[1]
|
Joseph, P., Leong, D., McKee, M., Anand, S.S., Schwalm, J., Teo, K., et al. (2017) Reducing the Global Burden of Cardiovascular Disease, Part 1. Circulation Research, 121, 677-694. https://doi.org/10.1161/circresaha.117.308903
|
[2]
|
Shi, Y., Zhang, H., Huang, S., Yin, L., Wang, F., Luo, P., et al. (2022) Epigenetic Regulation in Cardiovascular Disease: Mechanisms and Advances in Clinical Trials. Signal Transduction and Targeted Therapy, 7, Article No. 200. https://doi.org/10.1038/s41392-022-01055-2
|
[3]
|
Feinberg, A.P. (2018) The Key Role of Epigenetics in Human Disease Prevention and Mitigation. New England Journal of Medicine, 378, 1323-1334. https://doi.org/10.1056/nejmra1402513
|
[4]
|
Khyzha, N., Alizada, A., Wilson, M.D. and Fish, J.E. (2017) Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends in Molecular Medicine, 23, 332-347. https://doi.org/10.1016/j.molmed.2017.02.004
|
[5]
|
Pediconi, N., Salerno, D., Lupacchini, L., Angrisani, A., Peruzzi, G., De Smaele, E., et al. (2019) EZH2, JMJD3, and UTX Epigenetically Regulate Hepatic Plasticity Inducing Retro-Differentiation and Proliferation of Liver Cells. Cell Death & Disease, 10, Article No. 518. https://doi.org/10.1038/s41419-019-1755-2
|
[6]
|
Abu-Hanna, J., Patel, J.A., Anastasakis, E., Cohen, R., Clapp, L.H., Loizidou, M., et al. (2022) Therapeutic Potential of Inhibiting Histone 3 Lysine 27 Demethylases: A Review of the Literature. Clinical Epigenetics, 14, Article No. 98. https://doi.org/10.1186/s13148-022-01305-8
|
[7]
|
Salminen, A., Kaarniranta, K., Hiltunen, M. and Kauppinen, A. (2014) Histone Demethylase Jumonji D3 (JMJD3/KDM6B) at the Nexus of Epigenetic Regulation of Inflammation and the Aging Process. Journal of Molecular Medicine, 92, 1035-1043. https://doi.org/10.1007/s00109-014-1182-x
|
[8]
|
Ye, L., Fan, Z., Yu, B., Chang, J., Al Hezaimi, K., Zhou, X., et al. (2012) Histone Demethylases KDM4B and KDM6B Promotes Osteogenic Differentiation of Human MSCS. Cell Stem Cell, 11, 50-61. https://doi.org/10.1016/j.stem.2012.04.009
|
[9]
|
Xiang, Y., Zhu, Z., Han, G., Lin, H., Xu, L. and Chen, C.D. (2007) JMJD3 Is a Histone H3K27 Demethylase. Cell Research, 17, 850-857. https://doi.org/10.1038/cr.2007.83
|
[10]
|
Barski, A., Cuddapah, S., Cui, K., Roh, T., Schones, D.E., Wang, Z., et al. (2007) High-Resolution Profiling of Histone Methylations in the Human Genome. Cell, 129, 823-837. https://doi.org/10.1016/j.cell.2007.05.009
|
[11]
|
Rao, R.C. and Dou, Y. (2015) Hijacked in Cancer: The KMT2 (MLL) Family of Methyltransferases. Nature Reviews Cancer, 15, 334-346. https://doi.org/10.1038/nrc3929
|
[12]
|
Farzaneh, M., Kuchaki, Z., Rashid Sheykhahmad, F., Meybodi, S.M., Abbasi, Y., Gholami, E., et al. (2022) Emerging Roles of JMJD3 in Cancer. Clinical and Translational Oncology, 24, 1238-1249. https://doi.org/10.1007/s12094-021-02773-9
|
[13]
|
Lagunas-Rangel, F.A. (2021) KDM6B (JMJD3) and Its Dual Role in Cancer. Biochimie, 184, 63-71. https://doi.org/10.1016/j.biochi.2021.02.005
|
[14]
|
Arcipowski, K.M., Martinez, C.A. and Ntziachristos, P. (2016) Histone Demethylases in Physiology and Cancer: A Tale of Two Enzymes, JMJD3 and UTX. Current Opinion in Genetics & Development, 36, 59-67. https://doi.org/10.1016/j.gde.2016.03.010
|
[15]
|
Gimbrone, M.A. and García-Cardeña, G. (2016) Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Research, 118, 620-636. https://doi.org/10.1161/circresaha.115.306301
|
[16]
|
Libby, P., Ridker, P.M. and Hansson, G.K. (2011) Progress and Challenges in Translating the Biology of Atherosclerosis. Nature, 473, 317-325. https://doi.org/10.1038/nature10146
|
[17]
|
Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s. Nature, 362, 801-809. https://doi.org/10.1038/362801a0
|
[18]
|
Xu, S., Kamato, D., Little, P.J., Nakagawa, S., Pelisek, J. and Jin, Z.G. (2019) Targeting Epigenetics and Non-Coding Rnas in Atherosclerosis: From Mechanisms to Therapeutics. Pharmacology & Therapeutics, 196, 15-43. https://doi.org/10.1016/j.pharmthera.2018.11.003
|
[19]
|
Wierda, R.J., Rietveld, I.M., van Eggermond, M.C.J.A., Belien, J.A.M., van Zwet, E.W., Lindeman, J.H.N., et al. (2015) Global Histone H3 Lysine 27 Triple Methylation Levels Are Reduced in Vessels with Advanced Atherosclerotic Plaques. Life Sciences, 129, 3-9. https://doi.org/10.1016/j.lfs.2014.10.010
|
[20]
|
Antoniades, C., Antonopoulos, A., Bendall, J. and Channon, K. (2009) Targeting Redox Signaling in the Vascular Wall: From Basic Science to Clinical Practice. Current Pharmaceutical Design, 15, 329-342. https://doi.org/10.2174/138161209787354230
|
[21]
|
Lv, Y., Tang, Y., Zhang, P., Wan, W., Yao, F., He, P., et al. (2016) Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis. PLOS ONE, 11, e0157265. https://doi.org/10.1371/journal.pone.0157265
|
[22]
|
Prabhu, S.D. and Frangogiannis, N.G. (2016) The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circulation Research, 119, 91-112. https://doi.org/10.1161/circresaha.116.303577
|
[23]
|
Psarras, S., Mavroidis, M., Sanoudou, D., Davos, C.H., Xanthou, G., Varela, A.E., et al. (2011) Regulation of Adverse Remodelling by Osteopontin in a Genetic Heart Failure Model. European Heart Journal, 33, 1954-1963. https://doi.org/10.1093/eurheartj/ehr119
|
[24]
|
Chen, P.P., Patel, J.R., Powers, P.A., Fitzsimons, D.P. and Moss, R.L. (2012) Dissociation of Structural and Functional Phenotypes in Cardiac Myosin-Binding Protein C Conditional Knockout Mice. Circulation, 126, 1194-1205. https://doi.org/10.1161/circulationaha.111.089219
|
[25]
|
González-Santamaría, J., Villalba, M., Busnadiego, O., López-Olañeta, M.M., Sandoval, P., Snabel, J., et al. (2015) Matrix Cross-Linking Lysyl Oxidases Are Induced in Response to Myocardial Infarction and Promote Cardiac Dysfunction. Cardiovascular Research, 109, 67-78. https://doi.org/10.1093/cvr/cvv214
|
[26]
|
Liu, Z., Cao, W., Xu, L., Chen, X., Zhan, Y., Yang, Q., et al. (2015) The Histone H3 Lysine-27 Demethylase Jmjd3 Plays a Critical Role in Specific Regulation of Th17 Cell Differentiation. Journal of Molecular Cell Biology, 7, 505-516. https://doi.org/10.1093/jmcb/mjv022
|
[27]
|
Jia, W., Wu, W., Yang, D., Xiao, C., Su, Z., Huang, Z., et al. (2018) Histone Demethylase JMJD3 Regulates Fibroblast‐like Synoviocyte‐mediated Proliferation and Joint Destruction in Rheumatoid Arthritis. The FASEB Journal, 32, 4031-4042. https://doi.org/10.1096/fj.201701483r
|
[28]
|
Long, F., Wang, Q., Yang, D., Zhu, M., Wang, J., Zhu, Y., et al. (2020) Targeting JMJD3 Histone Demethylase Mediates Cardiac Fibrosis and Cardiac Function Following Myocardial Infarction. Biochemical and Biophysical Research Communications, 528, 671-677. https://doi.org/10.1016/j.bbrc.2020.05.115
|
[29]
|
Ma, T.K., Kam, K.K., Yan, B.P. and Lam, Y. (2010) Renin-Angiotensin-Aldosterone System Blockade for Cardiovascular Diseases: Current Status. British Journal of Pharmacology, 160, 1273-1292. https://doi.org/10.1111/j.1476-5381.2010.00750.x
|
[30]
|
MacDonald, M.R., Petrie, M.C., Hawkins, N.M., Petrie, J.R., Fisher, M., McKelvie, R., et al. (2008) Diabetes, Left Ventricular Systolic Dysfunction, and Chronic Heart Failure. European Heart Journal, 29, 1224-1240. https://doi.org/10.1093/eurheartj/ehn156
|
[31]
|
Rosales, W., Carulla, J., García, J., Vargas, D. and Lizcano, F. (2016) Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy. BioMed Research International, 2016, Article ID: 2634976. https://doi.org/10.1155/2016/2634976
|
[32]
|
Zhang, Q., Chen, H., Wang, L., Liu, D., Hill, J.A. and Liu, Z. (2011) The Histone Trimethyllysine Demethylase JMJD2A Promotes Cardiac Hypertrophy in Response to Hypertrophic Stimuli in Mice. Journal of Clinical Investigation, 121, 2447-2456. https://doi.org/10.1172/jci46277
|
[33]
|
Veselka, J., Anavekar, N.S. and Charron, P. (2017) Hypertrophic Obstructive Cardiomyopathy. The Lancet, 389, 1253-1267. https://doi.org/10.1016/s0140-6736(16)31321-6
|
[34]
|
Ohtani, K., Zhao, C., Dobreva, G., Manavski, Y., Kluge, B., Braun, T., et al. (2013) Jmjd3 Controls Mesodermal and Cardiovascular Differentiation of Embryonic Stem Cells. Circulation Research, 113, 856-862. https://doi.org/10.1161/circresaha.113.302035
|
[35]
|
Doenst, T., Nguyen, T.D. and Abel, E.D. (2013) Cardiac Metabolism in Heart Failure: Implications beyond ATP Production. Circulation Research, 113, 709-724. https://doi.org/10.1161/circresaha.113.300376
|
[36]
|
Krenz, M., Sanbe, A., Bouyer-Dalloz, F., Gulick, J., Klevitsky, R., Hewett, T.E., et al. (2003) Analysis of Myosin Heavy Chain Functionality in the Heart. Journal of Biological Chemistry, 278, 17466-17474. https://doi.org/10.1074/jbc.m210804200
|
[37]
|
Zhang, S., Lu, Y. and Jiang, C. (2020) Inhibition of Histone Demethylase JMJD1C Attenuates Cardiac Hypertrophy and Fibrosis Induced by Angiotensin II. Journal of Receptors and Signal Transduction, 40, 339-347. https://doi.org/10.1080/10799893.2020.1734819
|
[38]
|
Guo, Z., Lu, J., Li, J., Wang, P., Li, Z., Zhong, Y., et al. (2018) JMJD3 Inhibition Protects against Isoproterenol-Induced Cardiac Hypertrophy by Suppressing β-MHC Expression. Molecular and Cellular Endocrinology, 477, 1-14. https://doi.org/10.1016/j.mce.2018.05.009
|
[39]
|
Bretherton, R., Bugg, D., Olszewski, E. and Davis, J. (2020) Regulators of Cardiac Fibroblast Cell State. Matrix Biology, 91, 117-135. https://doi.org/10.1016/j.matbio.2020.04.002
|
[40]
|
Travers, J.G., Tharp, C.A., Rubino, M. and McKinsey, T.A. (2022) Therapeutic Targets for Cardiac Fibrosis: From Old School to Next-Gen. Journal of Clinical Investigation, 132, e148554. https://doi.org/10.1172/jci148554
|
[41]
|
Wu, N., Xu, J., Du, W.W., Li, X., Awan, F.M., Li, F., et al. (2021) YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and γ-Actin Decreasing Actin Polymerization. Molecular Therapy, 29, 1138-1150. https://doi.org/10.1016/j.ymthe.2020.12.004
|
[42]
|
Urban, M.L., Manenti, L. and Vaglio, A. (2015) Fibrosis—A Common Pathway to Organ Injury and Failure. The New England Journal of Medicine, 373, 95-96.
|
[43]
|
Koitabashi, N., Arai, M., Kogure, S., Niwano, K., Watanabe, A., Aoki, Y., et al. (2007) Increased Connective Tissue Growth Factor Relative to Brain Natriuretic Peptide as a Determinant of Myocardial Fibrosis. Hypertension, 49, 1120-1127. https://doi.org/10.1161/hypertensionaha.106.077537
|
[44]
|
Jeong, H., Kang, W.S., Hong, M.H., Jeong, H.C., Shin, M., Jeong, M.H., et al. (2015) 5-Azacytidine Modulates Interferon Regulatory Factor 1 in Macrophages to Exert a Cardioprotective Effect. Scientific Reports, 5, Article No. 15768. https://doi.org/10.1038/srep15768
|
[45]
|
Markouli, M., Strepkos, D., Chlamydas, S. and Piperi, C. (2021) Histone Lysine Methyltransferase SETDB1 as a Novel Target for Central Nervous System Diseases. Progress in Neurobiology, 200, Article ID: 101968. https://doi.org/10.1016/j.pneurobio.2020.101968
|
[46]
|
Wang, B., Tan, Y., Zhang, Y., Zhang, S., Duan, X., Jiang, Y., et al. (2022) Loss of KDM5B Ameliorates Pathological Cardiac Fibrosis and Dysfunction by Epigenetically Enhancing ATF3 Expression. Experimental & Molecular Medicine, 54, 2175-2187. https://doi.org/10.1038/s12276-022-00904-y
|
[47]
|
Olsen, M.H., Angell, S.Y., Asma, S., Boutouyrie, P., Burger, D., Chirinos, J.A., et al. (2016) A Call to Action and a Lifecourse Strategy to Address the Global Burden of Raised Blood Pressure on Current and Future Generations: The Lancet Commission on Hypertension. The Lancet, 388, 2665-2712. https://doi.org/10.1016/s0140-6736(16)31134-5
|
[48]
|
Bundy, J.D., Li, C., Stuchlik, P., Bu, X., Kelly, T.N., Mills, K.T., et al. (2017) Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and Mortality: A Systematic Review and Network Meta-Analysis. JAMA Cardiology, 2, 775-781. https://doi.org/10.1001/jamacardio.2017.1421
|
[49]
|
Kontis, V., Mathers, C.D., Bonita, R., Stevens, G.A., Rehm, J., Shield, K.D., et al. (2015) Regional Contributions of Six Preventable Risk Factors to Achieving the 25 × 25 Non-Communicable Disease Mortality Reduction Target: A Modelling Study. The Lancet Global Health, 3, e746-e757. https://doi.org/10.1016/s2214-109x(15)00179-5
|
[50]
|
Brouwers, S., Sudano, I., Kokubo, Y. and Sulaica, E.M. (2021) Arterial Hypertension. The Lancet, 398, 249-261. https://doi.org/10.1016/s0140-6736(21)00221-x
|
[51]
|
Leisegang, M.S., Fork, C., Josipovic, I., Richter, F.M., Preussner, J., Hu, J., et al. (2017) Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 136, 65-79. https://doi.org/10.1161/circulationaha.116.026991
|
[52]
|
Zhang, C., Sun, Y., Guo, Y., Xu, J. and Zhao, H. (2023) JMJD1C Promotes Smooth Muscle Cell Proliferation by Activating Glycolysis in Pulmonary Arterial Hypertension. Cell Death Discovery, 9, Article No. 98. https://doi.org/10.1038/s41420-023-01390-5
|
[53]
|
Peppard, P.E., Young, T., Palta, M. and Skatrud, J. (2000) Prospective Study of the Association between Sleep-Disordered Breathing and Hypertension. New England Journal of Medicine, 342, 1378-1384. https://doi.org/10.1056/nejm200005113421901
|
[54]
|
Prabhakar, N.R., Peng, Y. and Nanduri, J. (2020) Hypoxia-Inducible Factors and Obstructive Sleep Apnea. Journal of Clinical Investigation, 130, 5042-5051. https://doi.org/10.1172/jci137560
|
[55]
|
Cho, H., Lee, D., Kim, H.Y., Lee, H., Seok, Y.M. and Kim, I.K. (2012) Upregulation of the Na+-K+-2Cl− Cotransporter 1 via Histone Modification in the Aortas of Angiotensin II-Induced Hypertensive Rats. Hypertension Research, 35, 819-824. https://doi.org/10.1038/hr.2012.37
|