基于机器学习与生物信息学整合的慢性阻塞性肺疾病铜死亡相关诊断标志物筛选
Identification of Cuproptosis-Related Diagnostic Biomarkers in COPD by Intergrating Machine Learning and Bioinformatics
DOI: 10.12677/jcpm.2025.43371, PDF, HTML, XML,   
作者: 赵 玮, 胡晨阳*:山东大学齐鲁医院呼吸与危重症医学科,山东 济南
关键词: 慢性阻塞性肺疾病铜死亡机器学习COPD Cuproptosis Machine Learning
摘要: 慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)作为全球主要致死疾病之一,与铜死亡密切相关。本研究旨在从铜死亡相关基因中筛选COPD诊断生物标志物。我们分析了来自GEO数据库的三个数据集(GSE106986、GSE103174、GSE71220)。在标准化及归一化后,基于文献中确定的铜死亡相关基因,我们在GSE106986中进行差异表达分析,识别出7个铜死亡相关差异表达基因及2个患者亚群(C1/C2)。通过GO和KEGG富集分析、相关性分析及单样本基因集富集分析,提示差异基因与炎症、氧化应激和免疫应答相关通路有关。进一步采用WGCNA、LASSO和SVM算法筛选出5个核心基因,其中RALB和SLC31A1为关键诊断标志物。在GSE103174和GSE71220中验证其诊断性能,ROC曲线显示RALB和SLC31A1联合AUC为0.77。
Abstract: Chronic obstructive pulmonary disease (COPD), a leading global cause of mortality, is closely linked to cuprotosis. This study aimed to identify diagnostic biomarkers for COPD from cuprotosis-related genes. Three GEO datasets (GSE106986, GSE103174, GSE71220) were analyzed. After normalization, differential expression analysis in GSE106986 identified 7 cuprotosis-related DEGs and 2 patient subgroups (C1/C2) using literature-curated cuprotosis genes. GO/KEGG enrichment, correlation, and single-sample GSEA revealed associations with inflammation, oxidative stress, and immune pathways. WGCNA, LASSO, and SVM identified 5 hub genes, with RALB and SLC31A1 as key diagnostic markers. Validation in GSE103174 and GSE71220 showed combined AUC of 0.77 for RALB and SLC31A1.
文章引用:赵玮, 胡晨阳. 基于机器学习与生物信息学整合的慢性阻塞性肺疾病铜死亡相关诊断标志物筛选[J]. 临床个性化医学, 2025, 4(3): 477-488. https://doi.org/10.12677/jcpm.2025.43371

1. 前言

慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)是一种临床症状为慢性咳嗽、咳痰、喘息及呼吸困难的疾病[1]。当下COPD是全球第三大死亡原因[2]。2019年,约有320万人死于COPD [3],该疾病每年给全球经济造成的负担超过数千亿美元[4]。研究表明,COPD的症状是不可逆的[5],现有治疗策略主要集中于延缓疾病进展[6]。因此,探索COPD的新型诊断生物标志物和治疗靶点已成为日益紧迫的需求。

金属离子对细胞代谢至关重要[7]。它不仅作为多种酶和蛋白质的辅因子发挥作用,还参与调控细胞内的信号转导和基因表达过程[8]。然而,金属离子的过量或缺乏都可能影响人类健康[9]。研究表明,Fe2+可通过调节脂质过氧化过程产生活性氧(reactive oxygen species, ROS),导致细胞膜损伤,进而导致细胞死亡,这一现象被称为铁死亡[10]。而Ca2+已被证实可通过调控mTOR和AMPK等自噬相关蛋白影响自噬[11]。这两种细胞死亡途径已被证明在肺腺癌[12]、肝细胞癌[13]及COPD [14] [15]中发挥着重要作用。

铜死亡是一种Cu2+与脂酰化蛋白结合诱导的以内质网应激和线粒体功能障碍为特征的坏死性细胞死亡[16],已被确认为COPD发病机制的重要参与者。Cu2+的过度积累引发氧化应激和线粒体功能障碍,进一步加剧了COPD中的炎症反应和组织损伤[17]。尽管已有许多证据表明铜死亡与COPD发病机制相关,但两者间的具体分子相互作用仍需阐明。本研究采用多种生物信息学方法解析铜死亡与COPD之间的相关分子特征,筛选出高效诊断生物标志物,为COPD的预防和诊断提供新的方向。

2. 材料与方法

2.1. 数据收集

从基因表达综合数据库(Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/)中获取了3个与COPD相关的全基因组表达谱(GSE106986、GSE103174、GSE71220)。我们从既往研究中整理出52个铜死亡(cuproptosis)相关基因[18] [19]

2.2. 功能分析

我们采用CIBERSORT和ssGSEA方法[20],通过Wilcoxon符号秩检验评估组间差异的统计学显著性并使用R包“clusterProfiler”(v.4.4.4)进行GO/KEGG分析[21]。随后采用R包“estimate”(v.1.0.13)系统计算免疫评分、基质评分及ESTIMATE评分。通过Benjamini-Hochberg多重比较校正算法重新校准统计学显著性水平。

2.3. COPD患者的无监督聚类分析

我们在SangerBox在线平台(http://sangerbox.com/)进行了无监督聚类分析[22]。随后,利用平台内置的可视化模块执行主成分分析。

2.4. 加权基因共表达网络分析

在加权基因共表达网络分析中,我们构建了无标度共表达网络并选择最优幂值(R2 = 0.9)以确保网络符合无标度拓扑模型。模块识别通过1-TOM矩阵的层次聚类完成。为定量评估表型关联性,我们计算模块显著性(MS)作为模块特征基因与临床结局的相关性,同时通过置换检验量化基因显著性(GS)以评估单个基因的疾病关联强度。

2.5. 机器学习确定关键基因

本研究采用机器学习方法筛选COPD与铜死亡的共同枢纽基因。首先,我们采用自适应惩罚调优策略,通过R包“glmnet”进行LASSO回归[23]。随后进行特征验证:采用SVM方法,结合递归特征消除法,以R包“e1071”实现模型训练[24],以平均误分类率作为模型比较的核心性能指标。

2.6. 诊断准确性验证

本研究通过SPSS (v.25.0)软件进行ROC曲线分析,系统性评估了筛选的关键基因的诊断鉴别能力。

2.7. 统计分析

采用Mann-Whitney U检验分析基因表达模式的组间差异显著性。通过GraphPad Prism (v.9.0)、SPSS (v.25.0)和R (v.4.1.0)实现高级统计建模与绘图。以双侧p值 < 0.05作为统计学显著性标准,通过Benjamini-Hochberg (BH)方法获得校正后p值(p.adjust)。

3. 结果

3.1. COPD患者铜死亡相关基因的异常表达和免疫浸润

为探究铜死亡相关基因在COPD发病机制及进展中的作用,我们在GSE106986数据集中对52个铜死亡相关基因进行表达谱分析,发现仅7个铜死亡相关基因在COPD患者与健康对照组间呈现显著表达差异(图1(a))。其中,GLS、MAP2K1、SLC31A1、STEAP1和STEAP2在COPD中显著上调,而ATP7A和VEGFA则下调。随后我们对这7个铜死亡相关差异表达基因进行相关性分析,结果显示VEGFA与其他基因存在显著关联,其中VEGFA与STEAP2的相关系数最高(r = 0.81) (图1(b))。

对GSE106986数据集的免疫浸润分析表明,COPD患者CD4+初始T细胞显著减少(p < 0.05),其他免疫细胞亚群无显著差异(图1(c))。ssGSEA分析显示,COPD患者初始B细胞、成熟NK细胞和调节性T细胞的富集评分升高(p < 0.05),其余免疫细胞亚群无显著变化(图1(d))。这种双重免疫分型方法揭示了COPD病理中独特的免疫景观紊乱,其特征为T细胞耗竭与代偿性B/NK细胞激活并存。

Figure 1. Cuprotosis-related differentially expressed genes between COPD patients and normal controls in the GSE106986 dataset

1. 在GSE106986数据集中鉴定COPD患者与正常对照间铜死亡相关差异表达基因

3.2. 基于铜死亡相关基因的COPD患者聚类分析

为探究基于铜死亡相关差异基因的COPD患者亚表型分型,我们对GSE106986数据集实施无监督聚类分析,识别出两个具有差异基因表达模式的铜死亡相关亚群(C1和C2) (图2(a)~(c))。共识矩阵分析显示k = 2时聚类稳定性良好(图2(d)图2(e)),主成分分析进一步证实了亚群间存在显著区别(图2(f))。

Figure 2. Identification of COPD subtypes based on cuprotosis-related differentially expressed genes

2. 基于铜死亡相关差异表达基因的COPD患者亚型的鉴定

3.3. C1和C2的功能富集分析

为阐明C1和C2亚群间的分子差异,我们对其进行了差异基因表达分析。上述7个铜死亡相关差异表达基因在C1与C2间呈现统计学显著的表达差异(图3(a))。然后我们进行了多种功能富集分析:火山图展示了差异表达基因在两组间的分布(图3(b));GO分析显示差异表达基因主要涉及细胞内分子定位、运输及细胞质相关功能(图3(c));GSEA揭示差异表达基因显著富集于DNA错配修复途径、RNA聚合酶依赖的转录激活及蛋白质运输网络等核心细胞过程(图3(d))。此外,我们计算了C1和C2的免疫评分、基质评分及ESTIMATE评分,但两组间无显著差异(图3(e)~(g))。

Figure 3. Functional enrichment analysis of cuprotosis-related differentially expressed genes in COPD patients

3. COPD患者铜死亡相关差异表达基因的功能富集分析

3.4. 加权基因共表达网络及模块分析

通过加权基因共表达网络分析,我们基于无标度拓扑模型(R2 = 0.95)和软阈值幂值8 (图4(a)图4(b)构建了C1和C2的共表达模块,并通过层次聚类识别出18个不同颜色的模块(图4(c))。模块–性状关系的热图可视化(图4(d)图4(e))展示了基因表达的一致性模式,而模块特征基因–性状相关性分析显示青绿色模块与两类COPD患者亚型存在显著关联(图4(f))。

Figure 4. WGCNA of COPD-associated cuprotosis-related differentially expressed genes

4. 基于铜死亡相关差异表达基因的加权基因共表达网络分析

3.5. 关键基因的筛选和验证

为筛选COPD发生发展的关键基因,我们将青绿色模块中的2685个基因与GSE106986数据集中的差异表达基因取交集,获得833个基因(图5(a))。随后采用LASSO和SVM两种机器学习算法,从833个基因中筛选核心基因(图5(b)图5(c))。SVM算法识别出16个关键基因:RHOD、MVD、CTHRC1、HS3ST2、LMO3、LPCAT1、MID1、HTR1F、SYNDIG1L、AADAT、ADCK1、RRAD、KDM3A、TMEM150C、URB1-AS1和RALB;LASSO算法则筛选出14个非零回归系数基因:AADAT、CRYM、GTF2A1、GFOD1、RHOD、ADCK1、RALB、PLCXD1、IKZF1、C9orf170、ENSG00000225879、SOGA3、LAMB2P1和SYNDIG1L。两种算法共同筛选出5个重叠基因(AADAT、RHOD、ADCK1、RALB和SYNDIG1L) (图5(d))。结合先前鉴定的7个铜死亡相关差异表达基因,最终确定12个核心基因。通过基因互作网络分析(图5(e)),发现VEGFA与MAP2K1呈显著负相关,其相关系数最高。

Figure 5. Identification of hub genes and diagnostic biomarkers

5. 核心基因与诊断生物标志物的鉴别

为验证COPD诊断标志物,以GSE103174作为训练集、GSE71220作为验证集。12个核心基因中,仅8个基因(AADAT、ADCK1、ATP7A、GLS、MAP2K1、RALB、RHOD和SLC31A1)在两个数据集中同时存在。ROC曲线分析显示,这8个基因的AUC值分别为0.67、0.60、0.58、0.60、0.66、0.73、0.64和0.71。其中RALB和SLC31A1的AUC值超过0.7,提示其卓越的诊断效能。二者联合诊断模型的AUC值达0.77 (图5(f)~(n))。此外,8个核心基因与肺一氧化碳弥散量(DLCO%)无显著相关性(图5(o))。

3.6. COPD诊断生物标志物的验证

最后我们评估了RALB和SLC31A1作为COPD诊断潜在生物标志物的临床相关性。我们选择GSE71220作为验证集,8个核心基因的AUC值分别为0.55、0.60、0.52、0.62、0.55、0.70、0.63和0.72。值得注意的是,RALB与SLC31A1联合诊断COPD的AUC值达0.75 (图6(a)~(i))。对GSE103174和GSE71220数据集的综合分析显示,COPD患者与健康对照组存在显著差异基因表达模式:COPD患者中RALB显著下调,而SLC31A1呈现明显上调(图6(j)-(k))。

Figure 6. Validation of diagnostic biomarkers in COPD patients

6. COPD患者诊断生物标志物的验证

4. 讨论

铜作为人体生理活动中不可或缺的微量元素,在酶促催化、氧化还原稳态维持及细胞间通讯网络的调控等功能中发挥着作用[25]。铜元素的吸收、转运、储存及排泄等多环节的协同作用维持细胞内Cu2+的动态平衡[26]。有研究显示,铜的过度积累可引发活性氧(ROS)过量生成,导致氧化应激及细胞损伤[27]。研究表明,Cu2+可通过激活NF-κB信号通路触发促炎反应,进而通过增强趋化反应及白细胞浸润加剧炎症病理过程[28]

铜死亡是近年来生物医学研究中新发现的一种铜依赖性细胞死亡途径,其潜在的分子调控网络及机制尚不完全清楚[29]。研究显示,Cu2+可与线粒体内的巯基结合,破坏线粒体呼吸链功能,导致ROS过度累积,最终引发细胞死亡[30]。COPD的发生发展与氧化应激增强及炎症反应加剧密切相关[31]。然而,目前关于COPD与铜死亡之间的实验证据仍十分匮乏。

本研究系统评估了COPD患者与正常对照中铜死亡相关基因的表达模式,并基于铜死亡相关差异表达基因对COPD患者进行聚类分析,以识别潜在诊断生物标志物。通过整合多维生物信息学分析最终证实RALB和SLC31A1在COPD诊断中具有卓越性能。

RALB (RAS样原癌基因B)是RAS超家族GTP酶的重要成员,通过其固有的GTP水解活性调节细胞内关键信号通路,从而控制重要生物学过程[32]。它不仅与铜死亡相关,还涉及自噬、凋亡和铁死亡[33]。既往研究表明,在癌症中,RALB通过激活PI3K/AKT和mTORC1通路抑制凋亡,在代谢性疾病和神经退行性疾病中,RALB通过调控自噬和代谢进程影响疾病发展[34]。在肺癌中,RALB通过调控细胞骨架重组和囊泡运输增强细胞迁移与侵袭。在肺纤维化中,RALB通过自噬调控成纤维细胞的迁移与增殖,促进瘢痕形成。在急性肺损伤中,RALB通过破坏紧密连接蛋白导致内皮屏障完整性丧失,增加肺泡-毛细血管膜液体渗出,驱动肺水肿的病理生理进展[35]。在COPD中,RALB通过磷酸化依赖的激酶级联激活NF-κB信号通路,诱导促炎细胞因子分泌,同时通过调控Nrf2转录调节ROS代谢及氧化还原平衡,形成炎症与氧化应激的恶性循环,加剧肺实质损伤,从而调控COPD的气道重塑与肺泡破坏[36]

SLC31A1基因编码铜转运蛋白1 (CTR1),作为铜摄取和细胞内分布的主要介导者,通过协调离子转运与氧化还原平衡维持铜稳态。其表达异常可破坏铜稳态,加剧氧化失衡与炎症反应,促进神经退行性疾病、代谢综合征及慢性肺部炎症等的病理进程[37]。研究表明,Cu2+是丝裂原活化蛋白激酶(MAPK)和磷脂酰肌醇3激酶/蛋白激酶B(PI3K/AKT)等致癌信号通路的关键辅因子。SLC31A1表达失调导致细胞内Cu2+水平病理性升高,损害线粒体膜电位,导致ATP合成受损,最终导致氧化还原失衡与能量代谢紊乱[38]。研究指出,在肺纤维化中,SLC31A1通过调控Cu2+水平影响TGF-β等信号通路,促进成纤维细胞活化与增殖。此外,SLC31A1通过磷酸化依赖信号通路调控基质金属蛋白酶活性,打破细胞外基质成分的代谢平衡,加速蛋白水解降解,加剧病理纤维化。同时,SLC31A1还通过调节细胞内Cu2+吸收,诱导过量ROS生成、损伤肺组织,推动COPD的发生发展[39]

5. 结论

在本研究中,我们对COPD患者和健康对照组进行生物信息学分析,筛选出8个铜死亡相关差异表达基因。外部数据集验证表明,RALB和SLC31A1呈现统计学显著的差异表达模式,ROC曲线分析显示二者联合对COPD预测具有更优的诊断效能。这些发现共同为COPD诊断标志物及治疗靶点的研究提供了新方向。

NOTES

*通讯作者。

参考文献

[1] Rabe, K.F. and Watz, H. (2017) Chronic Obstructive Pulmonary Disease. The Lancet, 389, 1931-1940.
https://doi.org/10.1016/s0140-6736(17)31222-9
[2] Opina, M.T.D., Nicklas, B.J., Lovato, J.F., Files, D.C., Kritchevsky, S.B. and Moore, W.C. (2019) Association of Symptoms of Obstructive Lung Disease and All‐Cause Mortality in Older Adult Smokers. Journal of the American Geriatrics Society, 67, 2116-2122.
https://doi.org/10.1111/jgs.16052
[3] Calzetta, L., Aiello, M., Frizzelli, A., Camardelli, F., Cazzola, M., Rogliani, P., et al. (2022) Stem Cell-Based Regenerative Therapy and Derived Products in COPD: A Systematic Review and Meta-Analysis. Cells, 11, Article 1797.
https://doi.org/10.3390/cells11111797
[4] Iheanacho, I., Zhang, S., King, D., Rizzo, M. and Ismaila, A.S. (2020) Economic Burden of Chronic Obstructive Pulmonary Disease (COPD): A Systematic Literature Review. International Journal of Chronic Obstructive Pulmonary Disease, 15, 439-460.
https://doi.org/10.2147/copd.s234942
[5] Jian, T., Ding, X., Li, J., Wu, Y., Ren, B., Li, J., et al. (2020) Triterpene Acids of Loquat Leaf Improve Inflammation in Cigarette Smoking Induced COPD by Regulating AMPK/Nrf2 and NF-κB Pathways. Nutrients, 12, Article 657.
https://doi.org/10.3390/nu12030657
[6] Jang, Y.O., Lee, S.H., Choi, J.J., Kim, D., Choi, J., Kang, M., et al. (2020) Fecal Microbial Transplantation and a High Fiber Diet Attenuates Emphysema Development by Suppressing Inflammation and Apoptosis. Experimental & Molecular Medicine, 52, 1128-1139.
https://doi.org/10.1038/s12276-020-0469-y
[7] Tsvetkov, P.O., Roman, A.Y., Baksheeva, V.E., Nazipova, A.A., Shevelyova, M.P., Vladimirov, V.I., et al. (2018) Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding. Frontiers in Molecular Neuroscience, 11, Article 459.
https://doi.org/10.3389/fnmol.2018.00459
[8] Shin, J., Wakeman, C.A., Goodson, J.R., Rodionov, D.A., Freedman, B.G., Senger, R.S., et al. (2014) Transport of Magnesium by a Bacterial Nramp-Related Gene. PLOS Genetics, 10, e1004429.
https://doi.org/10.1371/journal.pgen.1004429
[9] Crisponi, G. (2021) Essential and Toxic Metal Ions in Human Health and Disease; from Chemical Features to Clinical Roles. Current Medicinal Chemistry, 28, 7187-7189.
https://doi.org/10.2174/092986732835211116120553
[10] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[11] Sukumaran, P., Nascimento Da Conceicao, V., Sun, Y., Ahamad, N., Saraiva, L.R., Selvaraj, S., et al. (2021) Calcium Signaling Regulates Autophagy and Apoptosis. Cells, 10, Article 2125.
https://doi.org/10.3390/cells10082125
[12] Li, Y., Wang, R., Deng, Y., Wu, S., Sun, X. and Mu, H. (2022) Molecular Characteristics, Clinical Significance, and Cancer Immune Interactions of Cuproptosis and Ferroptosis-Associated Genes in Colorectal Cancer. Frontiers in Oncology, 12, Article 975859.
https://doi.org/10.3389/fonc.2022.975859
[13] Liu, Y., Liu, Y., Ye, S., Feng, H. and Ma, L. (2022) Development and Validation of Cuproptosis-Related Gene Signature in the Prognostic Prediction of Liver Cancer. Frontiers in Oncology, 12, Article 985484.
https://doi.org/10.3389/fonc.2022.985484
[14] Uriu-Adams, J.Y. and Keen, C.L. (2005) Copper, Oxidative Stress, and Human Health. Molecular Aspects of Medicine, 26, 268-298.
https://doi.org/10.1016/j.mam.2005.07.015
[15] Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease: An Iron-Dependent form of Nonapoptotic Cell Death. Cell, 171, 273-285.
https://doi.org/10.1016/j.cell.2017.09.021
[16] Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261.
https://doi.org/10.1126/science.abf0529
[17] Ghio, A. and Hilborn, E. (2017) Indices of Iron Homeostasis Correlate with Airway Obstruction in an NHANES III Cohort. International Journal of Chronic Obstructive Pulmonary Disease, 12, 2075-2084.
https://doi.org/10.2147/copd.s138457
[18] Xie, J., Yang, Y., Gao, Y. and He, J. (2023) Cuproptosis: Mechanisms and Links with Cancers. Molecular Cancer, 22, Article No. 46.
https://doi.org/10.1186/s12943-023-01732-y
[19] Chong, W., Ren, H., Chen, H., Xu, K., Zhu, X., Liu, Y., et al. (2024) Clinical Features and Molecular Landscape of Cuproptosis Signature‐related Molecular Subtype in Gastric Cancer. iMeta, 3, e190.
https://doi.org/10.1002/imt2.190
[20] Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., et al. (2015) Robust Enumeration of Cell Subsets from Tissue Expression Profiles. Nature Methods, 12, 453-457.
https://doi.org/10.1038/nmeth.3337
[21] Yu, G., Wang, L., Han, Y. and He, Q. (2012) Clusterprofiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS: A Journal of Integrative Biology, 16, 284-287.
https://doi.org/10.1089/omi.2011.0118
[22] Shen, W., Song, Z., Zhong, X., Huang, M., Shen, D., Gao, P., et al. (2022) Sangerbox: A Comprehensive, Interaction‐Friendly Clinical Bioinformatics Analysis Platform. iMeta, 1, e36.
https://doi.org/10.1002/imt2.36
[23] Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33, 1-22.
https://doi.org/10.18637/jss.v033.i01
[24] Li, S., Que, Y., Yang, R., He, P., Xu, S. and Hu, Y. (2023) Construction of Osteosarcoma Diagnosis Model by Random Forest and Artificial Neural Network. Journal of Personalized Medicine, 13, Article 447.
https://doi.org/10.3390/jpm13030447
[25] Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. and Margaritis, I. (2016) Dietary Copper and Human Health: Current Evidence and Unresolved Issues. Journal of Trace Elements in Medicine and Biology, 35, 107-115.
https://doi.org/10.1016/j.jtemb.2016.02.006
[26] Festa, R.A. and Thiele, D.J. (2011) Copper: An Essential Metal in Biology. Current Biology, 21, R877-R883.
https://doi.org/10.1016/j.cub.2011.09.040
[27] Gaetke, L. (2003) Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology, 189, 147-163.
https://doi.org/10.1016/s0300-483x(03)00159-8
[28] Kim, B., Nevitt, T. and Thiele, D.J. (2008) Mechanisms for Copper Acquisition, Distribution and Regulation. Nature Chemical Biology, 4, 176-185.
https://doi.org/10.1038/nchembio.72
[29] Chen, X., Cai, Q., Liang, R., Zhang, D., Liu, X., Zhang, M., et al. (2023) Copper Homeostasis and Copper-Induced Cell Death in the Pathogenesis of Cardiovascular Disease and Therapeutic Strategies. Cell Death & Disease, 14, Article No. 105.
https://doi.org/10.1038/s41419-023-05639-w
[30] Cobine, P.A. and Brady, D.C. (2022) Cuproptosis: Cellular and Molecular Mechanisms Underlying Copper-Induced Cell Death. Molecular Cell, 82, 1786-1787.
https://doi.org/10.1016/j.molcel.2022.05.001
[31] Apperley, S., Park, H.Y., Holmes, D.T., Man, S.F.P., Tashkin, D., Wise, R.A., et al. (2015) Serum Bilirubin and Disease Progression in Mild COPD. Chest, 148, 169-175.
https://doi.org/10.1378/chest.14-2150
[32] Bodemann, B.O. and White, M.A. (2008) Ral GTPases and Cancer: Linchpin Support of the Tumorigenic Platform. Nature Reviews Cancer, 8, 133-140.
https://doi.org/10.1038/nrc2296
[33] Peschard, P., McCarthy, A., Leblanc-Dominguez, V., Yeo, M., Guichard, S., Stamp, G., et al. (2012) Genetic Deletion of RALA and RALB Small GTPases Reveals Redundant Functions in Development and Tumorigenesis. Current Biology, 22, 2063-2068.
https://doi.org/10.1016/j.cub.2012.09.013
[34] Neel, N.F., Rossman, K.L., Martin, T.D., Hayes, T.K., Yeh, J.J. and Der, C.J. (2012) The RalB small GTPase Mediates Formation of Invadopodia through a GTPase-Activating Protein-Independent Function of the RalBP1/RLIP76 Effector. Molecular and Cellular Biology, 32, 1374-1386.
https://doi.org/10.1128/mcb.06291-11
[35] Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176.
https://doi.org/10.1016/j.tcb.2015.10.014
[36] Lim, K., O’Hayer, K., Adam, S.J., Kendall, S.D., Campbell, P.M., Der, C.J., et al. (2006) Divergent Roles for RalA and RalB in Malignant Growth of Human Pancreatic Carcinoma Cells. Current Biology, 16, 2385-2394.
https://doi.org/10.1016/j.cub.2006.10.023
[37] Chen, Z., Li, Y. and Liu, X. (2023) Copper Homeostasis and Copper-Induced Cell Death: Novel Targeting for Intervention in the Pathogenesis of Vascular Aging. Biomedicine & Pharmacotherapy, 169, Article ID: 115839.
https://doi.org/10.1016/j.biopha.2023.115839
[38] Oxford, G., Owens, C.R., Titus, B.J., Foreman, T.L., Herlevsen, M.C., Smith, S.C., et al. (2005) RalA and RalB: Antagonistic Relatives in Cancer Cell Migration. Cancer Research, 65, 7111-7120.
https://doi.org/10.1158/0008-5472.can-04-1957
[39] Martin, T.D., Chen, X.W., Kaplan, R.E., et al. (2014) Ral and Rheb GTPase Signaling in Tumorigenesis. Oncogene, 33, 739-747.