|
[1]
|
Joseph, P., Leong, D., McKee, M., Anand, S.S., Schwalm, J., Teo, K., et al. (2017) Reducing the Global Burden of Cardiovascular Disease, Part 1. Circulation Research, 121, 677-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Shi, Y., Zhang, H., Huang, S., Yin, L., Wang, F., Luo, P., et al. (2022) Epigenetic Regulation in Cardiovascular Disease: Mechanisms and Advances in Clinical Trials. Signal Transduction and Targeted Therapy, 7, Article No. 200. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Feinberg, A.P. (2018) The Key Role of Epigenetics in Human Disease Prevention and Mitigation. New England Journal of Medicine, 378, 1323-1334. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Khyzha, N., Alizada, A., Wilson, M.D. and Fish, J.E. (2017) Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends in Molecular Medicine, 23, 332-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pediconi, N., Salerno, D., Lupacchini, L., Angrisani, A., Peruzzi, G., De Smaele, E., et al. (2019) EZH2, JMJD3, and UTX Epigenetically Regulate Hepatic Plasticity Inducing Retro-Differentiation and Proliferation of Liver Cells. Cell Death & Disease, 10, Article No. 518. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Abu-Hanna, J., Patel, J.A., Anastasakis, E., Cohen, R., Clapp, L.H., Loizidou, M., et al. (2022) Therapeutic Potential of Inhibiting Histone 3 Lysine 27 Demethylases: A Review of the Literature. Clinical Epigenetics, 14, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Salminen, A., Kaarniranta, K., Hiltunen, M. and Kauppinen, A. (2014) Histone Demethylase Jumonji D3 (JMJD3/KDM6B) at the Nexus of Epigenetic Regulation of Inflammation and the Aging Process. Journal of Molecular Medicine, 92, 1035-1043. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ye, L., Fan, Z., Yu, B., Chang, J., Al Hezaimi, K., Zhou, X., et al. (2012) Histone Demethylases KDM4B and KDM6B Promotes Osteogenic Differentiation of Human MSCS. Cell Stem Cell, 11, 50-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Xiang, Y., Zhu, Z., Han, G., Lin, H., Xu, L. and Chen, C.D. (2007) JMJD3 Is a Histone H3K27 Demethylase. Cell Research, 17, 850-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Barski, A., Cuddapah, S., Cui, K., Roh, T., Schones, D.E., Wang, Z., et al. (2007) High-Resolution Profiling of Histone Methylations in the Human Genome. Cell, 129, 823-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Rao, R.C. and Dou, Y. (2015) Hijacked in Cancer: The KMT2 (MLL) Family of Methyltransferases. Nature Reviews Cancer, 15, 334-346. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Farzaneh, M., Kuchaki, Z., Rashid Sheykhahmad, F., Meybodi, S.M., Abbasi, Y., Gholami, E., et al. (2022) Emerging Roles of JMJD3 in Cancer. Clinical and Translational Oncology, 24, 1238-1249. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lagunas-Rangel, F.A. (2021) KDM6B (JMJD3) and Its Dual Role in Cancer. Biochimie, 184, 63-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Arcipowski, K.M., Martinez, C.A. and Ntziachristos, P. (2016) Histone Demethylases in Physiology and Cancer: A Tale of Two Enzymes, JMJD3 and UTX. Current Opinion in Genetics & Development, 36, 59-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gimbrone, M.A. and García-Cardeña, G. (2016) Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Research, 118, 620-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Libby, P., Ridker, P.M. and Hansson, G.K. (2011) Progress and Challenges in Translating the Biology of Atherosclerosis. Nature, 473, 317-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s. Nature, 362, 801-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xu, S., Kamato, D., Little, P.J., Nakagawa, S., Pelisek, J. and Jin, Z.G. (2019) Targeting Epigenetics and Non-Coding Rnas in Atherosclerosis: From Mechanisms to Therapeutics. Pharmacology & Therapeutics, 196, 15-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wierda, R.J., Rietveld, I.M., van Eggermond, M.C.J.A., Belien, J.A.M., van Zwet, E.W., Lindeman, J.H.N., et al. (2015) Global Histone H3 Lysine 27 Triple Methylation Levels Are Reduced in Vessels with Advanced Atherosclerotic Plaques. Life Sciences, 129, 3-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Antoniades, C., Antonopoulos, A., Bendall, J. and Channon, K. (2009) Targeting Redox Signaling in the Vascular Wall: From Basic Science to Clinical Practice. Current Pharmaceutical Design, 15, 329-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lv, Y., Tang, Y., Zhang, P., Wan, W., Yao, F., He, P., et al. (2016) Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis. PLOS ONE, 11, e0157265. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Prabhu, S.D. and Frangogiannis, N.G. (2016) The Biological Basis for Cardiac Repair after Myocardial Infarction: From Inflammation to Fibrosis. Circulation Research, 119, 91-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Psarras, S., Mavroidis, M., Sanoudou, D., Davos, C.H., Xanthou, G., Varela, A.E., et al. (2011) Regulation of Adverse Remodelling by Osteopontin in a Genetic Heart Failure Model. European Heart Journal, 33, 1954-1963. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, P.P., Patel, J.R., Powers, P.A., Fitzsimons, D.P. and Moss, R.L. (2012) Dissociation of Structural and Functional Phenotypes in Cardiac Myosin-Binding Protein C Conditional Knockout Mice. Circulation, 126, 1194-1205. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
González-Santamaría, J., Villalba, M., Busnadiego, O., López-Olañeta, M.M., Sandoval, P., Snabel, J., et al. (2015) Matrix Cross-Linking Lysyl Oxidases Are Induced in Response to Myocardial Infarction and Promote Cardiac Dysfunction. Cardiovascular Research, 109, 67-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, Z., Cao, W., Xu, L., Chen, X., Zhan, Y., Yang, Q., et al. (2015) The Histone H3 Lysine-27 Demethylase Jmjd3 Plays a Critical Role in Specific Regulation of Th17 Cell Differentiation. Journal of Molecular Cell Biology, 7, 505-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jia, W., Wu, W., Yang, D., Xiao, C., Su, Z., Huang, Z., et al. (2018) Histone Demethylase JMJD3 Regulates Fibroblast‐like Synoviocyte‐mediated Proliferation and Joint Destruction in Rheumatoid Arthritis. The FASEB Journal, 32, 4031-4042. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Long, F., Wang, Q., Yang, D., Zhu, M., Wang, J., Zhu, Y., et al. (2020) Targeting JMJD3 Histone Demethylase Mediates Cardiac Fibrosis and Cardiac Function Following Myocardial Infarction. Biochemical and Biophysical Research Communications, 528, 671-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ma, T.K., Kam, K.K., Yan, B.P. and Lam, Y. (2010) Renin-Angiotensin-Aldosterone System Blockade for Cardiovascular Diseases: Current Status. British Journal of Pharmacology, 160, 1273-1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
MacDonald, M.R., Petrie, M.C., Hawkins, N.M., Petrie, J.R., Fisher, M., McKelvie, R., et al. (2008) Diabetes, Left Ventricular Systolic Dysfunction, and Chronic Heart Failure. European Heart Journal, 29, 1224-1240. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rosales, W., Carulla, J., García, J., Vargas, D. and Lizcano, F. (2016) Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy. BioMed Research International, 2016, Article ID: 2634976. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, Q., Chen, H., Wang, L., Liu, D., Hill, J.A. and Liu, Z. (2011) The Histone Trimethyllysine Demethylase JMJD2A Promotes Cardiac Hypertrophy in Response to Hypertrophic Stimuli in Mice. Journal of Clinical Investigation, 121, 2447-2456. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Veselka, J., Anavekar, N.S. and Charron, P. (2017) Hypertrophic Obstructive Cardiomyopathy. The Lancet, 389, 1253-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ohtani, K., Zhao, C., Dobreva, G., Manavski, Y., Kluge, B., Braun, T., et al. (2013) Jmjd3 Controls Mesodermal and Cardiovascular Differentiation of Embryonic Stem Cells. Circulation Research, 113, 856-862. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Doenst, T., Nguyen, T.D. and Abel, E.D. (2013) Cardiac Metabolism in Heart Failure: Implications beyond ATP Production. Circulation Research, 113, 709-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Krenz, M., Sanbe, A., Bouyer-Dalloz, F., Gulick, J., Klevitsky, R., Hewett, T.E., et al. (2003) Analysis of Myosin Heavy Chain Functionality in the Heart. Journal of Biological Chemistry, 278, 17466-17474. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, S., Lu, Y. and Jiang, C. (2020) Inhibition of Histone Demethylase JMJD1C Attenuates Cardiac Hypertrophy and Fibrosis Induced by Angiotensin II. Journal of Receptors and Signal Transduction, 40, 339-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Guo, Z., Lu, J., Li, J., Wang, P., Li, Z., Zhong, Y., et al. (2018) JMJD3 Inhibition Protects against Isoproterenol-Induced Cardiac Hypertrophy by Suppressing β-MHC Expression. Molecular and Cellular Endocrinology, 477, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bretherton, R., Bugg, D., Olszewski, E. and Davis, J. (2020) Regulators of Cardiac Fibroblast Cell State. Matrix Biology, 91, 117-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Travers, J.G., Tharp, C.A., Rubino, M. and McKinsey, T.A. (2022) Therapeutic Targets for Cardiac Fibrosis: From Old School to Next-Gen. Journal of Clinical Investigation, 132, e148554. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wu, N., Xu, J., Du, W.W., Li, X., Awan, F.M., Li, F., et al. (2021) YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and γ-Actin Decreasing Actin Polymerization. Molecular Therapy, 29, 1138-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Urban, M.L., Manenti, L. and Vaglio, A. (2015) Fibrosis—A Common Pathway to Organ Injury and Failure. The New England Journal of Medicine, 373, 95-96.
|
|
[43]
|
Koitabashi, N., Arai, M., Kogure, S., Niwano, K., Watanabe, A., Aoki, Y., et al. (2007) Increased Connective Tissue Growth Factor Relative to Brain Natriuretic Peptide as a Determinant of Myocardial Fibrosis. Hypertension, 49, 1120-1127. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jeong, H., Kang, W.S., Hong, M.H., Jeong, H.C., Shin, M., Jeong, M.H., et al. (2015) 5-Azacytidine Modulates Interferon Regulatory Factor 1 in Macrophages to Exert a Cardioprotective Effect. Scientific Reports, 5, Article No. 15768. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Markouli, M., Strepkos, D., Chlamydas, S. and Piperi, C. (2021) Histone Lysine Methyltransferase SETDB1 as a Novel Target for Central Nervous System Diseases. Progress in Neurobiology, 200, Article ID: 101968. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Wang, B., Tan, Y., Zhang, Y., Zhang, S., Duan, X., Jiang, Y., et al. (2022) Loss of KDM5B Ameliorates Pathological Cardiac Fibrosis and Dysfunction by Epigenetically Enhancing ATF3 Expression. Experimental & Molecular Medicine, 54, 2175-2187. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Olsen, M.H., Angell, S.Y., Asma, S., Boutouyrie, P., Burger, D., Chirinos, J.A., et al. (2016) A Call to Action and a Lifecourse Strategy to Address the Global Burden of Raised Blood Pressure on Current and Future Generations: The Lancet Commission on Hypertension. The Lancet, 388, 2665-2712. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Bundy, J.D., Li, C., Stuchlik, P., Bu, X., Kelly, T.N., Mills, K.T., et al. (2017) Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and Mortality: A Systematic Review and Network Meta-Analysis. JAMA Cardiology, 2, 775-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kontis, V., Mathers, C.D., Bonita, R., Stevens, G.A., Rehm, J., Shield, K.D., et al. (2015) Regional Contributions of Six Preventable Risk Factors to Achieving the 25 × 25 Non-Communicable Disease Mortality Reduction Target: A Modelling Study. The Lancet Global Health, 3, e746-e757. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Brouwers, S., Sudano, I., Kokubo, Y. and Sulaica, E.M. (2021) Arterial Hypertension. The Lancet, 398, 249-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Leisegang, M.S., Fork, C., Josipovic, I., Richter, F.M., Preussner, J., Hu, J., et al. (2017) Long Noncoding RNA MANTIS Facilitates Endothelial Angiogenic Function. Circulation, 136, 65-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhang, C., Sun, Y., Guo, Y., Xu, J. and Zhao, H. (2023) JMJD1C Promotes Smooth Muscle Cell Proliferation by Activating Glycolysis in Pulmonary Arterial Hypertension. Cell Death Discovery, 9, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Peppard, P.E., Young, T., Palta, M. and Skatrud, J. (2000) Prospective Study of the Association between Sleep-Disordered Breathing and Hypertension. New England Journal of Medicine, 342, 1378-1384. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Prabhakar, N.R., Peng, Y. and Nanduri, J. (2020) Hypoxia-Inducible Factors and Obstructive Sleep Apnea. Journal of Clinical Investigation, 130, 5042-5051. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Cho, H., Lee, D., Kim, H.Y., Lee, H., Seok, Y.M. and Kim, I.K. (2012) Upregulation of the Na+-K+-2Cl− Cotransporter 1 via Histone Modification in the Aortas of Angiotensin II-Induced Hypertensive Rats. Hypertension Research, 35, 819-824. [Google Scholar] [CrossRef] [PubMed]
|