脑膜瘤相关性癫痫最新研究进展
Recent Advances in Meningioma-Associated Epilepsy Research
DOI: 10.12677/acm.2025.1561761, PDF, HTML, XML,   
作者: 张 鑫:重庆医科大学第一临床学院,重庆;石全红*:重庆医科大学附属第一医院神经外科,重庆
关键词: 脑膜瘤癫痫癫痫发作肿瘤相关性癫痫Meningioma Epilepsy Seizure Tumor-Related Epilepsy
摘要: 脑膜瘤是常见的颅内良性肿瘤,约占原发性中枢神经系统肿瘤的1/3,它们可以出现在中枢神经系统的任何硬脑膜部位。肿瘤相关性癫痫(Tumor-Related Epilepsy, TRE)即由颅内肿瘤直接或间接引起的癫痫发作一类疾病,因其发作机制不详,控制困难并且严重影响患者的生命及生活质量。本文围绕脑膜瘤相关性癫痫发病率、发病机制、影响因素以及治疗等方面进行简要综述。
Abstract: Meningiomas are common intracranial benign tumors, accounting for about 1/3 of primary central nervous system tumors. They can appear in any dura mater of the central nervous system. Tumor-Related Epilepsy (TRE) is a kind of disease caused directly or indirectly by intracranial tumors. Because its seizure mechanism is unknown, it is difficult to control and seriously affects patients’ lives and quality of life. This article briefly reviews the incidence, pathogenesis, influencing factors and treatment of meningioma-associated epilepsy.
文章引用:张鑫, 石全红. 脑膜瘤相关性癫痫最新研究进展[J]. 临床医学进展, 2025, 15(6): 555-559. https://doi.org/10.12677/acm.2025.1561761

1. 术前脑膜瘤相关性癫痫的发病率

癫痫是脑肿瘤患者中最常见的症状[1]。在15~30%的病例中,脑肿瘤患者可以以癫痫发作为主要表现起病,癫痫也作为脑膜瘤诊断的首发症状[2] [3]。患有脑膜瘤的病人中,术前癫痫发作的发生率在不同研究中并未达到统一稳定的标准,差异十分明显,最低有13%,而最高可达60% [4]。引起这些差异的原因,可能与研究人群不同、肿瘤好发位置不同以及研究方法各异有关。比如说,1996年Chozick等人报道术前脑膜瘤相关性癫痫的发病率为39% [5],而2013年Hamasaki等人得到的结果仅14% [6];这种发病率的差异表明,需要进一步统一研究标准(如纳入人群、肿瘤分型、数据采集方法等),并通过海量样本研究来提升临床评估的准确性。这将会为将来脑膜瘤患者的诊断和治疗规范提供更加个性化及精细性指导。

2. 脑膜瘤相关性癫痫的发病机制

目前的各类研究中,并未明确地给出脑膜瘤相关性癫痫是如何发生的,缺乏确切的证据来阐明发病机理,可能涉及多个因素,需要综合考虑和分析[7]。然而,不少研究表明,肿瘤相关性癫痫的发作可能与以下几种改变有关。首先是神经兴奋–抑制失衡,在正常机体中,神经元的兴奋性和抑制性是趋于平衡的,以维持正常的功能活动。当脑膜瘤存在时,它通过压迫或刺激周围脑组织,破坏皮层兴奋性与抑制性神经递质(如谷氨酸/GABA)的平衡,导致神经元过度同步放电,诱发癫痫发作[8]。其次是代谢异常,当肿瘤存在时,脑肿瘤组织以及周围正常脑组织的分子代谢、和生理生化也会随之变化。比如肿瘤细胞的pH值较高,呈现出偏碱性的结果,而肿瘤周边细胞的pH值也高于正常脑组织细胞。pH值的变化可能影响离子通道功能,解除N-甲基-D-天冬氨酸受体通道上的部分阻滞,进而影响神经元细胞的兴奋性,导致癫痫发作[9]。然后是基因层面,NF-2基因突变可能通过影响非典型性组织学和瘤周水肿等间接作用,增加脑膜瘤患者术前癫痫发作的风险[10];脑源性神经营养因子(BDNF)、异柠檬酸脱氢酶(IDH)和腺苷激酶(ADK)等遗传生物标志物也被证实与肿瘤相关癫痫有关[11] [12]。除上述几种机制外,脑组织结构的重塑与瘤周水肿也与癫痫发作有关。脑水肿是脑肿瘤患者极其常见的病理现象,发生率约30%~60% [13]。水肿的形成与多种因素有关,包括肿瘤周围炎症反应、肿瘤压迫及局部缺氧等。而这种水肿通常是血管源性的,与血管内皮生长因子表达增加有关。这些因素可能导致癫痫发作阈值降低,导致癫痫更容易发作[14]。值得一提的是,虽然儿童脑膜瘤发生率极低,但在儿童脑膜瘤患者中,低效的神经元迁移却可能是癫痫发生的另一种机制[15]。那么对于不同年龄段的患者,脑膜瘤致痫性的机制可能有待商榷,需要根据患者的具体情况进行深入研究。

3. 脑膜瘤患者术前继发癫痫的相关因素

年龄和性别

脑膜瘤相关性癫痫在不同的年龄段存在显著的差异性。虽然脑膜瘤在成人中更为常见,但是对于儿童患者,他们将会面临更高的癫痫发作风险[16]。这可能和病理类型为非典型性和侵袭性脑膜瘤的患病率在儿童中更高相关,可能破坏周围脑组织,导致异常放电[17]。然而随着成人的年龄增长,癫痫发作风险又会随之增加,呈现出类似漏洞状的曲线[18]。同样在性别方面,虽然脑膜瘤在女性患者中更为常见,但是男性患者在继发性癫痫发作方面面临着更高的风险。众多研究表明:男性脑膜瘤患者术前癫痫发作的比例几乎是女性的两倍[16]

瘤周水肿

瘤周水肿(Peritu Moral Brain Edema, PTBE)与脑膜瘤患者术前癫痫发作之间存在明确的关联。这种联系在多个研究中得到了证实,虽然报道中脑膜瘤瘤周水肿的发病率各有差异,但是术前有瘤周水肿的患者癫痫发作的可能性是无瘤周水肿患者的3倍[19]。一项回顾性研究表明肿瘤的侵袭程度与瘤周水肿严重程度相关,而侵袭性脑膜瘤患者癫痫发作的风险明显高于非侵袭性脑膜瘤患者,并且随着水肿加重,脑膜瘤的侵袭性增加,同样也大大增加了癫痫发作几率[20]

脑膜瘤大小

脑膜瘤的大小与术前癫痫发作之间的相关性存在明显的分歧,比较有争议。

一方面,有研究表明脑膜瘤大小与术前癫痫发作无显著相关性[21]。另一方面,也有研究指出脑膜瘤大小可能是术前癫痫发作的重要危险因素[22]。更让人匪夷所思的是,不同研究者采用相同的研究方法却得到了相反的结论[23]。虽然目前结论暂未统一,但这也留给我们进一步探究的空间和思考的余地。不能单纯依靠肿瘤大小预测癫痫风险,还要综合性评估肿瘤位置、病理分级、瘤周水肿、分子特征等多元因素,通过打破目前研究的局限性,建立多中心大样本数据库来立论。

脑膜瘤位置

脑膜瘤起源于蛛网膜内皮细胞和硬脑膜边界细胞,它们可以出现在中枢神经系统的任何硬脑膜部位[24],而不同位置的脑膜瘤与术前癫痫发作之间是有差异性的。例如,大脑凸面、矢状窦旁和大脑镰旁的脑膜瘤术前更容易继发性癫痫,幕上的脑膜瘤术前癫痫发生率高于幕下[25],而颞叶脑肿瘤术前癫痫发生率高于枕叶、额叶和顶叶,其中,又以肿瘤临近运动功能区,术前癫痫发作风险增加[26]

4. 脑膜瘤相关性癫痫的治疗

手术治疗

对于术前存在癫痫发作的脑膜瘤患者,手术切除通常是一种有效的治疗方法,强调在不引起新的或增加现有神经功能缺损的情况下尽可能多地切除肿瘤组织,该手段能够明显降低癫痫发作并减少抗癫痫药物的使用[27]。虽然手术切除是控制癫痫发作的有效手段,但是并非所有患者的癫痫都能得到完全控制。有文献表明,约2/3的肿瘤相关癫痫发作病灶位于肿瘤肿块内[28]。对于此类患者,手术治疗能有效控制癫痫发作[29]。而对于余下的三分之一左右的患者,努力定位致痫灶并仔细确定最佳治疗策略对于该患者群体至关重要。

抗癫痫药物治疗

抗癫痫药物治疗(Antiepileptic Drugs, AED),许多药对成人局灶性癫痫有效[30],然而,关于AED治疗脑肿瘤相关癫痫的疗效的研究有限。亦有研究表明[31],尽管进行了积极的手术治疗,但仍有30%的GRE患者术后癫痫发作控制不佳,因而术后仍需常规使用抗癫痫药物。

5. 总结

脑膜瘤相关性癫痫机制复杂多样,未来进步空间很大,需结合基础科学与临床的转化,开发出针对致痫微环境的精准治疗及个体化治疗,并通过多学科协作提升患者生存质量。同时,外科医生在追求肿瘤良好结局的时候,也应关注癫痫发作的控制以改善患者生活质量和神经功能。脑质瘤相关分子生物标志物的研究新发现可能为脑膜瘤相关性癫痫确定新的治疗靶点。

NOTES

*通讯作者。

参考文献

[1] Aronica, E., Ciusani, E., Coppola, A., Costa, C., Russo, E., Salmaggi, A., et al. (2023) Epilepsy and Brain Tumors: Two Sides of the Same Coin. Journal of the Neurological Sciences, 446, Article ID: 120584.
https://doi.org/10.1016/j.jns.2023.120584
[2] Maschio, M. (2012) Brain Tumor-Related Epilepsy. Current Neuropharmacology, 10, 124-133.
https://doi.org/10.2174/157015912800604470
[3] Sperling, M.R. and Ko, J. (2006) Seizures and Brain Tumors. Seminars in Oncology, 33, 333-341.
https://doi.org/10.1053/j.seminoncol.2006.03.009
[4] Dincer, A., Jalal, M.I., Gupte, T.P., Vetsa, S., Vasandani, S., Yalcin, K., et al. (2023) The Clinical and Genomic Features of Seizures in Meningiomas. Neuro-Oncology Advances, 5, i49-i57.
https://doi.org/10.1093/noajnl/vdac110
[5] Chozick, B.S., Reinert, S.E. and Greenblatt, S.H. (1996) Incidence of Seizures after Surgery for Supratentorial Meningiomas: A Modern Analysis. Journal of Neurosurgery, 84, 382-386.
https://doi.org/10.3171/jns.1996.84.3.0382
[6] Hamasaki, T., Yamada, K. and Kuratsu, J. (2013) Seizures as a Presenting Symptom in Neurosurgical Patients: A Retrospective Single-Institution Analysis. Clinical Neurology and Neurosurgery, 115, 2336-2340.
https://doi.org/10.1016/j.clineuro.2013.08.016
[7] Schaller, B. and Rüegg, S.J. (2003) Brain Tumor and Seizures: Pathophysiology and Its Implications for Treatment Revisited. Epilepsia, 44, 1223-1232.
https://doi.org/10.1046/j.1528-1157.2003.05203.x
[8] van Breemen, M.S., Wilms, E.B. and Vecht, C.J. (2007) Epilepsy in Patients with Brain Tumours: Epidemiology, Mechanisms, and Management. The Lancet Neurology, 6, 421-430.
https://doi.org/10.1016/s1474-4422(07)70103-5
[9] Okada, Y., Kloiber, O. and Hossmann, K.A. (1992) Regional Metabolism in Experimental Brain Tumors in Cats: Relationship with Acid/base, Water, and Electrolyte Homeostasis. Journal of Neurosurgery, 77, 917-926.
https://doi.org/10.3171/jns.1992.77.6.0917
[10] Gadot, R., Khan, A., Patel, R., et al. (2021) Predictors of Postoperative Seizure Outcome in Supratentorial Meningioma. Journal of Neurosurgery, 137, 515-524.
[11] Thom, M., Blümcke, I. and Aronica, E. (2012) Long‐Term Epilepsy‐Associated Tumors. Brain Pathology, 22, 350-379.
https://doi.org/10.1111/j.1750-3639.2012.00582.x
[12] Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S.N., Hidalgo, O.F., Vanaclocha, V., et al. (2000) Inactivation of the DNA-Repair Gene MGMT and the Clinical Response of Gliomas to Alkylating Agents. New England Journal of Medicine, 343, 1350-1354.
https://doi.org/10.1056/nejm200011093431901
[13] Simis, A., Pires de Aguiar, P.H., Leite, C.C., Santana, P.A., Rosemberg, S. and Teixeira, M.J. (2008) Peritumoral Brain Edema in Benign Meningiomas: Correlation with Clinical, Radiologic, and Surgical Factors and Possible Role on Recurrence. Surgical Neurology, 70, 471-477.
https://doi.org/10.1016/j.surneu.2008.03.006
[14] 张冰, 朱斌. DWI在胶质瘤与单发转移瘤及其瘤周水肿中的诊断价值[J]. 中国医学计算机成像杂志, 2006(2): 80-83.
[15] Bhagwati, S., Mehta, N. and Parulekar, G. (2009) Meningiomas in Children: A Study of 18 Cases. Journal of Pediatric Neurosciences, 4, 61-65.
https://doi.org/10.4103/1817-1745.57322
[16] Englot, D.J., Magill, S.T., Han, S.J., Chang, E.F., Berger, M.S. and McDermott, M.W. (2016) Seizures in Supratentorial Meningioma: A Systematic Review and Meta-Analysis. Journal of Neurosurgery, 124, 1552-1561.
https://doi.org/10.3171/2015.4.jns142742
[17] Kotsopoulos, I.A.W., Van Merode, T., Kessels, F.G.H., De Krom, M.C.T.F.M. and Knottnerus, J.A. (2002) Systematic Review and Meta‐Analysis of Incidence Studies of Epilepsy and Unprovoked Seizures. Epilepsia, 43, 1402-1409.
https://doi.org/10.1046/j.1528-1157.2002.t01-1-26901.x
[18] 郭毅, 孙红斌. 老年症状性癫痫病因学研究进展[J]. 实用医院临床杂志, 2016, 13(1): 115-117.
[19] Osawa, T., Tosaka, M., Nagaishi, M. and Yoshimoto, Y. (2012) Factors Affecting Peritumoral Brain Edema in Meningioma: Special Histological Subtypes with Prominently Extensive Edema. Journal of Neuro-Oncology, 111, 49-57.
https://doi.org/10.1007/s11060-012-0989-y
[20] Hess, K., Spille, D.C., Adeli, A., Sporns, P.B., Brokinkel, C., Grauer, O., et al. (2019) Brain Invasion and the Risk of Seizures in Patients with Meningioma. Journal of Neurosurgery, 130, 789-796.
https://doi.org/10.3171/2017.11.jns172265
[21] Kawaguchi, T., Kameyama, S. and Tanaka, R. (1996) Peritumoral Edema and Seizure in Patients with Cerebral Convexity and Parasagittal Meningiomas. Neurologia medico-chirurgica, 36, 568-574.
https://doi.org/10.2176/nmc.36.568
[22] Xue, H., Sveinsson, O., Bartek, J., Förander, P., Skyrman, S., Kihlström, L., et al. (2018) Long-Term Control and Predictors of Seizures in Intracranial Meningioma Surgery: A Population-Based Study. Acta Neurochirurgica, 160, 589-596.
https://doi.org/10.1007/s00701-017-3434-3
[23] Chaichana, K.L., Pendleton, C., Zaidi, H., Olivi, A., Weingart, J.D., Gallia, G.L., et al. (2013) Seizure Control for Patients Undergoing Meningioma Surgery. World Neurosurgery, 79, 515-524.
https://doi.org/10.1016/j.wneu.2012.02.051
[24] Wach, J., Güresir, Á., Vatter, H., Herrlinger, U., Becker, A., Toma, M., et al. (2022) Low-Dose Acetylsalicylic Acid Treatment in Non-Skull-Base Meningiomas: Impact on Tumor Proliferation and Seizure Burden. Cancers, 14, Article 4285.
https://doi.org/10.3390/cancers14174285
[25] Lieu, A. and Howng, S. (1999) Intracranial Meningiomas and Epilepsy: Incidence, Prognosis and Influencing Factors. Epilepsy Research, 38, 45-52.
https://doi.org/10.1016/s0920-1211(99)00066-2
[26] Li, X., Wang, C., Lin, Z., Zhao, M., Ren, X., Zhang, X., et al. (2019) Risk Factors and Control of Seizures in 778 Chinese Patients Undergoing Initial Resection of Supratentorial Meningiomas. Neurosurgical Review, 43, 597-608.
https://doi.org/10.1007/s10143-019-01085-5
[27] Schneider, M., Güresir, Á., Borger, V., et al. (2019) Preoperative Tumor-Associated Epilepsy in Patients with Supratentorial Meningioma: Factors Influencing Seizure Outcome after Meningioma Surgery. Journal of Neurosurgery, 11, 1-7.
[28] Gilmore, R., Morris, H., Van Ness, P.C., Gilmore‐Pollak, W. and Estes, M. (1994) Mirror Focus: Function of Seizure Frequency and Influence on Outcome after Surgery. Epilepsia, 35, 258-263.
https://doi.org/10.1111/j.1528-1157.1994.tb02429.x
[29] Englot, D.J. and Chang, E.F. (2014) Rates and Predictors of Seizure Freedom in Resective Epilepsy Surgery: An Update. Neurosurgical Review, 37, 389-405.
https://doi.org/10.1007/s10143-014-0527-9
[30] Glauser, T., Ben‐Menachem, E., Bourgeois, B., Cnaan, A., Guerreiro, C., Kälviäinen, R., et al. (2013) Updated ILAE Evidence Review of Antiepileptic Drug Efficacy and Effectiveness as Initial Monotherapy for Epileptic Seizures and Syndromes. Epilepsia, 54, 551-563.
https://doi.org/10.1111/epi.12074
[31] You, G., Sha, Z. and Jiang, T. (2021) Clinical Diagnosis and Perioperative Management of Glioma-Related Epilepsy. Frontiers in Oncology, 10, Article 550353.
https://doi.org/10.3389/fonc.2020.550353