胞核抗原(Proliferating Cell Nuclear Antigen, PCNA)、胶原蛋白和尼克酰胺腺嘌呤二核苷酸磷酸氧化酶4 (Recombinant NADPH Oxidase 4, Nox4)的表达水平与对照组相比增加。这一证据有力地表明,JMJD3调控的信号通路与参与细胞增殖和细胞外基质沉积的信号有关[20]。既往研究表明,JMJD3是巨噬细胞激活的重要调节因子,巨噬细胞在动脉粥样硬化的炎症反应中起着核心作用。在小鼠模型中,小鼠髓系缺乏JMJD3会导致晚期动脉粥样硬化。这进一步揭示了JMJD3在动脉粥样硬化发病机制中的关键作用,其对巨噬细胞功能的调控可能成为治疗动脉粥样硬化的潜在靶点[21]。通过深入研究JMJD3对动脉粥样硬化的病理生理机制,有望为动脉粥样硬化的防治提供新的思路和治疗策略,对改善患者的预后具有重要意义。

3. JMJD3在心肌梗死中的作用

在当今社会,心血管疾病已成为威胁人类健康的重要杀手,其中心肌梗死因其高发病率和死亡率备受关注。心肌梗死的发生往往是由于冠状动脉突然阻塞,导致心肌供血急剧减少甚至中断。在心肌梗死期间,缺血心肌细胞面临着极其严峻的生存挑战。由于无法获得足够的氧气和营养物质,也就是失去了能量供应,这些心肌细胞会启动一系列复杂的病理过程。

在心肌梗死期间,缺血心肌细胞失去能量供应,发生凋亡、自噬,甚至坏死。这些病理过程最终会导致心肌损伤、左室重构和心功能不全[22]。心肌纤维化在心肌重构及心力衰竭的发展过程中扮演了关键角色[23] [24]。心脏纤维化作为一种主要的病理状态,与多种心血管疾病密切相关,其特点在于心脏成纤维细胞转化为肌成纤维细胞,后者会过度合成并分泌富含胶原的细胞外基质。大量的胶原纤维在心脏组织中沉积,逐渐改变心脏的正常结构和功能。虽然从某种程度上来说,维持疤痕中的细胞外基质可以在一定程度上防止梗死区域的扩张,起到一定的保护作用,但过度的纤维化最终会导致心脏僵硬,影响心脏的正常舒缩功能,加速心力衰竭的进程[25]

关于JMJD3在心肌梗死病理生理机制中的作用,近年来也有了一些重要的研究发现。有文献报道,JMJD3在血管损伤和类风湿关节炎起着重要的作用[26] [27]。而在心肌梗死相关的研究中,JMJD3直接作用于心肌纤维化病理生理学,具体来说,JMJD3直接参与调节细胞外基质沉积过程,导致冠状动脉结扎术后心功能不全[28]。这意味着JMJD3在心肌梗死引发的心肌纤维化以及心功能恶化过程中扮演着关键角色,那么药物抑制剂靶向组蛋白去甲基化酶JMJD3就可能成为一种极具潜力的治疗策略。通过抑制JMJD3的活性,有望减少细胞外基质的过度沉积,减轻心肌纤维化程度,从而改善缺血损伤后心肌的功能,对心肌梗死的治疗和预后产生积极影响。这一发现为心肌梗死的治疗提供了新的思路和方向,未来需要进一步深入研究,以确定药物抑制剂的安全性和有效性,为临床应用提供坚实的理论基础。

4. JMJD3在心肌肥厚中的作用

病理性心肌肥厚是许多心血管疾病的病理基础,也是心脏对神经体液刺激或机械应激的适应性反应[29]。它最初有助于适应增加的血流动力学负荷。然而,长期肥厚会使心脏功能恶化,最终导致心力衰竭、高血压等心血管疾病[30]

近年来研究发现,组蛋白甲基化等表观遗传修饰与心肌肥厚的病理过程密切相关,其中JMJD家族起着至关重要的作用[31]。例如,JMJD2A使H3K9me3脱甲基化,激活肥大基因的转录。有研究发现在动物实验中,JMJD2A会促进心肌肥厚[32]。而对于JMJD3而言,它在心脏发育和心肌肥厚方面同样有着不可忽视的作用,JMJD3对小鼠胚胎干细胞的中胚层分化至关重要[33]。在JMJD3缺陷小鼠中,β-Catenin不能被招募到Brachyury启动子,从而中断下游Wnt信号传导,从而阻止心脏中胚层分化[34]。既往研究表明敲除JMJD3基因会导致因呼吸缺陷导致的围产期死亡[35] [36]。此外,JMJD3也被发现促进心肌肥厚[37]。JMJD3被招募到β-肌球蛋白重链启动子的H3K27me3位点,通过使H3K27me3去甲基化,促进β-肌球蛋白重链的表达,进而诱导心肌肥厚的发生,而JMJD3特异性抑制剂GSK-J4对JMJD3的抑制作用可抑制异丙肾上腺素引起的心肌肥厚[38]。这一实验结果不仅为JMJD3促进心肌肥厚的理论提供了有力的证据,同时也为心肌肥厚的治疗提供了新的潜在靶点和治疗思路。

综上所述,从心脏发育过程中JMJD3对中胚层分化的调控,到其在心肌肥厚病理过程中的促进作用,都表明JMJD3对心脏重构和功能具有举足轻重的重要作用。深入研究JMJD3的作用机制,有望为心血管疾病的防治提供新的策略和方法,对于改善患者的预后和生活质量具有重要的临床意义。

5. JMJD3在心肌纤维化中的作用

心脏纤维化是一种与多种心血管疾病密切相关的关键病理状态,其主要特征包括心脏成纤维细胞转化为肌成纤维细胞,以及这些细胞合成和分泌大量富含胶原的细胞外基质[39]。心肌梗死的情况下,过度活化的纤维化反应会导致胶原纤维在局部或整个心肌沉积。这会导致不受控制或紊乱的纤维化疤痕的形成,最终改变心脏结构,降低心脏顺应性,并可能导致心脏结构的永久性改变和心力衰竭[40] [41]。鉴于心肌纤维化过程中涉及的细胞类型和信号通路的复杂性[42] [43],抑制或逆转心肌纤维化的有效疗法仍然缺乏。因此,寻找治疗和改善心肌纤维化的方法至关重要。

近年来,研究发现表观遗传调控,尤其是组蛋白甲基化,在控制纤维化基因表达中起着关键作用。这突出了靶向表观遗传调节因子作为治疗心肌纤维化手段的潜力[44] [45]。在众多表观遗传调节因子中,JMJD3逐渐成为研究的焦点。有研究表明,JMJD3可以抑制β-Catenin启动子中H3K27me3的表达。有研究表明,JMJD3可以抑制β-Catenin启动子中H3K27me3的表达,进而促进β-Catenin的转录和下游纤维化因子的表达,从而加重心肌纤维化[28]。既往研究发现,JMJD3通过调节纤维化途径促进心脏纤维化,体内抑制JMJD3可挽救心肌缺血诱导的心肌纤维化和心功能障碍[46]

综上所述,药物抑制剂靶向JMJD3为改善缺血损伤后心肌纤维化和心脏功能提供了一种极具潜力的有效途径。由于JMJD3在心肌纤维化过程中所起的关键作用,靶向JMJD3不仅仅有望成为治疗人类心脏纤维化的有效方法,对于其他纤维化疾病的治疗也可能具有重要的借鉴意义和应用前景[28]。进一步深入研究JMJD3的作用机制和开发更加特异性的JMJD3抑制剂,将为心血管疾病和其他纤维化疾病的治疗带来新的希望和突破。

6. JMJD3在高血压中的作用

高血压是缺血性心脏病、中风、其他心血管疾病和慢性肾病的重要危险因素之一[47] [48]。在世界许多地区,血压升高是导致心血管疾病死亡和疾病负担的主要原因。其病因在本质上是多因素的,可能来自环境、遗传和社会因素[49] [50]。然而,目前对这些因素之间的相互作用仍然不清楚。在参与的诸多因素中,JMJD家族在缺氧诱导的高血压中起着重要作用。例如,JARID1B在特发性肺动脉高压患者的肺中表达显著上调,并通过与THE结合抑制MANTIS转录H3K4me3转录起始位点附近的富区,从而降低了H3K4me3的水平[51]。H3K4me3作为一种重要的组蛋白甲基化修饰形式,其水平的改变会对基因的表达产生重要影响,进而影响肺组织的正常生理功能,在特发性肺动脉高压的发生发展中发挥着作用。

在肺动脉高压小鼠中,JMJD1C通过激活STAT3的信号通路,促进在缺氧条件下血管平滑肌细胞的异常增殖及抵抗凋亡的现象,并诱导高血压小鼠的血管重构和右心室肥厚[52]。既往研究发现睡眠呼吸暂停综合征引起的间歇性缺氧导致ROS过度产生,交感神经激活,随后出现高血压,这可能与JMJD3的激活密切相关[53] [54]。进一步的研究发现,在血管紧张素II (Ang II)诱导的高血压大鼠模型中,JMJD3在Ang II诱导的高血压大鼠主动脉组织中的表达显著升高,在高血压大鼠中,JMJD3特异性结合并去甲基化NKCC1启动子区H3K27me3位点,促进NKCC1 mRNA和蛋白的表达,影响离子转运功能,从而诱发高血压[55]

综上所述,由于JMJD3在高血压发生发展过程中所扮演的关键角色,通过药物抑制剂靶向JMJD3就有可能成为一种改善高血压的有效途径。进一步深入研究JMJD3的具体作用机制,开发出更加高效、特异性强的JMJD3抑制剂,有望为高血压的治疗带来新的突破,为广大高血压患者提供更有效的治疗方案,从而降低高血压相关疾病的发病率和死亡率,减轻疾病负担。

Figure 1. The role of JMJD3 in cardiovascular diseases

1. JMJD3在心血管疾病中的作用

7. 结语与展望

近年来,针对JMJD3的研究已持续了数十年。随着医学科研水平的不断提升,JMJD3的表达与心血管疾病之间的关联正在逐步得到验证。JMJD3作为一种重要的去甲基化酶,参与了基因转录、DNA损伤的检测和修复以及DNA复制的细胞过程,在心血管疾病中发挥着重要的作用(图1)。目前的研究不断揭示组蛋白去甲基化酶影响胚胎发育、分化、肿瘤发生和炎症的新途径,然而,JMJD3的具体调控机制及其下游信号分子仍需进一步明确。目前,关于JMJD3在心血管疾病中的研究相对有限,亟需深入探讨其分子机制,以支持新型治疗策略的开发。此外,探索JMJD3作为临床治疗靶点的潜力也至关重要,包括研发JMJD3的抑制剂或激活剂,并评估这些化合物与现有治疗方法联合使用的可能性,旨在提升疗效并减少副作用,为患者提供更全面和个性化的治疗方案。同时,全面理解JMJD3在病理状态下的功能,对于心血管疾病的预防和治疗具有重要意义。

综上所述,JMJD3在心血管疾病治疗领域展现出广阔的应用前景,对其深入的研究有望推动心血管疾病治疗的进步和发展。

基金项目

昆明医科大学研究生教育创新基金(2024S195);云南省教育厅科研基金项目(2024Y211)。

NOTES

*通讯作者。

参考文献

[1] Joseph, P., Leong, D., McKee, M., Anand, S.S., Schwalm, J., Teo, K., et al. (2017) Reducing the Global Burden of Cardiovascular Disease, Part 1. Circulation Research, 121, 677-694.
https://doi.org/10.1161/circresaha.117.308903
[2] Shi, Y., Zhang, H., Huang, S., Yin, L., Wang, F., Luo, P., et al. (2022) Epigenetic Regulation in Cardiovascular Disease: Mechanisms and Advances in Clinical Trials. Signal Transduction and Targeted Therapy, 7, Article No. 200.
https://doi.org/10.1038/s41392-022-01055-2
[3] Feinberg, A.P. (2018) The Key Role of Epigenetics in Human Disease Prevention and Mitigation. New England Journal of Medicine, 378, 1323-1334.
https://doi.org/10.1056/nejmra1402513
[4] Khyzha, N., Alizada, A., Wilson, M.D. and Fish, J.E. (2017) Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends in Molecular Medicine, 23, 332-347.
https://doi.org/10.1016/j.molmed.2017.02.004
[5] Pediconi, N., Salerno, D., Lupacchini, L., Angrisani, A., Peruzzi, G., De Smaele, E., et al. (2019) EZH2, JMJD3, and UTX Epigenetically Regulate Hepatic Plasticity Inducing Retro-Differentiation and Proliferation of Liver Cells. Cell Death & Disease, 10, Article No. 518.
https://doi.org/10.1038/s41419-019-1755-2
[6] Abu-Hanna, J., Patel, J.A., Anastasakis, E., Cohen, R., Clapp, L.H., Loizidou, M., et al. (2022) Therapeutic Potential of Inhibiting Histone 3 Lysine 27 Demethylases: A Review of the Literature. Clinical Epigenetics, 14, Article No. 98.
https://doi.org/10.1186/s13148-022-01305-8
[7] Salminen, A., Kaarniranta, K., Hiltunen, M. and Kauppinen, A. (2014) Histone Demethylase Jumonji D3 (JMJD3/KDM6B) at the Nexus of Epigenetic Regulation of Inflammation and the Aging Process. Journal of Molecular Medicine, 92, 1035-1043.
https://doi.org/10.1007/s00109-014-1182-x
[8] Ye, L., Fan, Z., Yu, B., Chang, J., Al Hezaimi, K., Zhou, X., et al. (2012) Histone Demethylases KDM4B and KDM6B Promotes Osteogenic Differentiation of Human MSCS. Cell Stem Cell, 11, 50-61.
https://doi.org/10.1016/j.stem.2012.04.009
[9] Xiang, Y., Zhu, Z., Han, G., Lin, H., Xu, L. and Chen, C.D. (2007) JMJD3 Is a Histone H3K27 Demethylase. Cell Research, 17, 850-857.
https://doi.org/10.1038/cr.2007.83
[10] Barski, A., Cuddapah, S., Cui, K., Roh, T., Schones, D.E., Wang, Z., et al. (2007) High-Resolution Profiling of Histone Methylations in the Human Genome. Cell, 129, 823-837.
https://doi.org/10.1016/j.cell.2007.05.009
[11] Rao, R.C. and Dou, Y. (2015) Hijacked in Cancer: The KMT2 (MLL) Family of Methyltransferases. Nature Reviews Cancer, 15, 334-346.
https://doi.org/10.1038/nrc3929
[12] Farzaneh, M., Kuchaki, Z., Rashid Sheykhahmad, F., Meybodi, S.M., Abbasi, Y., Gholami, E., et al. (2022) Emerging Roles of JMJD3 in Cancer. Clinical and Translational Oncology, 24, 1238-1249.
https://doi.org/10.1007/s12094-021-02773-9
[13] Lagunas-Rangel, F.A. (2021) KDM6B (JMJD3) and Its Dual Role in Cancer. Biochimie, 184, 63-71.
https://doi.org/10.1016/j.biochi.2021.02.005
[14] Arcipowski, K.M., Martinez, C.A. and Ntziachristos, P. (2016) Histone Demethylases in Physiology and Cancer: A Tale of Two Enzymes, JMJD3 and UTX. Current Opinion in Genetics & Development, 36, 59-67.
https://doi.org/10.1016/j.gde.2016.03.010
[15] Gimbrone, M.A. and García-Cardeña, G. (2016) Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Research, 118, 620-636.
https://doi.org/10.1161/circresaha.115.306301
[16] Libby, P., Ridker, P.M. and Hansson, G.K. (2011) Progress and Challenges in Translating the Biology of Atherosclerosis. Nature, 473, 317-325.
https://doi.org/10.1038/nature10146
[17] Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s. Nature, 362, 801-809.
https://doi.org/10.1038/362801a0
[18] Xu, S., Kamato, D., Little, P.J., Nakagawa, S., Pelisek, J. and Jin, Z.G. (2019) Targeting Epigenetics and Non-Coding Rnas in Atherosclerosis: From Mechanisms to Therapeutics. Pharmacology & Therapeutics, 196, 15-43.
https://doi.org/10.1016/j.pharmthera.2018.11.003
[19] Wierda, R.J., Rietveld, I.M., van Eggermond, M.C.J.A., Belien, J.A.M., van Zwet, E.W., Lindeman, J.H.N., et al. (2015) Global Histone H3 Lysine 27 Triple Methylation Levels Are Reduced in Vessels with Advanced Atherosclerotic Plaques. Life Sciences, 129, 3-9.
https://doi.org/10.1016/j.lfs.2014.10.010
[20] Antoniades, C., Antonopoulos, A., Bendall, J. and Channon, K. (2009) Targeting Redox Signaling in the Vascular Wall: From Basic Science to Clinical Practice. Current Pharmaceutical Design, 15, 329-342.
https://doi.org/10.2174/138161209787354230
[21] Lv, Y., Tang, Y., Zhang, P., Wan, W., Yao, F., He, P., et al. (2016) Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis. PLOS ONE, 11, e0157265.
https://doi.org/10.1371/journal.pone.0157265
[22] Prabhu, S.D. and Frangogiannis, N.G. (2016) The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circulation Research, 119, 91-112.
https://doi.org/10.1161/circresaha.116.303577
[23] Psarras, S., Mavroidis, M., Sanoudou, D., Davos, C.H., Xanthou, G., Varela, A.E., et al. (2011) Regulation of Adverse Remodelling by Osteopontin in a Genetic Heart Failure Model. European Heart Journal, 33, 1954-1963.
https://doi.org/10.1093/eurheartj/ehr119
[24] Chen, P.P., Patel, J.R., Powers, P.A., Fitzsimons, D.P. and Moss, R.L. (2012) Dissociation of Structural and Functional Phenotypes in Cardiac Myosin-Binding Protein C Conditional Knockout Mice. Circulation, 126, 1194-1205.
https://doi.org/10.1161/circulationaha.111.089219
[25] González-Santamaría, J., Villalba, M., Busnadiego, O., López-Olañeta, M.M., Sandoval, P., Snabel, J., et al. (2015) Matrix Cross-Linking Lysyl Oxidases Are Induced in Response to Myocardial Infarction and Promote Cardiac Dysfunction. Cardiovascular Research, 109, 67-78.
https://doi.org/10.1093/cvr/cvv214
[26] Liu, Z., Cao, W., Xu, L., Chen, X., Zhan, Y., Yang, Q., et al. (2015) The Histone H3 Lysine-27 Demethylase Jmjd3 Plays a Critical Role in Specific Regulation of Th17 Cell Differentiation. Journal of Molecular Cell Biology, 7, 505-516.
https://doi.org/10.1093/jmcb/mjv022
[27] Jia, W., Wu, W., Yang, D., Xiao, C., Su, Z., Huang, Z., et al. (2018) Histone Demethylase JMJD3 Regulates Fibroblast‐like Synoviocyte‐mediated Proliferation and Joint Destruction in Rheumatoid Arthritis. The FASEB Journal, 32, 4031-4042.
https://doi.org/10.1096/fj.201701483r
[28] Long, F., Wang, Q., Yang, D., Zhu, M., Wang, J., Zhu, Y., et al. (2020) Targeting JMJD3 Histone Demethylase Mediates Cardiac Fibrosis and Cardiac Function Following Myocardial Infarction. Biochemical and Biophysical Research Communications, 528, 671-677.
https://doi.org/10.1016/j.bbrc.2020.05.115
[29] Ma, T.K., Kam, K.K., Yan, B.P. and Lam, Y. (2010) Renin-Angiotensin-Aldosterone System Blockade for Cardiovascular Diseases: Current Status. British Journal of Pharmacology, 160, 1273-1292.
https://doi.org/10.1111/j.1476-5381.2010.00750.x
[30] MacDonald, M.R., Petrie, M.C., Hawkins, N.M., Petrie, J.R., Fisher, M., McKelvie, R., et al. (2008) Diabetes, Left Ventricular Systolic Dysfunction, and Chronic Heart Failure. European Heart Journal, 29, 1224-1240.
https://doi.org/10.1093/eurheartj/ehn156
[31] Rosales, W., Carulla, J., García, J., Vargas, D. and Lizcano, F. (2016) Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy. BioMed Research International, 2016, Article ID: 2634976.
https://doi.org/10.1155/2016/2634976
[32] Zhang, Q., Chen, H., Wang, L., Liu, D., Hill, J.A. and Liu, Z. (2011) The Histone Trimethyllysine Demethylase JMJD2A Promotes Cardiac Hypertrophy in Response to Hypertrophic Stimuli in Mice. Journal of Clinical Investigation, 121, 2447-2456.
https://doi.org/10.1172/jci46277
[33] Veselka, J., Anavekar, N.S. and Charron, P. (2017) Hypertrophic Obstructive Cardiomyopathy. The Lancet, 389, 1253-1267.
https://doi.org/10.1016/s0140-6736(16)31321-6
[34] Ohtani, K., Zhao, C., Dobreva, G., Manavski, Y., Kluge, B., Braun, T., et al. (2013) Jmjd3 Controls Mesodermal and Cardiovascular Differentiation of Embryonic Stem Cells. Circulation Research, 113, 856-862.
https://doi.org/10.1161/circresaha.113.302035
[35] Doenst, T., Nguyen, T.D. and Abel, E.D. (2013) Cardiac Metabolism in Heart Failure: Implications beyond ATP Production. Circulation Research, 113, 709-724.
https://doi.org/10.1161/circresaha.113.300376
[36] Krenz, M., Sanbe, A., Bouyer-Dalloz, F., Gulick, J., Klevitsky, R., Hewett, T.E., et al. (2003) Analysis of Myosin Heavy Chain Functionality in the Heart. Journal of Biological Chemistry, 278, 17466-17474.
https://doi.org/10.1074/jbc.m210804200
[37] Zhang, S., Lu, Y. and Jiang, C. (2020) Inhibition of Histone Demethylase JMJD1C Attenuates Cardiac Hypertrophy and Fibrosis Induced by Angiotensin II. Journal of Receptors and Signal Transduction, 40, 339-347.
https://doi.org/10.1080/10799893.2020.1734819
[38] Guo, Z., Lu, J., Li, J., Wang, P., Li, Z., Zhong, Y., et al. (2018) JMJD3 Inhibition Protects against Isoproterenol-Induced Cardiac Hypertrophy by Suppressing β-MHC Expression. Molecular and Cellular Endocrinology, 477, 1-14.
https://doi.org/10.1016/j.mce.2018.05.009
[39] Bretherton, R., Bugg, D., Olszewski, E. and Davis, J. (2020) Regulators of Cardiac Fibroblast Cell State. Matrix Biology, 91, 117-135.
https://doi.org/10.1016/j.matbio.2020.04.002
[40] Travers, J.G., Tharp, C.A., Rubino, M. and McKinsey, T.A. (2022) Therapeutic Targets for Cardiac Fibrosis: From Old School to Next-Gen. Journal of Clinical Investigation, 132, e148554.
https://doi.org/10.1172/jci148554
[41] Wu, N., Xu, J., Du, W.W., Li, X., Awan, F.M., Li, F., et al. (2021) YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and γ-Actin Decreasing Actin Polymerization. Molecular Therapy, 29, 1138-1150.
https://doi.org/10.1016/j.ymthe.2020.12.004
[42] Urban, M.L., Manenti, L. and Vaglio, A. (2015) Fibrosis—A Common Pathway to Organ Injury and Failure. The New England Journal of Medicine, 373, 95-96.
[43] Koitabashi, N., Arai, M., Kogure, S., Niwano, K., Watanabe, A., Aoki, Y., et al. (2007) Increased Connective Tissue Growth Factor Relative to Brain Natriuretic Peptide as a Determinant of Myocardial Fibrosis. Hypertension, 49, 1120-1127.
https://doi.org/10.1161/hypertensionaha.106.077537
[44] Jeong, H., Kang, W.S., Hong, M.H., Jeong, H.C., Shin, M., Jeong, M.H., et al. (2015) 5-Azacytidine Modulates Interferon Regulatory Factor 1 in Macrophages to Exert a Cardioprotective Effect. Scientific Reports, 5, Article No. 15768.
https://doi.org/10.1038/srep15768
[45] Markouli, M., Strepkos, D., Chlamydas, S. and Piperi, C. (2021) Histone Lysine Methyltransferase SETDB1 as a Novel Target for Central Nervous System Diseases. Progress in Neurobiology, 200, Article ID: 101968.
https://doi.org/10.1016/j.pneurobio.2020.101968
[46] Wang, B., Tan, Y., Zhang, Y., Zhang, S., Duan, X., Jiang, Y., et al. (2022) Loss of KDM5B Ameliorates Pathological Cardiac Fibrosis and Dysfunction by Epigenetically Enhancing ATF3 Expression. Experimental & Molecular Medicine, 54, 2175-2187.
https://doi.org/10.1038/s12276-022-00904-y
[47] Olsen, M.H., Angell, S.Y., Asma, S., Boutouyrie, P., Burger, D., Chirinos, J.A., et al. (2016) A Call to Action and a Lifecourse Strategy to Address the Global Burden of Raised Blood Pressure on Current and Future Generations: The Lancet Commission on Hypertension. The Lancet, 388, 2665-2712.
https://doi.org/10.1016/s0140-6736(16)31134-5
[48] Bundy, J.D., Li, C., Stuchlik, P., Bu, X., Kelly, T.N., Mills, K.T., et al. (2017) Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and Mortality: A Systematic Review and Network Meta-Analysis. JAMA Cardiology, 2, 775-781.
https://doi.org/10.1001/jamacardio.2017.1421
[49] Kontis, V., Mathers, C.D., Bonita, R., Stevens, G.A., Rehm, J., Shield, K.D., et al. (2015) Regional Contributions of Six Preventable Risk Factors to Achieving the 25 × 25 Non-Communicable Disease Mortality Reduction Target: A Modelling Study. The Lancet Global Health, 3, e746-e757.
https://doi.org/10.1016/s2214-109x(15)00179-5
[50] Brouwers, S., Sudano, I., Kokubo, Y. and Sulaica, E.M. (2021) Arterial Hypertension. The Lancet, 398, 249-261.
https://doi.org/10.1016/s0140-6736(21)00221-x
[51] Leisegang, M.S., Fork, C., Josipovic, I., Richter, F.M., Preussner, J., Hu, J., et al. (2017) Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 136, 65-79.
https://doi.org/10.1161/circulationaha.116.026991
[52] Zhang, C., Sun, Y., Guo, Y., Xu, J. and Zhao, H. (2023) JMJD1C Promotes Smooth Muscle Cell Proliferation by Activating Glycolysis in Pulmonary Arterial Hypertension. Cell Death Discovery, 9, Article No. 98.
https://doi.org/10.1038/s41420-023-01390-5
[53] Peppard, P.E., Young, T., Palta, M. and Skatrud, J. (2000) Prospective Study of the Association between Sleep-Disordered Breathing and Hypertension. New England Journal of Medicine, 342, 1378-1384.
https://doi.org/10.1056/nejm200005113421901
[54] Prabhakar, N.R., Peng, Y. and Nanduri, J. (2020) Hypoxia-Inducible Factors and Obstructive Sleep Apnea. Journal of Clinical Investigation, 130, 5042-5051.
https://doi.org/10.1172/jci137560
[55] Cho, H., Lee, D., Kim, H.Y., Lee, H., Seok, Y.M. and Kim, I.K. (2012) Upregulation of the Na+-K+-2Cl Cotransporter 1 via Histone Modification in the Aortas of Angiotensin II-Induced Hypertensive Rats. Hypertension Research, 35, 819-824.
https://doi.org/10.1038/hr.2012.37