[1]
|
Pirault, J. and Bäck, M. (2018) Lipoxin and Resolvin Receptors Transducing the Resolution of Inflammation in Cardiovascular Disease. Frontiers in Pharmacology, 9, Article 1273. https://doi.org/10.3389/fphar.2018.01273
|
[2]
|
Zhang, Z., Zhang, A., Liu, Y., Hu, X., Fang, Y., Wang, X., et al. (2022) New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Current Neuropharmacology, 20, 1278-1296. https://doi.org/10.2174/1570159x19666211101103646
|
[3]
|
Friedrich, V., Flores, R. and Sehba, F.A. (2012) Cell Death Starts Early after Subarachnoid Hemorrhage. Neuroscience Letters, 512, 6-11. https://doi.org/10.1016/j.neulet.2012.01.036
|
[4]
|
Sun, B., Yang, S., Li, S. and Hang, C. (2018) Melatonin Upregulates Nuclear Factor Erythroid-2 Related Factor 2 (Nrf2) and Mediates Mitophagy to Protect against Early Brain Injury after Subarachnoid Hemorrhage. Medical Science Monitor, 24, 6422-6430. https://doi.org/10.12659/msm.909221
|
[5]
|
Fang, Y., Chen, S., Reis, C. and Zhang, J. (2018) The Role of Autophagy in Subarachnoid Hemorrhage: An Update. Current Neuropharmacology, 16, 1255-1266. https://doi.org/10.2174/1570159x15666170406142631
|
[6]
|
Lauzier, D.C., Jayaraman, K., Yuan, J.Y., Diwan, D., Vellimana, A.K., Osbun, J.W., et al. (2023) Early Brain Injury after Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke, 54, 1426-1440. https://doi.org/10.1161/strokeaha.122.040072
|
[7]
|
Daneman, R. and Prat, A. (2015) The Blood-Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7, a020412. https://doi.org/10.1101/cshperspect.a020412
|
[8]
|
Zhang, T., Xu, S., Wu, P., Zhou, K., Wu, L., Xie, Z., et al. (2019) Mitoquinone Attenuates Blood-Brain Barrier Disruption through Nrf2/Phb2/Opa1 Pathway after Subarachnoid Hemorrhage in Rats. Experimental Neurology, 317, 1-9. https://doi.org/10.1016/j.expneurol.2019.02.009
|
[9]
|
Zhang, X., Wu, Q., Zhang, Q., Lu, Y., Liu, J., Li, W., et al. (2017) Resveratrol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage via Inhibition of NLRP3 Inflammasome Activation. Frontiers in Neuroscience, 11, Article 611. https://doi.org/10.3389/fnins.2017.00611
|
[10]
|
Guo, Y., Liu, X., Liu, D., Li, K., Wang, C., Liu, Y., et al. (2019) Inhibition of BECN1 Suppresses Lipid Peroxidation by Increasing System XC-Activity in Early Brain Injury after Subarachnoid Hemorrhage. Journal of Molecular Neuroscience, 67, 622-631. https://doi.org/10.1007/s12031-019-01272-5
|
[11]
|
Zhang, J., Zhang, Z., Wang, X., Liu, Y., Yu, Q., Wang, K., et al. (2023) Connection between Oxidative Stress and Subcellular Organelle in Subarachnoid Hemorrhage: Novel Mechanisms and Therapeutic Implications. CNS Neuroscience & Therapeutics, 29, 3672-3683. https://doi.org/10.1111/cns.14348
|
[12]
|
Figueroa, S., Oset-Gasque, M.J., Arce, C., Martinez-Honduvilla, C.J. and González, M.P. (2006) Mitochondrial Involvement in Nitric Oxide-Induced Cellular Death in Cortical Neurons in Culture. Journal of Neuroscience Research, 83, 441-449. https://doi.org/10.1002/jnr.20739
|
[13]
|
Kaur, J. and Debnath, J. (2015) Autophagy at the Crossroads of Catabolism and Anabolism. Nature Reviews Molecular Cell Biology, 16, 461-472. https://doi.org/10.1038/nrm4024
|
[14]
|
Glick, D., Barth, S. and Macleod, K.F. (2010) Autophagy: Cellular and Molecular Mechanisms. The Journal of Pathology, 221, 3-12. https://doi.org/10.1002/path.2697
|
[15]
|
Cuervo, A.M. (2011) Chaperone-Mediated Autophagy: Dice’s ‘Wild’ Idea about Lysosomal Selectivity. Nature Reviews Molecular Cell Biology, 12, 535-541. https://doi.org/10.1038/nrm3150
|
[16]
|
Szwed, A., Kim, E. and Jacinto, E. (2021) Regulation and Metabolic Functions of mTORC1 and mTORC2. Physiological Reviews, 101, 1371-1426. https://doi.org/10.1152/physrev.00026.2020
|
[17]
|
Heckmann, B.L. and Green, D.R. (2019) LC3-Associated Phagocytosis at a Glance. Journal of Cell Science, 132, jcs222984. https://doi.org/10.1242/jcs.222984
|
[18]
|
Shanware, N.P., Bray, K. and Abraham, R.T. (2013) The PI3K, Metabolic, and Autophagy Networks: Interactive Partners in Cellular Health and Disease. Annual Review of Pharmacology and Toxicology, 53, 89-106. https://doi.org/10.1146/annurev-pharmtox-010611-134717
|
[19]
|
Young, L.N., Goerdeler, F. and Hurley, J.H. (2019) Structural Pathway for Allosteric Activation of the Autophagic PI 3-Kinase Complex I. Proceedings of the National Academy of Sciences, 116, 21508-21513. https://doi.org/10.1073/pnas.1911612116
|
[20]
|
Sil, P., Muse, G. and Martinez, J. (2018) A Ravenous Defense: Canonical and Non-Canonical Autophagy in Immunity. Current Opinion in Immunology, 50, 21-31. https://doi.org/10.1016/j.coi.2017.10.004
|
[21]
|
De Tito, S., Hervás, J.H., van Vliet, A.R. and Tooze, S.A. (2020) The Golgi as an Assembly Line to the Autophagosome. Trends in Biochemical Sciences, 45, 484-496. https://doi.org/10.1016/j.tibs.2020.03.010
|
[22]
|
Kim, Y.C. and Guan, K. (2015) mTOR: A Pharmacologic Target for Autophagy Regulation. Journal of Clinical Investigation, 125, 25-32. https://doi.org/10.1172/jci73939
|
[23]
|
Ferreri, A., Lang, V., Kaufmann, R. and Buerger, C. (2022) mTORC1 Activity in Psoriatic Lesions Is Mediated by Aberrant Regulation through the Tuberous Sclerosis Complex. Cells, 11, Article 2847. https://doi.org/10.3390/cells11182847
|
[24]
|
Liu, G.Y. and Sabatini, D.M. (2020) mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nature Reviews Molecular Cell Biology, 21, 183-203. https://doi.org/10.1038/s41580-019-0199-y
|
[25]
|
Marafie, S.K., Al-Mulla, F. and Abubaker, J. (2024) mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. International Journal of Molecular Sciences, 25, Article 6141. https://doi.org/10.3390/ijms25116141
|
[26]
|
Zhou, B., Kreuzer, J., Kumsta, C., Wu, L., Kamer, K.J., Cedillo, L., et al. (2019) Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 177, 299-314. https://doi.org/10.1016/j.cell.2019.02.013
|
[27]
|
Takahashi, Y., Meyerkord, C.L. and Wang, H. (2008) Bargaining Membranes for Autophagosome Formation: Regulation of Autophagy and Tumorigenesis by Bif-1/Endophilin B1. Autophagy, 4, 121-124. https://doi.org/10.4161/auto.5265
|
[28]
|
Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., et al. (2008) A Role for the NAD-Dependent Deacetylase Sirt1 in the Regulation of Autophagy. Proceedings of the National Academy of Sciences, 105, 3374-3379. https://doi.org/10.1073/pnas.0712145105
|
[29]
|
Lu, Y., Li, Z., Zhang, S., Zhang, T., Liu, Y. and Zhang, L. (2023) Cellular Mitophagy: Mechanism, Roles in Diseases and Small Molecule Pharmacological Regulation. Theranostics, 13, 736-766. https://doi.org/10.7150/thno.79876
|
[30]
|
Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., et al. (2015) The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy. Nature, 524, 309-314. https://doi.org/10.1038/nature14893
|
[31]
|
Nguyen, T.D., Shaid, S., Vakhrusheva, O., Koschade, S.E., Klann, K., Thölken, M., et al. (2019) Loss of the Selective Autophagy Receptor P62 Impairs Murine Myeloid Leukemia Progression and Mitophagy. Blood, 133, 168-179. https://doi.org/10.1182/blood-2018-02-833475
|
[32]
|
Tang, Y., Wang, L., Yi, T., Xu, J., Wang, J., Qin, J., et al. (2021) Synergistic Effects of Autophagy/Mitophagy Inhibitors and Magnolol Promote Apoptosis and Antitumor Efficacy. Acta Pharmaceutica Sinica B, 11, 3966-3982. https://doi.org/10.1016/j.apsb.2021.06.007
|
[33]
|
Qiu, Y., Wang, J., Li, H., Yang, B., Wang, J., He, Q., et al. (2021) Emerging Views of OPTN (Optineurin) Function in the Autophagic Process Associated with Disease. Autophagy, 18, 73-85. https://doi.org/10.1080/15548627.2021.1908722
|
[34]
|
Xu, X., Chen, Y., Fei, S., Jiang, X., Zhou, X., Xue, Y., et al. (2025) PPTC7 Acts as an Essential Co-Factor of the SCFFBXL4 Ubiquitin Ligase Complex to Restrict BNIP3/3l-Dependent Mitophagy. Cell Death & Disease, 16, Article No. 145. https://doi.org/10.1038/s41419-025-07463-w
|
[35]
|
Lee, J., He, Y., Sagher, O., Keep, R., Hua, Y. and Xi, G. (2009) Activated Autophagy Pathway in Experimental Subarachnoid Hemorrhage. Brain Research, 1287, 126-135. https://doi.org/10.1016/j.brainres.2009.06.028
|
[36]
|
Jing, C.-H., Wang, L., Liu, P.-P., Wu, C., Ruan, D. and Chen, G. (2012) Autophagy Activation Is Associated with Neuroprotection against Apoptosis via a Mitochondrial Pathway in a Rat Model of Subarachnoid Hemorrhage. Neuroscience, 213, 144-153. https://doi.org/10.1016/j.neuroscience.2012.03.055
|
[37]
|
Wang, Z., Shi, X., Yin, J., Zuo, G., Zhang, J. and Chen, G. (2011) Role of Autophagy in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Molecular Neuroscience, 46, 192-202. https://doi.org/10.1007/s12031-011-9575-6
|
[38]
|
Tao, Q., Qiu, X., Li, C., Zhou, J., Gu, L., Zhang, L., et al. (2022) S100A8 Regulates Autophagy-Dependent Ferroptosis in Microglia after Experimental Subarachnoid Hemorrhage. Experimental Neurology, 357, Article 114171. https://doi.org/10.1016/j.expneurol.2022.114171
|
[39]
|
Cao, S., Shrestha, S., Li, J., Yu, X., Chen, J., Yan, F., et al. (2017) Melatonin-Mediated Mitophagy Protects against Early Brain Injury after Subarachnoid Hemorrhage through Inhibition of NLRP3 Inflammasome Activation. Scientific Reports, 7, Article No. 2417. https://doi.org/10.1038/s41598-017-02679-z
|
[40]
|
Zhang, J., Yuan, G., Liang, T., Pan, P., Li, X., Li, H., et al. (2020) Nix Plays a Neuroprotective Role in Early Brain Injury after Experimental Subarachnoid Hemorrhage in Rats. Frontiers in Neuroscience, 14, Article 245. https://doi.org/10.3389/fnins.2020.00245
|
[41]
|
Zhang, T., Wu, P., Budbazar, E., Zhu, Q., Sun, C., Mo, J., et al. (2019) Mitophagy Reduces Oxidative Stress via Keap1 (Kelch-Like Epichlorohydrin-Associated Protein 1)/Nrf2 (Nuclear Factor-E2-Related Factor 2)/PHB2 (Prohibitin 2) Pathway after Subarachnoid Hemorrhage in Rats. Stroke, 50, 978-988. https://doi.org/10.1161/strokeaha.118.021590
|
[42]
|
Zhang, Y., Zhang, T., Li, Y., Guo, Y., Liu, B., Tian, Y., et al. (2022) Metformin Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Rats via AMPK-Dependent Mitophagy. Experimental Neurology, 353, Article 114055. https://doi.org/10.1016/j.expneurol.2022.114055
|
[43]
|
Zou, Y., Tao, Z., Li, P., Yang, J., Xu, Q., Xu, X., et al. (2025) Clemastine Attenuates Subarachnoid Haemorrhage Pathology in a Mouse Model via Nrf2/Sqstm1-Mediated Autophagy. British Journal of Pharmacology, 182, 2730-2753. https://doi.org/10.1111/bph.17465
|
[44]
|
Wang, Y., Pan, X., Liu, G., Liu, Z., Zhang, C., Chen, T., et al. (2021) FGF-2 Suppresses Neuronal Autophagy by Regulating the PI3K/Akt Pathway in Subarachnoid Hemorrhage. Brain Research Bulletin, 173, 132-140. https://doi.org/10.1016/j.brainresbull.2021.05.017
|
[45]
|
Liu, Y., Li, J., Wang, Z., Yu, Z. and Chen, G. (2013) Attenuation of Early Brain Injury and Learning Deficits Following Experimental Subarachnoid Hemorrhage Secondary to Cystatin C: Possible Involvement of the Autophagy Pathway. Molecular Neurobiology, 49, 1043-1054. https://doi.org/10.1007/s12035-013-8579-3
|
[46]
|
Shi, L., Liang, F., Zheng, J., Zhou, K., Chen, S., Yu, J., et al. (2018) Melatonin Regulates Apoptosis and Autophagy via ROS-MST1 Pathway in Subarachnoid Hemorrhage. Frontiers in Molecular Neuroscience, 11, Article 93. https://doi.org/10.3389/fnmol.2018.00093
|
[47]
|
Roberts, J.Z., Crawford, N. and Longley, D.B. (2021) The Role of Ubiquitination in Apoptosis and Necroptosis. Cell Death & Differentiation, 29, 272-284. https://doi.org/10.1038/s41418-021-00922-9
|
[48]
|
Warren, C.F.A., Wong-Brown, M.W. and Bowden, N.A. (2019) BCL-2 Family Isoforms in Apoptosis and Cancer. Cell Death & Disease, 10, Article No. 177. https://doi.org/10.1038/s41419-019-1407-6
|
[49]
|
Green, D.R. (2022) The Mitochondrial Pathway of Apoptosis Part II: The BCL-2 Protein Family. Cold Spring Harbor Perspectives in Biology, 14, a041046. https://doi.org/10.1101/cshperspect.a041046
|
[50]
|
Czabotar, P.E. and Garcia-Saez, A.J. (2023) Mechanisms of BCL-2 Family Proteins in Mitochondrial Apoptosis. Nature Reviews Molecular Cell Biology, 24, 732-748. https://doi.org/10.1038/s41580-023-00629-4
|
[51]
|
Li, Y., Zhou, M., Hu, Q., Bai, X., Huang, W., Scheres, S.H.W., et al. (2017) Mechanistic Insights into Caspase-9 Activation by the Structure of the Apoptosome Holoenzyme. Proceedings of the National Academy of Sciences, 114, 1542-1547. https://doi.org/10.1073/pnas.1620626114
|
[52]
|
Julien, O. and Wells, J.A. (2017) Caspases and Their Substrates. Cell Death & Differentiation, 24, 1380-1389. https://doi.org/10.1038/cdd.2017.44
|
[53]
|
Priem, D., van Loo, G. and Bertrand, M.J.M. (2020) A20 and Cell Death-Driven Inflammation. Trends in Immunology, 41, 421-435. https://doi.org/10.1016/j.it.2020.03.001
|
[54]
|
Yang, C., Lien, C., Tseng, Y., Tu, Y., Kulczyk, A.W., Lu, Y., et al. (2024) Deciphering DED Assembly Mechanisms in Fadd-Procaspase-8-Cflip Complexes Regulating Apoptosis. Nature Communications, 15, Article No. 3791. https://doi.org/10.1038/s41467-024-47990-2
|
[55]
|
Yuan, J., Amin, P. and Ofengeim, D. (2018) Necroptosis and Ripk1-Mediated Neuroinflammation in CNS Diseases. Nature Reviews Neuroscience, 20, 19-33. https://doi.org/10.1038/s41583-018-0093-1
|
[56]
|
Tian, Q., Liu, S., Han, S., Zhang, W., Qin, X., Chen, J., et al. (2022) The Mechanism and Relevant Mediators Associated with Neuronal Apoptosis and Potential Therapeutic Targets in Subarachnoid Hemorrhage. Neural Regeneration Research. https://doi.org/10.4103/1673-5374.346542
|
[57]
|
Mo, J., Enkhjargal, B., Travis, Z.D., Zhou, K., Wu, P., Zhang, G., et al. (2019) AVE 0991 Attenuates Oxidative Stress and Neuronal Apoptosis via Mas/PKA/CREB/UCP-2 Pathway after Subarachnoid Hemorrhage in Rats. Redox Biology, 20, 75-86. https://doi.org/10.1016/j.redox.2018.09.022
|
[58]
|
Yan, H., Zhang, D., Hao, S., Li, K. and Hang, C. (2014) Role of Mitochondrial Calcium Uniporter in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Molecular Neurobiology, 52, 1637-1647. https://doi.org/10.1007/s12035-014-8942-z
|
[59]
|
Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and Ros-Induced ROS Release. Physiological Reviews, 94, 909-950. https://doi.org/10.1152/physrev.00026.2013
|
[60]
|
Xu, W., Yan, J., Ocak, U., Lenahan, C., Shao, A., Tang, J., et al. (2021) Melanocortin 1 Receptor Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Controlling Mitochondrial Metabolism via AMPK/Sirt1/Pgc-1α Pathway in Rats. Theranostics, 11, 522-539. https://doi.org/10.7150/thno.49426
|
[61]
|
Zhou, J., Shen, R., Makale, E.C., Zhong, W., Chen, Z. and Huang, Q. (2022) SS31 Confers Cerebral Protection by Reversing Mitochondrial Dysfunction in Early Brain Injury Following Subarachnoid Hemorrhage, via the Nrf2-and Pgc-1α-Dependent Pathways. Neurochemical Research, 48, 1580-1595. https://doi.org/10.1007/s11064-022-03850-3
|
[62]
|
Liang, Y., Fu, W., Tang, Y., Ye, H., Wang, Y., Sun, C., et al. (2024) Selective Activation of G Protein-Coupled Estrogen Receptor 1 (GPER1) Reduces ER Stress and Pyroptosis via AMPK Signaling Pathway in Experimental Subarachnoid Hemorrhage. Molecular Neurobiology, 62, 871-884. https://doi.org/10.1007/s12035-024-04312-3
|
[63]
|
Zhao, Q., Che, X., Zhang, H., Fan, P., Tan, G., Liu, L., et al. (2017) Thioredoxin-Interacting Protein Links Endoplasmic Reticulum Stress to Inflammatory Brain Injury and Apoptosis after Subarachnoid Haemorrhage. Journal of Neuroinflammation, 14, Article No. 104. https://doi.org/10.1186/s12974-017-0878-6
|
[64]
|
Xu, W., Li, T., Gao, L., Zheng, J., Yan, J., Zhang, J., et al. (2019) Apelin-13/APJ System Attenuates Early Brain Injury via Suppression of Endoplasmic Reticulum Stress-Associated TXNIP/NLRP3 Inflammasome Activation and Oxidative Stress in a AMPK-Dependent Manner after Subarachnoid Hemorrhage in Rats. Journal of Neuroinflammation, 16, Article No. 247. https://doi.org/10.1186/s12974-019-1620-3
|
[65]
|
Tao, W., Zhang, G., Liu, C., Jin, L., Li, X. and Yang, S. (2023) Low-Dose LPS Alleviates Early Brain Injury after SAH by Modulating Microglial M1/M2 Polarization via USP19/FOXO1/IL-10/IL-10R1 Signaling. Redox Biology, 66, Article 102863. https://doi.org/10.1016/j.redox.2023.102863
|
[66]
|
Yang, L., Wu, J., Zhang, F., Zhang, L., Zhang, X., Zhou, J., et al. (2024) Microglia Aggravate White Matter Injury via C3/C3AR Pathway after Experimental Subarachnoid Hemorrhage. Experimental Neurology, 379, Article 114853. https://doi.org/10.1016/j.expneurol.2024.114853
|
[67]
|
Wu, Y., Xu, Y., Sun, J., Dai, K., Wang, Z. and Zhang, J. (2024) Inhibiting Ripk1-Driven Neuroinflammation and Neuronal Apoptosis Mitigates Brain Injury Following Experimental Subarachnoid Hemorrhage. Experimental Neurology, 374, Article 114705. https://doi.org/10.1016/j.expneurol.2024.114705
|
[68]
|
Labak, C.M., Shammassian, B.H., Zhou, X. and Alkhachroum, A. (2022) Multimodality Monitoring for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage: A Mini Review. Frontiers in Neurology, 13, Article 869107. https://doi.org/10.3389/fneur.2022.869107
|
[69]
|
Wu, C., Tsai, H., Su, Y., Tsai, C., Lu, Y. and Lin, C. (2022) 2-PMAP Ameliorates Cerebral Vasospasm and Brain Injury after Subarachnoid Hemorrhage by Regulating Neuro-Inflammation in Rats. Cells, 11, Article 242. https://doi.org/10.3390/cells11020242
|
[70]
|
Mariño, G., Niso-Santano, M., Baehrecke, E.H. and Kroemer, G. (2014) Self-Consumption: The Interplay of Autophagy and Apoptosis. Nature Reviews Molecular Cell Biology, 15, 81-94. https://doi.org/10.1038/nrm3735
|
[71]
|
Morselli, E., Shen, S., Ruckenstuhl, C., Bauer, M.A., Mariño, G., Galluzzi, L., et al. (2011) P53 Inhibits Autophagy by Interacting with the Human Ortholog of Yeast Atg17, RB1CC1/FIP200. Cell Cycle, 10, 2763-2769. https://doi.org/10.4161/cc.10.16.16868
|
[72]
|
White, E. (2016) Autophagy and P53. Cold Spring Harbor Perspectives in Medicine, 6, a026120. https://doi.org/10.1101/cshperspect.a026120
|
[73]
|
Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S. and Moll, U.M. (2012) P53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis. Cell, 149, 1536-1548. https://doi.org/10.1016/j.cell.2012.05.014
|
[74]
|
Galluzzi, L., Kepp, O. and Kroemer, G. (2012) Mitochondria: Master Regulators of Danger Signalling. Nature Reviews Molecular Cell Biology, 13, 780-788. https://doi.org/10.1038/nrm3479
|
[75]
|
Malik, S.A., Orhon, I., Morselli, E., Criollo, A., Shen, S., Mariño, G., et al. (2011) BH3 Mimetics Activate Multiple Pro-Autophagic Pathways. Oncogene, 30, 3918-3929. https://doi.org/10.1038/onc.2011.104
|
[76]
|
Gross, A. and Katz, S.G. (2017) Non-Apoptotic Functions of BCL-2 Family Proteins. Cell Death & Differentiation, 24, 1348-1358. https://doi.org/10.1038/cdd.2017.22
|
[77]
|
Eisenberg-Lerner, A. and Kimchi, A. (2011) PKD Is a Kinase of Vps34 That Mediates Ros-Induced Autophagy Downstream of DAPK. Cell Death & Differentiation, 19, 788-797. https://doi.org/10.1038/cdd.2011.149
|
[78]
|
Xu, H. and Qin, Z. (2019) Beclin 1, Bcl-2 and Autophagy. In: Advances in Experimental Medicine and Biology, Springer, 109-126. https://doi.org/10.1007/978-981-15-0602-4_5
|
[79]
|
Yu, W.X., Lu, C., Wang, B., et al. (2020) Effects of Rapamycin on Osteosarcoma Cell Proliferation and Apoptosis by Inducing Autophagy. European Review for Medical and Pharmacological Sciences, 24, 915-921.
|
[80]
|
Dong, Y., Wu, Y., Zhao, G.L., et al. (2019) Inhibition of Autophagy by 3-MA Promotes Hypoxia-Induced Apoptosis in Human Colorectal Cancer Cells. European Review for Medical and Pharmacological Sciences, 23, 1047-1054.
|
[81]
|
Zhang, Y., Xi, X., Mei, Y., Zhao, X., Zhou, L., Ma, M., et al. (2019) High-Glucose Induces Retinal Pigment Epithelium Mitochondrial Pathways of Apoptosis and Inhibits Mitophagy by Regulating ROS/PINK1/Parkin Signal Pathway. Biomedicine & Pharmacotherapy, 111, 1315-1325. https://doi.org/10.1016/j.biopha.2019.01.034
|
[82]
|
Pellegrini, F.R., De Martino, S., Fianco, G., Ventura, I., Valente, D., Fiore, M., et al. (2023) Blockage of Autophagosome-Lysosome Fusion through SNAP29 O-Glcnacylation Promotes Apoptosis via ROS Production. Autophagy, 19, 2078-2093. https://doi.org/10.1080/15548627.2023.2170962
|
[83]
|
Xu, D., Zhao, H., Jin, M., Zhu, H., Shan, B., Geng, J., et al. (2020) Modulating TRADD to Restore Cellular Homeostasis and Inhibit Apoptosis. Nature, 587, 133-138. https://doi.org/10.1038/s41586-020-2757-z
|
[84]
|
Saunders, T.L., Windley, S.P., Gervinskas, G., Balka, K.R., Rowe, C., Lane, R., et al. (2024) Exposure of the Inner Mitochondrial Membrane Triggers Apoptotic Mitophagy. Cell Death & Differentiation, 31, 335-347. https://doi.org/10.1038/s41418-024-01260-2
|
[85]
|
Liu, S., Jiang, T., Bu, F., Zhao, J., Wang, G., Yang, G., et al. (2024) Molecular Mechanisms Underlying the Birc6-Mediated Regulation of Apoptosis and Autophagy. Nature Communications, 15, Article No. 891. https://doi.org/10.1038/s41467-024-45222-1
|
[86]
|
Shao, A., Wang, Z., Wu, H., Dong, X., Li, Y., Tu, S., et al. (2014) Enhancement of Autophagy by Histone Deacetylase Inhibitor Trichostatin A Ameliorates Neuronal Apoptosis after Subarachnoid Hemorrhage in Rats. Molecular Neurobiology, 53, 18-27. https://doi.org/10.1007/s12035-014-8986-0
|
[87]
|
Li, T., Sun, K., Wang, H., Zhou, M., Ding, K., Lu, X., et al. (2015) Tert-Butylhydroquinone Ameliorates Early Brain Injury after Experimental Subarachnoid Hemorrhage in Mice by Enhancing Nrf2-Independent Autophagy. Neurochemical Research, 40, 1829-1838. https://doi.org/10.1007/s11064-015-1672-4
|
[88]
|
Zhou, K., Enkhjargal, B., Mo, J., Zhang, T., Zhu, Q., Wu, P., et al. (2021) Dihydrolipoic Acid Enhances Autophagy and Alleviates Neurological Deficits after Subarachnoid Hemorrhage in Rats. Experimental Neurology, 342, Article 113752. https://doi.org/10.1016/j.expneurol.2021.113752
|
[89]
|
Zou, L., Xu, S., Wang, C., Wu, P., Xu, C. and Shi, H. (2023) Methylated MFGE8 Promotes Early Brain Injury after Subarachnoid Hemorrhage and Inhibiting Autophagy of Nerve Cell. Translational Stroke Research, 16, 350-367. https://doi.org/10.1007/s12975-023-01217-6
|
[90]
|
Sun, C., Enkhjargal, B., Reis, C., Zhou, K., Xie, Z., Wu, L., et al. (2019) Osteopontin Attenuates Early Brain Injury through Regulating Autophagy-Apoptosis Interaction after Subarachnoid Hemorrhage in Rats. CNS Neuroscience & Therapeutics, 25, 1162-1172. https://doi.org/10.1111/cns.13199
|
[91]
|
Sun, C., Enkhjargal, B., Reis, C., Zhang, T., Zhu, Q., Zhou, K., et al. (2019) Osteopontin-Enhanced Autophagy Attenuates Early Brain Injury via FAK-ERK Pathway and Improves Long-Term Outcome after Subarachnoid Hemorrhage in Rats. Cells, 8, Article 980. https://doi.org/10.3390/cells8090980
|
[92]
|
Yang, J., Wu, Q., Li, Y., Zhang, Y., Lan, S., Yuan, K., et al. (2024) BL-918 Alleviates Oxidative Stress in Rats after Subarachnoid Hemorrhage by Promoting Mitophagy through the ULK1/PINK1/Parkin Pathway. Free Radical Biology and Medicine, 224, 846-861. https://doi.org/10.1016/j.freeradbiomed.2024.10.261
|
[93]
|
Dhingra, R. and Kirshenbaum, L.A. (2013) Mst-1 Switches between Cardiac Cell Life and Death. Nature Medicine, 19, 1367-1368. https://doi.org/10.1038/nm.3371
|