cGAS-STING通路在神经退行性疾病中的作用机制
The Role of cGAS STING Pathway in Neurodegen Erative Mechanisms and Progressive Diseases
摘要: cGAS-STING通路是胞质核酸识别免疫系统的重要组成部分,能够感知外来或自身错位DNA并激活免疫反应。研究表明,cGAS-STING通路是激活神经炎症的关键,在神经退行性疾病的发生发展中发挥了重要作用。深入了解cGAS-STING通路的作用机制有望为神经退行性疾病的诊断和治疗提供有效思路。基于此,本文对cGAS-STING通路在神经退行性疾病中的作用机制研究进展进行综述,旨在为神经退行性疾病的病理研究及治疗方案开发提供参考依据。
Abstract: cGAS-STING pathway is an important part of cytoplasmic nucleic acid recognition immune system, which can sense foreign or self-dislocated DNA and activate immune response. Studies have shown that cGAS-STING pathway is the key to activate neuroinflammation and plays an important role in the occurrence and development of neurodegenerative diseases. Understanding the mechanism of cGAS-STING pathway is expected to provide effective ideas for the diagnosis and treatment of neurodegenerative diseases. Based on this, this paper reviews the research progress on the mechanism of cGAS-STING pathway in neurodegenerative diseases, aiming at providing reference for pathological research and treatment development of neurodegenerative diseases.
文章引用:苏磊, 宋静, 张浩平, 范泽彦. cGAS-STING通路在神经退行性疾病中的作用机制[J]. 医学诊断, 2025, 15(3): 258-266. https://doi.org/10.12677/md.2025.153034

1. 引言

神经退行性疾病(neurodegenerative disease, ND)是一类由神经元功能的进行性丧失而导致神经元死亡的神经系统异质性疾病,包括阿尔兹海默症(AD)、帕金森症(PD)、亨廷顿病(HD)、路易体痴呆(AD)、肌萎缩性侧索硬化症、额颞叶痴呆和脊髓小脑共济失调等[1]。ND会出现认知障碍、记忆丧失、语言困难和运动功能障碍等病症,最终导致死亡[2] [3]。目前,研究已经确定ND病因与多种不同的毒性因素密切相关,会引起蛋白酶体功能障碍、神经炎症、突触改变、蛋白质聚集和氧化应激等生理病变[4]。然而,ND病程进展中涉及的相关分子机制仍然不够明确。加深对ND病理过程中相关分子及信号通路的研究对于揭示ND致病机制、发展高效的ND诊断和治疗策略具有非常重要的意义。

神经炎症与AD、PD和MS等多种神经退行性疾病密切相关。神经炎症是一个复杂的过程,涉及中枢神经系统免疫细胞的激活、细胞因子和趋化因子等促炎症介质的释放[5] [6]。它最早被认为是由病毒核酸诱导产生I型干扰素(IFN)而导致的[7]。因此,I型干扰素的产生被认为影响神经退行性进展的重要标志。最早的研究表明,病毒DNA会激活胞质DNA传感器环GMP-AMP合成酶(cGAS)-干扰素基因刺激因子(STING)通路(即cGAS-STING通路),诱导干扰素产生,进一步促进ND进展[8] [9]。此后,越来越多的研究人员针对cGAS-STING在神经退行性疾病中的作用机制展开了广泛且深入的研究。

本论文将对针对cGAS-STING通路在神经退行性疾病中的作用机制研究进展进行综述。首先,对cGAS-STING通路及其调控机制进行简要概述;然后,分别介绍cGAS-STING通路在不同ND病症致病机制中的研究进展;最后,对该领域的研究进展进行总结和展望,旨在为ND病理机制研究提供有价值的参考经验,对于发展高效的ND诊疗方法具有较为重要的意义。

2. cGAS-STING信号通路概述及调控机制

cGAS-STING通路是胞质核酸识别免疫系统的重要组成部分,GAS-STING通路的关键蛋白包括cGAS、cGAMP和STING。cGAS是一种胞质DNA感受器,其结构包含一个二聚体结构域和一个催化结构域。当cGAS识别到双链DNA后,其构象发生改变,转变为活性状态,进而催化GTP和ATP合成第二信使cGAMP。当来自细菌或病毒感染的外源DNA或者某些病理条件下从细胞核或线粒体渗漏的自身DNA被生物体感知后,cGAS-STING通路能够立即触发免疫反应[10]。其中,cGAS识别双链DNA,触发下游的STING信号。其具体过程如图1所示[11]。首先,cGAS蛋白二聚体会结合到双链DNA上,使其构象转变为活性状态,催化环鸟苷单磷酸腺苷(cGAMP)合成反应[12]。合成的cGAMP进一步激活内质网膜上的二聚体跨层接头蛋白STING并将其激活,促进STING从内质网运输到高尔基体中[13]。在这一运输过程中,STING蛋白同时招募TANK结合激酶1 (TANK binding kinase1, TBK1),催化干扰素调节因子3 (interferon regulatory factor 3, IRF3)和核转录因子(nuclear factor-кB, NF-кB)的磷酸化反应[14] [15]。在AD中,通路激活可能导致β-淀粉样蛋白的积累和神经元损伤;而在PD中,通路激活可能加剧多巴胺能神经元的死亡。这些特异性机制为针对不同ND的精准治疗提供了可能。对cGAS-STING通路作为治疗靶点的可行性进行深入分析靶向cGAS-STING通路作为治疗ND的潜在靶点具有一定的优势,随后,磷酸化的IRF3二聚体被转运到细胞核并诱导干扰素的产生,而磷酸化的NF-кB也被转运到细胞核并激活TNF、IL-1ß、IL-6等多种炎性细胞因子的表达[16] [17]。在神经退行性疾病(ND)中,cGAS-STING通路的激活存在差异。例如,在阿尔茨海默病(AD)中,线粒体DNA的渗漏可能激活cGAS-STING通路,导致神经炎症。而在帕金森病(PD)中,细胞核DNA的异常可能触发该通路的激活。这些差异可能与疾病的特异性病理机制有关。加强对不同ND中cGAS-STING通路作用的比较分析在不同ND中,cGAS-STING通路的共同点在于其激活后均会导致炎症反应和神经毒性。然而,不同疾病中通路的激活触发因素和下游效应存在差异。研究表明,cGAS-STING通路介导的这些免疫反应和炎症因子表达与多种神经退行性疾病的发生发展和衰老过程密切相关。例如,cGAS的小分子抑制剂可以减少cGAMP的合成,从而降低通路活性。尽管存在挑战,但靶向cGAS-STING通路的治疗策略仍具有很大的潜力。未来的研究需要进一步探索通路在不同ND中的具体作用机制,并开发更加精准和有效的干预方法,以最大限度地降低潜在风险并提高治疗效果。在后续章节内容中在后续章节内容中,我们将讨论cGAS-STING通路在不同神经退行性疾病中的致病机制。

Figure 1. cGAS-STING pathway [11]

1. cGAS-STING通路[11]

3. 阿尔兹海默症

阿尔兹海默症(AD)是老年痴呆最常见的原因,每年影响数百万患者的生存生活。尽管阿尔茨海默病的病因目前尚不明确,但与IFN信号相关的神经炎症被认为在AD的病理生理变化中发挥了重要的作用[18] [19]。细胞内神经原纤维tau缠结和细胞内和细胞外β淀粉样蛋白斑块的广泛分布是AD的典型特征,而线粒体功能障碍通常是AD聚集形成和退化的先兆[20]。Hoekstra等人通过新一代海马神经元测序发现,早期AD患者的线粒体DNA突变显著增加[21]。之后,Hou等人对AD患者的成纤维细胞研究发现,线粒体DNA会被释放到细胞质中,进一步导致cGAS和STING的表达增加[22]。而Xu等人对转基因AD小鼠模型进行研究表明,在5月龄时通过渗透泵输送cGAMP刺激cGAS通路,能够有效抑制AD病症的进展[23]。另外,脉络膜从转录组研究表明AD小鼠模型中,IFN-I应答基因呈现出整体过表达的水平[24]。这说明过量的cGAS/STING介导的IFN-I产生与AD的干扰素病变有关,减轻IFN-I反应相关的神经炎症可能会减缓这种破坏性疾病的进展。此外,研究人员发现cGAMP和其他STING激动剂可以通过SLC19A1导入物穿过质膜,调控cGAS-STING通路[25]。但目前尚不清楚哪些类型的细胞在STING激活后表现出有益或负面的影响。

4. 帕金森症

帕金森病(PD)是一种常见的与年龄相关的神经退行性疾病,通常伴有静息性震颤、肌肉僵硬、运动减少等一些运动功能障碍症状[26]。在病理学上,PD的特征是黑质致密部多巴胺(DA)神经元的进行性丧失和路易小体的沉积[27]。虽然PD的确切机制尚不完全清楚,但神经炎症被认为是该疾病进展的关键因素。研究表明,cGAS-STING通路和IFN-I信号通路在PD病理神经炎症中发挥了不可替代的作用(图2)。Main等人的研究报道了PD患者死后大脑中IFN-I水平显著升高,表明IFN-I信号参与了PD小鼠模型的神经炎症反应和疾病进展[28]。更重要的是,他们证明通过基因消融I型IFN受体(IFNAR1)或阻断性单克隆IFNAR1抗体来抑制IFN-I信号,能够缓解神经炎症反应和DA神经元细胞死亡,为为IFN-I信号参与PD提供了直接证据。另一项研究也表明,Parkin和PINK1能够缓解STING诱导的神经炎症;同时,IFNAR1抗体阻断治疗能够修复PD小鼠的运动缺陷和多巴胺神经元受损。这说明,cGAS/STING介导的IFN-I信号是PD疾病进展中早期神经炎症反应和DA细胞死亡的关键调节机制[29]。另外,研究人员也针对DNA激活cGAS-STING通路的来源进行了研究。Gao等人发现基因组DNA的错位是cGASSTING激活的触发因素[30]。同时,Sliter等人证明了线粒体自噬和线粒体DNA也可以触发cGAS-STING介导的神经炎症,他们发现PD小鼠中循环线粒体DNA显著增加[29]

5. 亨廷顿病

亨廷顿病(HD)是一种罕见的进行性常染色体显性遗传病。它是由亨廷顿蛋白(HTT)基因CAG重复引起多聚谷氨酰胺扩增而导致发病的[31]。舞蹈症是HD的最初症状,而随着疾病的进展,大脑皮层等其他大脑区域受到影响,HD症状扩大,包括更严重的认知和行为改变。大多数HD患者在症状出现的15~20年内死亡[32]。研究发现,线粒体功能障碍在HD患者中普遍存在[33]。一项针对一小部分患者的研究表明,与健康对照组相比,HD患者白细胞中的线粒体DNA拷贝数升高。另外,在HD患者的纹状体细胞和HD人胚胎干细胞(hESCs)衍生的纹状体神经元中也发现了大量的胞质和线粒体DNA,而这些DNA能够触发cGAS-STING通路[34]。最近,Sharma等人通过研究表明,cGAS和STING在HD患者的大脑中上调[35]。他们发现,cGAS在HD中上调并促进炎症反应。cGAS的消耗能够降低HD细胞中cGAS的活性并降低了炎症基因的表达(图3)。这些研究结果表明,cGAS/STING介导的神经炎症会推动HD病理发生发展,抑制cGAS/STING通路有助于减轻HD病症相关损伤。

Figure 2. mtDNA and IFN signal in cGAS-STING pathway

2. cGAS-STING通路中mtDNA与IFN信号

Figure 3. CGAS upregulates and promotes inflammatory response in HD [35]

3. cGAS在HD中上调并促进炎症反应[35]

6. 肌萎缩性侧索硬化症

肌萎缩性侧索硬化症(ALS)又称运动神经元疾病,主要表现为上下运动神经元的进行性变性,可导致严重残疾,甚至瘫痪[36] [37]。尽管ALS的发病机制尚不清楚,但大量研究表明,神经炎症参与了疾病的发病机制。Wang等人验证了IFN信号在小鼠模型ALS病变中的作用,发现IFNAR1的减少或缺失能够抑制IFN信号传导并延长ALS小鼠的寿命[38]。最近,Yu等人证明交换反应DNA结合蛋白43 (TDP-43)通过触发线粒体DNA释放到细胞质中,激活cGAS-STING通路,从而进而ALS的炎症[39]。更重要的是,基因缺失或药物抑制STING可改善ALS小鼠模型中的病症。McCauley等人在另一项研究中发现,C9orf72缺失可引起由STING诱导IFN-I介导的炎症,阻断STING可抑制C9orf72表达小鼠过度活跃的IFN-I信号[40]。激活的cGAS-STING通路刺激小胶质细胞和星形胶质细胞分泌促炎细胞因子,如IL-6和TNF-α,形成神经炎症微环境,这在HD的病理过程中起着关键作用,cGAMP作为一种第二信使,可以在细胞间传递,激活邻近细胞的cGAS-STING通路,导致炎症反应的扩散,进一步加剧神经退行性变化[36],综上所述,这些研究表明cGAS-STING介导的神经炎症对于ALS的进展有着非常重要的促进,靶向cGAS-STING通路有望为这种ALS提供有效的治疗方案(图4)。

Figure 4. Mechanism of cGAS-STING Pathway in ALS [39]

4. ALS中cGAS-STING通路的作用机制[39]

7. 其他神经退行性疾病

越来越多的证据表明,异常的STING活性和过量的IFN产生与许多其他神经退行性疾病的病变有关。例如,对自身免疫性脑脊髓炎(EAE)小鼠模型的基因缺失分析显示,多发性硬化症(MS)中存在IFN-依赖性促炎事件调节剂,缺乏IFN-β或IFNAR的小鼠会发生更严重的EAE,表明IFN-1信号在MS疾病进展中具有重要作用[41]。Abdullah等人发现cGAS/STING通路在创伤性脑损伤(TBI)后会被激活,STING介导的IFN-I信号参与了TBI后的神经炎症过程并产生有害影响[42]。此外,最近,Barrett等人证实IFN-ß缺乏可减少创伤后神经炎症和TBI后的神经退行性变[43]。这些结果表明cGAS/STING依赖的IFN-I反应在神经炎症事件和疾病进展中起着作用,抑制或激活cGAS-STING通路可能为脑损伤和神经退行性疾病提供潜在的治疗干预。

8. 总结与展望

多种神经退行性疾病(如阿尔茨海默病(AD)、亨廷顿病(HD)、帕金森病(PD)和肌萎缩侧索硬化症(ALS))中,cGAS-STING通路作为一种关键的细胞质DNA感应通路,通过感知细胞质中的DNA并激活下游炎症信号,参与了疾病的病理过程。尽管cGAS-STING通路在这些疾病中具有相似的神经炎症机制,但其激活的具体方式和病理特征存在显著差异。在神经炎症中cGAS-STING通路通过感知细胞质DNA (如线粒体DNA或核DNA片段),激活I型干扰素和促炎细胞因子(如IL-6、TNF-α)的释放,加剧神经炎症,并且cGAS-STING通路的激活均与DNA损伤和细胞质DNA的积累密切相关。在本文中,我们对cGAS-STING通路在AD、HD、PD、ALT等神经退行性疾病中的作用机制研究进行综述,为靶向该通路的神经退行性疾病治疗提供了有效参考依据。可以预期,未来将有越来越多的研究致力于靶向cGAS-STING通路的神经退行性疾病治疗。然而,在考虑该通路治疗方案时,需要解决几个重要的问题:(1) 首先,对于每种疾病和损伤模式,需要明确cGAS-STING通路激活的时间过程及相应的治疗窗口。虽然cGAS-STING通路参与各类神经退行性疾病的进展是明确的事实,但这种反应的时间动态尚不清除。在何时间节点针对cGAS-STING通路进行治疗仍有待进一步研究。(2) 对于大脑中哪些类型的细胞表达cGAS和STING,目前还没有达成共识。当走向靶向治疗时,明确药物干预必须达到的细胞类型是至关重要的。(3) 在考虑人类患者的特定药物之前,必须对药物的可翻译性进行适当评估。小鼠的cGAS和STING与人类的存在相当大的分子差异,且一些用于小鼠STING的激动剂对激活人类STING无效。所以,使用多种动物模型可能有利于评估cGAS-STING作为治疗靶点具有重要意义。

致 谢

衷心感谢PubMed等网站提供的文献支持。

参考文献

[1] 覃梅珍, 孙振亮. cGAS-STING通路在神经退行性疾病中的作用[J]. 生命的化学, 2022, 42(9): 1625-1634.
[2] Burnstock, G. (2008) Purinergic Signalling and Disorders of the Central Nervous System. Nature Reviews Drug Discovery, 7, 575-590.
https://doi.org/10.1038/nrd2605
[3] Strafella, C., Caputo, V., Galota, M.R., Zampatti, S., Marella, G., Mauriello, S., et al. (2018) Application of Precision Medicine in Neurodegenerative Diseases. Frontiers in Neurology, 9, Article No. 701.
https://doi.org/10.3389/fneur.2018.00701
[4] Sebastián-Serrano, Á., de Diego-García, L., di Lauro, C., Bianchi, C. and Díaz-Hernández, M. (2019) Nucleotides Regulate the Common Molecular Mechanisms That Underlie Neurodegenerative Diseases; Therapeutic Implications. Brain Research Bulletin, 151, 84-91.
https://doi.org/10.1016/j.brainresbull.2019.01.031
[5] Chen, Q., Sun, L. and Chen, Z.J. (2016) Regulation and Function of the cGAS-STING Pathway of Cytosolic DNA Sensing. Nature Immunology, 17, 1142-1149.
https://doi.org/10.1038/ni.3558
[6] Motwani, M., Pesiridis, S. and Fitzgerald, K.A. (2019) DNA Sensing by the cGAS-STING Pathway in Health and Disease. Nature Reviews Genetics, 20, 657-674.
https://doi.org/10.1038/s41576-019-0151-1
[7] Wu, J. and Chen, Z.J. (2014) Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 32, 461-488.
https://doi.org/10.1146/annurev-immunol-032713-120156
[8] Sun, L., Wu, J., Du, F., Chen, X. and Chen, Z.J. (2013) Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 339, 786-791.
https://doi.org/10.1126/science.1232458
[9] Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., et al. (2013) Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 339, 826-830.
https://doi.org/10.1126/science.1229963
[10] Zhou, W., Whiteley, A.T., de Oliveira Mann, C.C., Morehouse, B.R., Nowak, R.P., Fischer, E.S., et al. (2018) Structure of the Human cGAS–DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell, 174, 300-311.e11.
https://doi.org/10.1016/j.cell.2018.06.026
[11] Fritsch, L.E., Kelly, C. and Pickrell, A.M. (2023) The Role of STING Signaling in Central Nervous System Infection and Neuroinflammatory Disease. WIREs Mechanisms of Disease, 15, e1597.
https://doi.org/10.1002/wsbm.1597
[12] Zhang, X., Wu, J., Du, F., Xu, H., Sun, L., Chen, Z., et al. (2014) The Cytosolic DNA Sensor cGAS Forms an Oligomeric Complex with DNA and Undergoes Switch-Like Conformational Changes in the Activation Loop. Cell Reports, 6, 421-430.
https://doi.org/10.1016/j.celrep.2014.01.003
[13] Zhang, X., Shi, H., Wu, J., Zhang, X., Sun, L., Chen, C., et al. (2013) Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is an Endogenous High-Affinity Ligand for STING. Molecular Cell, 51, 226-235.
https://doi.org/10.1016/j.molcel.2013.05.022
[14] Dobbs, N., Burnaevskiy, N., Chen, D., Gonugunta, V.K., Alto, N.M. and Yan, N. (2015) STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host & Microbe, 18, 157-168.
https://doi.org/10.1016/j.chom.2015.07.001
[15] Mukai, K., Konno, H., Akiba, T., Uemura, T., Waguri, S., Kobayashi, T., et al. (2016) Activation of STING Requires Palmitoylation at the Golgi. Nature Communications, 7, Article No. 11932.
https://doi.org/10.1038/ncomms11932
[16] Zhang, C., Shang, G., Gui, X., Zhang, X., Bai, X. and Chen, Z.J. (2019) Structural Basis of STING Binding with and Phosphorylation by TBK1. Nature, 567, 394-398.
https://doi.org/10.1038/s41586-019-1000-2
[17] Stetson, D.B. and Medzhitov, R. (2006) Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 24, 93-103.
https://doi.org/10.1016/j.immuni.2005.12.003
[18] Hardy, J. and Selkoe, D.J. (2002) The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297, 353-356.
https://doi.org/10.1126/science.1072994
[19] Jack, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., et al. (2013) Tracking Pathophysiological Processes in Alzheimer’s Disease: An Updated Hypothetical Model of Dynamic Biomarkers. The Lancet Neurology, 12, 207-216.
https://doi.org/10.1016/s1474-4422(12)70291-0
[20] Park, S.A., Han, S.M. and Kim, C.E. (2020) New Fluid Biomarkers Tracking Non-Amyloid-β and Non-Tau Pathology in Alzheimer’s Disease. Experimental & Molecular Medicine, 52, 556-568.
https://doi.org/10.1038/s12276-020-0418-9
[21] Hoekstra, J.G., Hipp, M.J., Montine, T.J. and Kennedy, S.R. (2016) Mitochondrial DNA Mutations Increase in Early-Stage Alzheimer Disease and Are Inconsistent with Oxidative Damage. Annals of Neurology, 80, 301-306.
https://doi.org/10.1002/ana.24709
[22] Hou, Y., Wei, Y., Lautrup, S., Yang, B., Wang, Y., Cordonnier, S., et al. (2021) NAD+ Supplementation Reduces Neuroinflammation and Cell Senescence in a Transgenic Mouse Model of Alzheimer’s Disease via cGAS-STING. Proceedings of the National Academy of Sciences, 118, e2011226118.
https://doi.org/10.1073/pnas.2011226118
[23] Xu, Q., Xu, W., Cheng, H., Yuan, H. and Tan, X. (2019) Efficacy and Mechanism of cGAMP to Suppress Alzheimer’s Disease by Elevating TREM2. Brain, Behavior, and Immunity, 81, 495-508.
https://doi.org/10.1016/j.bbi.2019.07.004
[24] Mesquita, S.D., Ferreira, A.C., Gao, F., Coppola, G., Geschwind, D.H., Sousa, J.C., et al. (2015) The Choroid Plexus Transcriptome Reveals Changes in Type I and II Interferon Responses in a Mouse Model of Alzheimer’s Disease. Brain, Behavior, and Immunity, 49, 280-292.
https://doi.org/10.1016/j.bbi.2015.06.008
[25] Ritchie, C., Cordova, A.F., Hess, G.T., Bassik, M.C. and Li, L. (2019) SLC19A1 Is an Importer of the Immunotransmitter cGAMP. Molecular Cell, 75, 372-381.e5.
https://doi.org/10.1016/j.molcel.2019.05.006
[26] Yao, L., Ye, Y., Mao, H., Lu, F., He, X., Lu, G., et al. (2018) MicroRNA-124 Regulates the Expression of MEKK3 in the Inflammatory Pathogenesis of Parkinson’s Disease. Journal of Neuroinflammation, 15, Article No. 13.
https://doi.org/10.1186/s12974-018-1053-4
[27] Sun, Q., Wang, S., Chen, J., Cai, H., Huang, W., Zhang, Y., et al. (2019) MicroRNA‐190 Alleviates Neuronal Damage and Inhibits Neuroinflammation via Nlrp3 in MPTP‐Induced Parkinson’s Disease Mouse Model. Journal of Cellular Physiology, 234, 23379-23387.
https://doi.org/10.1002/jcp.28907
[28] Main, B.S., Zhang, M., Brody, K.M., Ayton, S., Frugier, T., Steer, D., et al. (2016) Type‐1 Interferons Contribute to the Neuroinflammatory Response and Disease Progression of the MPTP Mouse Model of Parkinson’s Disease. Glia, 64, 1590-1604.
https://doi.org/10.1002/glia.23028
[29] Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., et al. (2018) Parkin and PINK1 Mitigate STING-Induced Inflammation. Nature, 561, 258-262.
https://doi.org/10.1038/s41586-018-0448-9
[30] Gao, D., Li, T., Li, X., Chen, X., Li, Q., Wight-Carter, M., et al. (2015) Activation of Cyclic GMP-AMP Synthase by Self-DNA Causes Autoimmune Diseases. Proceedings of the National Academy of Sciences, 112, E5699-E5705.
https://doi.org/10.1073/pnas.1516465112
[31] Walker, F.O. (2007) Huntington’s Disease. The Lancet, 369, 218-228.
https://doi.org/10.1016/s0140-6736(07)60111-1
[32] Denis, H.L., Lauruol, F. and Cicchetti, F. (2018) Are Immunotherapies for Huntington’s Disease a Realistic Option? Molecular Psychiatry, 24, 364-377.
https://doi.org/10.1038/s41380-018-0021-9
[33] Wang, Y., Guo, X., Ye, K., Orth, M. and Gu, Z. (2021) Accelerated Expansion of Pathogenic Mitochondrial DNA Heteroplasmies in Huntington’s Disease. Proceedings of the National Academy of Sciences, 118, e2014610118.
https://doi.org/10.1073/pnas.2014610118
[34] Jędrak, P., Krygier, M., Tońska, K., Drozd, M., Kaliszewska, M., Bartnik, E., et al. (2017) Mitochondrial DNA Levels in Huntington Disease Leukocytes and Dermal Fibroblasts. Metabolic Brain Disease, 32, 1237-1247.
https://doi.org/10.1007/s11011-017-0026-0
[35] Sharma, M., Rajendrarao, S., Shahani, N., Ramírez-Jarquín, U.N. and Subramaniam, S. (2020) Cyclic GMP-AMP Synthase Promotes the Inflammatory and Autophagy Responses in Huntington Disease. Proceedings of the National Academy of Sciences, 117, 15989-15999.
https://doi.org/10.1073/pnas.2002144117
[36] Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E.M., Logroscino, G., Robberecht, W., et al. (2017) Amyotrophic Lateral Sclerosis. Nature Reviews Disease Primers, 3, Article No. 17071.
https://doi.org/10.1038/nrdp.2017.71
[37] Zhao, W., Beers, D.R., Bell, S., Wang, J., Wen, S., Baloh, R.H., et al. (2015) TDP-43 Activates Microglia through NF-κB and NLRP3 Inflammasome. Experimental Neurology, 273, 24-35.
https://doi.org/10.1016/j.expneurol.2015.07.019
[38] Wang, R., Yang, B. and Zhang, D. (2011) Activation of Interferon Signaling Pathways in Spinal Cord Astrocytes from an ALS Mouse Model. Glia, 59, 946-958.
https://doi.org/10.1002/glia.21167
[39] Yu, C., Davidson, S., Harapas, C.R., Hilton, J.B., Mlodzianoski, M.J., Laohamonthonkul, P., et al. (2020) TDP-43 Triggers Mitochondrial DNA Release via MPTP to Activate cGAS/STING in Als. Cell, 183, 636-649.e18.
https://doi.org/10.1016/j.cell.2020.09.020
[40] McCauley, M.E., O’Rourke, J.G., Yáñez, A., Markman, J.L., Ho, R., Wang, X., et al. (2020) C9orf72 in Myeloid Cells Suppresses STING-Induced Inflammation. Nature, 585, 96-101.
https://doi.org/10.1038/s41586-020-2625-x
[41] Galligan, C., Pennell, L., Murooka, T., Baig, E., Majchrzak-Kita, B., Rahbar, R., et al. (2010) Interferon-β Is a Key Regulator of Proinflammatory Events in Experimental Autoimmune Encephalomyelitis. Multiple Sclerosis Journal, 16, 1458-1473.
https://doi.org/10.1177/1352458510381259
[42] Abdullah, A., Zhang, M., Frugier, T., Bedoui, S., Taylor, J.M. and Crack, P.J. (2018) STING-Mediated Type-I Interferons Contribute to the Neuroinflammatory Process and Detrimental Effects Following Traumatic Brain Injury. Journal of Neuroinflammation, 15, Article No. 323.
https://doi.org/10.1186/s12974-018-1354-7
[43] Barrett, J.P., Henry, R.J., Shirey, K.A., Doran, S.J., Makarevich, O.D., Ritzel, R.M., et al. (2020) Interferon-β Plays a Detrimental Role in Experimental Traumatic Brain Injury by Enhancing Neuroinflammation That Drives Chronic Neurodegeneration. The Journal of Neuroscience, 40, 2357-2370.
https://doi.org/10.1523/jneurosci.2516-19.2020