[1]
|
覃梅珍, 孙振亮. cGAS-STING通路在神经退行性疾病中的作用[J]. 生命的化学, 2022, 42(9): 1625-1634.
|
[2]
|
Burnstock, G. (2008) Purinergic Signalling and Disorders of the Central Nervous System. Nature Reviews Drug Discovery, 7, 575-590. https://doi.org/10.1038/nrd2605
|
[3]
|
Strafella, C., Caputo, V., Galota, M.R., Zampatti, S., Marella, G., Mauriello, S., et al. (2018) Application of Precision Medicine in Neurodegenerative Diseases. Frontiers in Neurology, 9, Article No. 701. https://doi.org/10.3389/fneur.2018.00701
|
[4]
|
Sebastián-Serrano, Á., de Diego-García, L., di Lauro, C., Bianchi, C. and Díaz-Hernández, M. (2019) Nucleotides Regulate the Common Molecular Mechanisms That Underlie Neurodegenerative Diseases; Therapeutic Implications. Brain Research Bulletin, 151, 84-91. https://doi.org/10.1016/j.brainresbull.2019.01.031
|
[5]
|
Chen, Q., Sun, L. and Chen, Z.J. (2016) Regulation and Function of the cGAS-STING Pathway of Cytosolic DNA Sensing. Nature Immunology, 17, 1142-1149. https://doi.org/10.1038/ni.3558
|
[6]
|
Motwani, M., Pesiridis, S. and Fitzgerald, K.A. (2019) DNA Sensing by the cGAS-STING Pathway in Health and Disease. Nature Reviews Genetics, 20, 657-674. https://doi.org/10.1038/s41576-019-0151-1
|
[7]
|
Wu, J. and Chen, Z.J. (2014) Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 32, 461-488. https://doi.org/10.1146/annurev-immunol-032713-120156
|
[8]
|
Sun, L., Wu, J., Du, F., Chen, X. and Chen, Z.J. (2013) Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 339, 786-791. https://doi.org/10.1126/science.1232458
|
[9]
|
Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., et al. (2013) Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Science, 339, 826-830. https://doi.org/10.1126/science.1229963
|
[10]
|
Zhou, W., Whiteley, A.T., de Oliveira Mann, C.C., Morehouse, B.R., Nowak, R.P., Fischer, E.S., et al. (2018) Structure of the Human cGAS–DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell, 174, 300-311.e11. https://doi.org/10.1016/j.cell.2018.06.026
|
[11]
|
Fritsch, L.E., Kelly, C. and Pickrell, A.M. (2023) The Role of STING Signaling in Central Nervous System Infection and Neuroinflammatory Disease. WIREs Mechanisms of Disease, 15, e1597. https://doi.org/10.1002/wsbm.1597
|
[12]
|
Zhang, X., Wu, J., Du, F., Xu, H., Sun, L., Chen, Z., et al. (2014) The Cytosolic DNA Sensor cGAS Forms an Oligomeric Complex with DNA and Undergoes Switch-Like Conformational Changes in the Activation Loop. Cell Reports, 6, 421-430. https://doi.org/10.1016/j.celrep.2014.01.003
|
[13]
|
Zhang, X., Shi, H., Wu, J., Zhang, X., Sun, L., Chen, C., et al. (2013) Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is an Endogenous High-Affinity Ligand for STING. Molecular Cell, 51, 226-235. https://doi.org/10.1016/j.molcel.2013.05.022
|
[14]
|
Dobbs, N., Burnaevskiy, N., Chen, D., Gonugunta, V.K., Alto, N.M. and Yan, N. (2015) STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host & Microbe, 18, 157-168. https://doi.org/10.1016/j.chom.2015.07.001
|
[15]
|
Mukai, K., Konno, H., Akiba, T., Uemura, T., Waguri, S., Kobayashi, T., et al. (2016) Activation of STING Requires Palmitoylation at the Golgi. Nature Communications, 7, Article No. 11932. https://doi.org/10.1038/ncomms11932
|
[16]
|
Zhang, C., Shang, G., Gui, X., Zhang, X., Bai, X. and Chen, Z.J. (2019) Structural Basis of STING Binding with and Phosphorylation by TBK1. Nature, 567, 394-398. https://doi.org/10.1038/s41586-019-1000-2
|
[17]
|
Stetson, D.B. and Medzhitov, R. (2006) Recognition of Cytosolic DNA Activates an IRF3-Dependent Innate Immune Response. Immunity, 24, 93-103. https://doi.org/10.1016/j.immuni.2005.12.003
|
[18]
|
Hardy, J. and Selkoe, D.J. (2002) The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297, 353-356. https://doi.org/10.1126/science.1072994
|
[19]
|
Jack, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., et al. (2013) Tracking Pathophysiological Processes in Alzheimer’s Disease: An Updated Hypothetical Model of Dynamic Biomarkers. The Lancet Neurology, 12, 207-216. https://doi.org/10.1016/s1474-4422(12)70291-0
|
[20]
|
Park, S.A., Han, S.M. and Kim, C.E. (2020) New Fluid Biomarkers Tracking Non-Amyloid-β and Non-Tau Pathology in Alzheimer’s Disease. Experimental & Molecular Medicine, 52, 556-568. https://doi.org/10.1038/s12276-020-0418-9
|
[21]
|
Hoekstra, J.G., Hipp, M.J., Montine, T.J. and Kennedy, S.R. (2016) Mitochondrial DNA Mutations Increase in Early-Stage Alzheimer Disease and Are Inconsistent with Oxidative Damage. Annals of Neurology, 80, 301-306. https://doi.org/10.1002/ana.24709
|
[22]
|
Hou, Y., Wei, Y., Lautrup, S., Yang, B., Wang, Y., Cordonnier, S., et al. (2021) NAD+ Supplementation Reduces Neuroinflammation and Cell Senescence in a Transgenic Mouse Model of Alzheimer’s Disease via cGAS-STING. Proceedings of the National Academy of Sciences, 118, e2011226118. https://doi.org/10.1073/pnas.2011226118
|
[23]
|
Xu, Q., Xu, W., Cheng, H., Yuan, H. and Tan, X. (2019) Efficacy and Mechanism of cGAMP to Suppress Alzheimer’s Disease by Elevating TREM2. Brain, Behavior, and Immunity, 81, 495-508. https://doi.org/10.1016/j.bbi.2019.07.004
|
[24]
|
Mesquita, S.D., Ferreira, A.C., Gao, F., Coppola, G., Geschwind, D.H., Sousa, J.C., et al. (2015) The Choroid Plexus Transcriptome Reveals Changes in Type I and II Interferon Responses in a Mouse Model of Alzheimer’s Disease. Brain, Behavior, and Immunity, 49, 280-292. https://doi.org/10.1016/j.bbi.2015.06.008
|
[25]
|
Ritchie, C., Cordova, A.F., Hess, G.T., Bassik, M.C. and Li, L. (2019) SLC19A1 Is an Importer of the Immunotransmitter cGAMP. Molecular Cell, 75, 372-381.e5. https://doi.org/10.1016/j.molcel.2019.05.006
|
[26]
|
Yao, L., Ye, Y., Mao, H., Lu, F., He, X., Lu, G., et al. (2018) MicroRNA-124 Regulates the Expression of MEKK3 in the Inflammatory Pathogenesis of Parkinson’s Disease. Journal of Neuroinflammation, 15, Article No. 13. https://doi.org/10.1186/s12974-018-1053-4
|
[27]
|
Sun, Q., Wang, S., Chen, J., Cai, H., Huang, W., Zhang, Y., et al. (2019) MicroRNA‐190 Alleviates Neuronal Damage and Inhibits Neuroinflammation via Nlrp3 in MPTP‐Induced Parkinson’s Disease Mouse Model. Journal of Cellular Physiology, 234, 23379-23387. https://doi.org/10.1002/jcp.28907
|
[28]
|
Main, B.S., Zhang, M., Brody, K.M., Ayton, S., Frugier, T., Steer, D., et al. (2016) Type‐1 Interferons Contribute to the Neuroinflammatory Response and Disease Progression of the MPTP Mouse Model of Parkinson’s Disease. Glia, 64, 1590-1604. https://doi.org/10.1002/glia.23028
|
[29]
|
Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., et al. (2018) Parkin and PINK1 Mitigate STING-Induced Inflammation. Nature, 561, 258-262. https://doi.org/10.1038/s41586-018-0448-9
|
[30]
|
Gao, D., Li, T., Li, X., Chen, X., Li, Q., Wight-Carter, M., et al. (2015) Activation of Cyclic GMP-AMP Synthase by Self-DNA Causes Autoimmune Diseases. Proceedings of the National Academy of Sciences, 112, E5699-E5705. https://doi.org/10.1073/pnas.1516465112
|
[31]
|
Walker, F.O. (2007) Huntington’s Disease. The Lancet, 369, 218-228. https://doi.org/10.1016/s0140-6736(07)60111-1
|
[32]
|
Denis, H.L., Lauruol, F. and Cicchetti, F. (2018) Are Immunotherapies for Huntington’s Disease a Realistic Option? Molecular Psychiatry, 24, 364-377. https://doi.org/10.1038/s41380-018-0021-9
|
[33]
|
Wang, Y., Guo, X., Ye, K., Orth, M. and Gu, Z. (2021) Accelerated Expansion of Pathogenic Mitochondrial DNA Heteroplasmies in Huntington’s Disease. Proceedings of the National Academy of Sciences, 118, e2014610118. https://doi.org/10.1073/pnas.2014610118
|
[34]
|
Jędrak, P., Krygier, M., Tońska, K., Drozd, M., Kaliszewska, M., Bartnik, E., et al. (2017) Mitochondrial DNA Levels in Huntington Disease Leukocytes and Dermal Fibroblasts. Metabolic Brain Disease, 32, 1237-1247. https://doi.org/10.1007/s11011-017-0026-0
|
[35]
|
Sharma, M., Rajendrarao, S., Shahani, N., Ramírez-Jarquín, U.N. and Subramaniam, S. (2020) Cyclic GMP-AMP Synthase Promotes the Inflammatory and Autophagy Responses in Huntington Disease. Proceedings of the National Academy of Sciences, 117, 15989-15999. https://doi.org/10.1073/pnas.2002144117
|
[36]
|
Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E.M., Logroscino, G., Robberecht, W., et al. (2017) Amyotrophic Lateral Sclerosis. Nature Reviews Disease Primers, 3, Article No. 17071. https://doi.org/10.1038/nrdp.2017.71
|
[37]
|
Zhao, W., Beers, D.R., Bell, S., Wang, J., Wen, S., Baloh, R.H., et al. (2015) TDP-43 Activates Microglia through NF-κB and NLRP3 Inflammasome. Experimental Neurology, 273, 24-35. https://doi.org/10.1016/j.expneurol.2015.07.019
|
[38]
|
Wang, R., Yang, B. and Zhang, D. (2011) Activation of Interferon Signaling Pathways in Spinal Cord Astrocytes from an ALS Mouse Model. Glia, 59, 946-958. https://doi.org/10.1002/glia.21167
|
[39]
|
Yu, C., Davidson, S., Harapas, C.R., Hilton, J.B., Mlodzianoski, M.J., Laohamonthonkul, P., et al. (2020) TDP-43 Triggers Mitochondrial DNA Release via MPTP to Activate cGAS/STING in Als. Cell, 183, 636-649.e18. https://doi.org/10.1016/j.cell.2020.09.020
|
[40]
|
McCauley, M.E., O’Rourke, J.G., Yáñez, A., Markman, J.L., Ho, R., Wang, X., et al. (2020) C9orf72 in Myeloid Cells Suppresses STING-Induced Inflammation. Nature, 585, 96-101. https://doi.org/10.1038/s41586-020-2625-x
|
[41]
|
Galligan, C., Pennell, L., Murooka, T., Baig, E., Majchrzak-Kita, B., Rahbar, R., et al. (2010) Interferon-β Is a Key Regulator of Proinflammatory Events in Experimental Autoimmune Encephalomyelitis. Multiple Sclerosis Journal, 16, 1458-1473. https://doi.org/10.1177/1352458510381259
|
[42]
|
Abdullah, A., Zhang, M., Frugier, T., Bedoui, S., Taylor, J.M. and Crack, P.J. (2018) STING-Mediated Type-I Interferons Contribute to the Neuroinflammatory Process and Detrimental Effects Following Traumatic Brain Injury. Journal of Neuroinflammation, 15, Article No. 323. https://doi.org/10.1186/s12974-018-1354-7
|
[43]
|
Barrett, J.P., Henry, R.J., Shirey, K.A., Doran, S.J., Makarevich, O.D., Ritzel, R.M., et al. (2020) Interferon-β Plays a Detrimental Role in Experimental Traumatic Brain Injury by Enhancing Neuroinflammation That Drives Chronic Neurodegeneration. The Journal of Neuroscience, 40, 2357-2370. https://doi.org/10.1523/jneurosci.2516-19.2020
|