蛛网膜下腔出血后的细胞自噬与细胞凋亡
Autophagy and Apoptosis Following Subarachnoid Hemorrhage
DOI: 10.12677/acm.2025.1561763, PDF, HTML, XML,   
作者: 孙景山*, 张 健#:苏州大学附属第一医院神经外科,江苏 苏州
关键词: 蛛网膜下腔出血细胞自噬细胞凋亡Subarachnoid Hemorrhage (SAH) Autophagy Apoptosis
摘要: 蛛网膜下腔出血(subarachnoid hemorrhage, SAH)通常由颅内动脉瘤破裂引起,是一种高死亡率和致残率的神经危重症。SAH后会触发一系列的病理级联反应,其中,细胞自噬和细胞凋亡作为两个重要的生物学过程,参与SAH后神经损伤的发生与发展。细胞自噬是细胞内部受损或衰老的细胞器及蛋白质成分降解的过程,对维持细胞稳态和生存具有重要作用,在SAH后可发挥一定的神经保护作用。细胞凋亡则是一种程序性细胞死亡方式,在SAH后脑损伤的多个病理生理过程中扮演着重要角色。细胞自噬可以减轻细胞凋亡的诱导,而细胞凋亡的激活又会抑制细胞自噬;但在特殊情况下,过度自噬则会加重细胞凋亡的发生。开发有效的靶点进而精准调控细胞自噬并抑制细胞凋亡,可为SAH患者提供更为有效的治疗手段。本文结合SAH的疾病背景,对细胞自噬与细胞凋亡以及两者之间关系的研究做一综述。
Abstract: Subarachnoid hemorrhage (SAH), typically caused by ruptured intracranial aneurysms, represents a critical neurological condition with high mortality and disability rates. SAH triggers a cascade of pathological reactions, in which autophagy and apoptosis emerge as two pivotal biological processes contributing to the initiation and progression of neuronal injury following SAH. Autophagy is a process by which damaged or aged organelles and protein components within cells are degraded. It plays a crucial role in maintaining cellular homeostasis and survival, and exerts certain neuroprotective effects after SAH. In contrast, apoptosis, a programmed cell death modality, critically participates in multiple pathophysiological pathways of SAH-induced brain injury. Autophagy demonstrates the capacity to mitigate apoptosis induction, while conversely, apoptotic activation may suppress autophagic processes; however, under specific pathological contexts, excessive autophagy paradoxically exacerbates apoptotic pathways. The development of effective therapeutic targets to precisely modulate autophagy while suppressing apoptosis holds significant potential for advancing treatment strategies for SAH patients. This review integrates the disease context of SAH to summarize current research on cellular autophagy, apoptosis, and their interrelationship.
文章引用:孙景山, 张健. 蛛网膜下腔出血后的细胞自噬与细胞凋亡[J]. 临床医学进展, 2025, 15(6): 574-587. https://doi.org/10.12677/acm.2025.1561763

1. 前言

蛛网膜下腔出血(subarachnoid hemorrhage, SAH)通常指脑底部或表面的血管破裂,血液流入蛛网膜下腔的一种急性脑血管疾病,约85%的自发性蛛网膜下腔出血是由于脑动脉瘤破裂所致,尽管近些年在治疗方面取得了一定进展,但该病目前仍具有极高的致残率和死亡率[1]。SAH后触发的病理级联反应涉及血脑屏障破坏、微血管功能障碍、神经炎症、氧化应激、皮质扩散去极化、脑血管痉挛和迟发性脑缺血等多个环节[2],这些反应相互作用,导致SAH后的脑损伤,对患者的预后产生严重影响。SAH后会引发多种细胞死亡事件,如细胞凋亡、坏死性凋亡、细胞焦亡、铁死亡、细胞自噬等[3] [4]。细胞凋亡与细胞自噬是两种关键的细胞死亡机制,共同参与了SAH的多个病理过程。细胞凋亡在SAH后通过多种途径被激活,导致神经元的大量死亡,而自噬作为一种细胞自我修复的过程,在SAH后起到一定的神经保护作用,然而,过度自噬则可能加重神经元的凋亡,两者之间存在广泛的交联[5],因此,深入理解自噬与凋亡之间的作用关系,对于SAH神经保护药物的开发具有重要意义。

2. 蛛网膜下腔出血后的病理生理

SAH后造成神经损伤的发病机制主要是早期脑损伤(early brain injury, EBI),即发病后的72小时,以及延迟性脑缺血(delayed cerebral ischemia, DCI)。EBI是一种继发性脑损伤,包括微循环障碍、血脑屏障破坏、神经炎症、脑水肿、氧化应激和神经元死亡等过程。蛛网膜下腔出血后,由于血液外渗到蛛网膜下腔、脑室和实质,颅内压迅速升高,脑损伤立即开始发展[6]。血液分解后会产生多种有毒底物,从而催化产生活性氧以及激活神经炎症反应,微循环和血脑屏障被破坏,并产生脑水肿。这些病理性级联反应引起的细胞损伤导致神经元死亡,引起SAH急性期的神经功能障碍。血脑屏障主要由内皮细胞、周细胞、基底膜和星形胶质细胞的终足共同组成,主要功能是保护中枢神经系统免受血液中有害物质的侵害,维持脑内环境的稳定。这种保护作用是通过内皮细胞与壁细胞、免疫细胞、胶质细胞和神经细胞的相互作用所维持[7]。SAH后血脑屏障功能受损,导致白细胞浸润、毒素流入,继而诱发炎症和氧化级联反应[8]。在SAH发生后,内皮细胞和血管周围星形胶质细胞出现凋亡,血细胞的代谢分解产物刺激细胞炎症因子的表达,诱导各类细胞死亡事件的发生,也促进了降解血脑屏障的酶等物质的生成,在多重因素的打击下,血脑屏障的各个细胞成分及相互紧密的作用关系遭到破坏,使血脑屏障丧失了其特有的神经保护功能[6]。SAH后出现外周血白细胞浸润,其中浸润的中性粒细胞会刺激脑内驻留的小胶质细胞,继而引起多种神经炎症相关通路的激活[9],这些炎症信号又增加了中枢趋化因子的表达,进而募集更多外周血中的中性粒细胞、单核细胞和其他免疫细胞,这种免疫级联反应是EBI阶段造成神经损伤的重要因素。大脑在SAH后极易受到氧化损伤,大脑高代谢的需求会产生大量的氧自由基,这些自由基具有一定的神经毒性,大脑利用内源性谷胱甘肽依赖的抗氧化系统维持氧化平衡,减缓毒性自由基的产生。SAH后,脑组织升高的代谢需求和细胞呼吸链的受损导致过量的自由基产生,并且进入大脑的血液成分也会引起脂质过氧化,加重氧自由基的生成[10],使得原本的抗氧化系统不足以抵消这类毒性产物[11]。在细胞水平上,氧化应激可破坏磷脂、蛋白质、核酸和其他大分子,导致各类细胞死亡、血管内皮损伤和血脑屏障的破坏[2] [12]。SAH还会引起肺、心脏和全身炎症功能障碍,这可能会加剧EBI期间继发性脑损伤的过程[2]。血脑屏障破坏、脑水肿、神经炎症和氧化级联反应导致了多种神经元死亡事件,包括细胞凋亡、细胞焦亡、细胞铁死亡等,也引发了一些保护机制如细胞自噬,这些细胞事件共同参与到SAH后的多个病理过程,相互存在着广泛的交联。

3. 蛛网膜下腔出血后的细胞自噬

3.1. 细胞自噬的分类及机制

自噬是一种细胞自我牺牲的机制,在维持细胞稳态、生存中起着重要作用,到目前为止,根据自噬底物被递送到溶酶体方式上的不同,自噬被分为了三种主要类型,即巨噬、微自噬和伴侣介导的自噬[13]。除了三种主要的自噬途径,还有一些细胞器的特异性自噬在近几年也逐步得以阐述。巨噬,可以将细胞质内的特定成分进行降解,主要过程是被锁定的目标成分先被一种叫做自噬体的双层膜囊泡结构所隔离,再将其输送到溶酶体中进行降解;微自噬,则不通过囊泡,由胞内溶酶体将胞质特定成分直接摄取并降解[14]。伴侣介导的自噬,是底物蛋白的一段特殊氨基酸序列与细胞质内的热休克蛋白HSP70相结合后形成特定复合物,然后被溶酶体上的特定受体LAMP2A锚定后,进行摄取和降解的过程[15]

哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)是自噬调控的重要分子,mTOR可以同多种底物蛋白相结合,进而形成mTOR复合物,根据该复合物对雷帕霉素敏感性的不同,又分为了mTORC1和mTORC2 [16]。目前哺乳动物经典的自噬途径是由mTORC1控制营养感知所介导的,即通过mTORC1来控制营养感知,从而调节自噬的激活[17]。如腺苷单磷酸(AMP)在能量获得缺失时被激活成腺苷单磷酸激酶(AMPK),同时,mTOR受到抑制,从而启动组装自噬初始复合体的过程,该过程是自噬激活的必要途径。自噬初始复合体由ULK1、FIP200和ATG13等蛋白分子组装而成[18]。ULK1发生磷酸化,继而招募ATG9和PI3KC3复合物,其中PI3KC3主要由Beckin1、PI3K、VPS34、NRBF2及Beclin1相关的自噬激活分子AMBRA1所组成[19]。自噬起始阶段,ULK1通过去磷酸化(如mTORC1抑制)或被特定激酶(如AMPK)磷酸化而激活。活化的ULK1磷酸化AMBRA1,使其从微管释放并转位至内质网,进而启动自噬体的形成;PI3KC3复合体则产生三磷酸磷脂酰肌醇(PI3P),下游的泛素样偶联系统ATG5-ATG12系统和ATG8-LC3-PE系统通过识别PI3P,进一步被招募,以上两个偶联系统与自噬体的弯曲、延展、闭合及LC3的脂化(LC3Ⅰ与PE结合形成LC3Ⅱ)过程密切相关[20]。当自噬体闭合及LC3脂化后,LC3发生多种运动,与运动接头蛋白、动力蛋白及微管互相作用,最后使得已闭合的LC3标记的自噬体与溶酶体相融合[21]。mTORC1的活性受到多种因素的调节,在生长因子的刺激下,PI3KI激活蛋白激酶B (PKB,也称为Akt),引起细胞质膜脂质发生磷酸化反应,最终激活mTORC1信号通路从而抑制自噬[22]。TSC1/2复合物可以通过小GTP酶Rheb抑制mTORC1的活性,从而调控细胞生长和自噬。然而,当PKB (Akt)信号通路过度激活后,TSC2会发生磷酸化,并阻碍其与TSC1相互作用,进而解除对mTORC1的抑制,从而促进自噬[23]。AMPK通路可以通过mTORC1调节自噬,当细胞能量供应不足或存在钙信号时,AMP/ATP比值上升,AMPK被激活,然后在TSC1/TSC2复合物及小GTP酶Rheb的协助作用下,抑制mTORC1的活性[24]。mTORC2介导来自生长因子受体和G蛋白偶联受体的信号,目前有关mTORC2的研究,多数和糖代谢及葡萄糖摄取的调控相关[25],最近的一项研究发现,mTORC2通过其下游效应酶SGK1调控线粒体膜通透性(mPTP),进而影响自噬活性,mTORC2突变会导致线粒体膜通透性增加,触发过度的非选择性自噬,影响线虫和哺乳动物的寿命[26]。有关mTORC2如何调控细胞自噬,还有待进一步研究。

在自噬发生的过程中,线粒体起到了不可或缺的作用。早期的研究发现,线粒体外膜通过募集ATG5及LC3,为自噬后续过程提供了锚定位点,并在自噬体延长过程中提供部分脂质。线粒体内的Bif1蛋白,通过与自噬正调节复合体UVRAG和Beclin1结合,从而促进自噬发生[27]。线粒体的Sirt1蛋白,通过与ATG5、ATG7和LC3及ATG8相互作用可以促进自噬[28]。细胞线粒体自噬是指细胞通过自噬机制选择性地包裹和降解受损的线粒体,从而维持线粒体和细胞内稳态。线粒体自噬主要分为两类:泛素(ubiquitin, Ub)依赖途径和泛素独立途径。目前研究最为广泛的泛素依赖途径是PTEN诱导的PINK1/Parkin通路,与哺乳动物中受损线粒体的消除密切相关[29]。受损的线粒体,其外膜累积大量PINK1,Parkin在非活性状态下处于自抑制构象,Parkin及其底物Ub在Ser65位点被PINK1磷酸化,从而激活Parkin的E3连接酶活性[30],激活后的Parkin与PINK1相互作用,并通过Ub链修饰线粒体来放大自噬信号,泛素化的线粒体蛋白能够被自噬接头蛋白Sequestosome-1 (p62/SQSTM1)识别,p62将这些泛素化的底物与自噬体连接,最终通过自噬–溶酶体途径清除受损线粒体及泛素化蛋白[31]。此外,在受损线粒体中,泛素通过其Ser65位点的磷酸化形成pSer65-Ub,这种修饰的泛素在线粒体外膜上大量积累,激活E3泛素连接酶Parkin,使其招募泛素化受体蛋白OPTN和NDP52 [32],OPTN和NDP52通过一段LC3作用区,与LC3相互作用,对线粒体进一步锚定后促使其进入自噬状态[33]。此外,还有一些不依赖细胞泛素化的自噬路径,包括BNIP3L受体、BNIP3受体介导自噬途径等[34]

3.2. 蛛网膜下腔出血后的细胞自噬

既往的多项研究从收益和损伤两个方面对SAH后的细胞自噬做了有关报道,Lee等人在改良的血管内穿刺模型中发现,SAH发生后,同侧大脑额基底皮层的自噬–溶酶体通路被激活,并持续整个早期脑损伤阶段。SAH后24小时,在电子显微镜下观察到神经元中有大量自噬囊泡,证明SAH后的EBI阶段,神经细胞中自噬–溶酶体系统活性增强[35]。自噬激活可以抑制促凋亡蛋白Bax从细胞质向线粒体膜的转移,继续减轻了由Bax介导的线粒体外膜通透性的增加,减少细胞色素c的释放,从而减轻细胞凋亡[36]。在视交叉前池注血的SAH动物模型中检测到皮层中LC3Ⅱ和Beclin1的表达明显增加,并在24小时达到峰值,表明SAH后大脑中自噬–溶酶体系统被激活,通过自噬激活剂雷帕霉素的干预,皮层LC3Ⅱ和Beclin1的表达显著增加,皮层内凋亡蛋白的表达则显著减少,SAH引起的神经功能障碍得以改善;而使用3-MA自噬抑制剂后,LC3Ⅱ和Beclin1的表达下调,皮层的凋亡增加,SAH引起的神经功能障碍加重[37]。在SAH小鼠的脑组织中观察到小胶质细胞S100A8的表达显著增加,特异性下调小胶质细胞的S100A8后,SAH后小鼠的神经功能和神经元凋亡有所改善,下调BV2细胞S100A8的表达后,自噬相关基因转录水平降低,铁死亡相关基因的表达降低,细胞共培养模型中神经元的凋亡相关蛋白表达减少,其机制可能是S100A8通过NCOA4途径调控小胶质细胞的自噬依赖性铁死亡[38]。SAH与线粒体自噬之间的相关研究也被逐步报道,既往的实验性SAH的研究中发现,PINK1/Parkin依赖性和PINK1/Parkin非依赖性线粒体自噬通路的相关标志性蛋白,包括PINK1、Parkin、LC3-II/LC3-I、ATG5和NIX,均有所升高[39] [40]。尽管线粒体自噬在不同程度的激活后会有对细胞有保护或促进死亡这双向效应,但根据目前的多数研究结果,更倾向于在SAH后的早期脑损伤阶段,线粒体自噬具有保护细胞的作用。在EBI期间,促进线粒体自噬可能是减轻神经损伤的有益选择。例如,线粒体靶向抗氧化剂Mitoquinone通过Keap1/Nrf2/PHB2通路激活线粒体自噬,减轻神经元因氧化应激所致的细胞死亡[41]。二甲双胍可以激活线粒体自噬,并通过AMPK通路减轻细胞的氧化应激,继而减轻SAH后的神经元损伤[42]。Clemastine通过毒蕈碱乙酰胆碱受体M4结合,阻止Nrf2通过Nrf2/Keap1/SQSTM1通路降解并促进Nrf2核转位,从而增强自噬相关基因转录,改善SAH后的脑损伤[43]。值得注意的是,有研究报道了FGF-2处理SAH的大鼠后,观察到自噬相关蛋白LC3II和Beclin-1的表达水平明显降低,而TUNEL阳性细胞的数量有效减少,并降低了脑水含量。FGF-2通过激活PI3K/Akt通路来抑制SAH后的自噬,具有神经保护作用。LY294002作为PI3K/Akt通路的抑制剂,阻止了FGF-2对自噬的抑制作用,导致自噬水平增强,加剧了细胞损伤[44]。在视交叉前池注血的SAH模型中,经过低剂量或中剂量的半胱氨酸蛋白酶抑制剂Cystatin C预处理后,mTOR信号通路受到抑制,神经元自噬水平提高,减轻了血脑屏障的损伤及脑水肿的程度,SAH后的神经功能障碍得以改善,然而,报道中指出高剂量治疗可能会对SAH大鼠的大脑产生毒性作用[45];在一项褪黑素的研究中发现,褪黑素可以通过激活Nrf2-ARE信号通路提高LC3-II/LC3-I比值来增强自噬活性,从而减轻SAH后早期脑损伤阶段的神经元凋亡,改善神经功能[4]。另一项研究则指出,褪黑素能够抑制ROS的产生并激活MST1信号通路,从而抑制细胞凋亡和自噬的过度激活,发挥神经保护作用[46]。这表明,SAH后的自噬过程本身是一个复杂的调控网络,涉及多种信号通路,在不同时相或干预措施下可能产生不同的生物学效应。

4. 蛛网膜下腔出血后的细胞凋亡

4.1. 细胞凋亡的分类及机制

有关细胞死亡机制的效应蛋白先后在秀丽隐杆线虫和哺乳动物中发现,如caspase和BCL-2蛋白。在哺乳动物中,根据细胞感知和凋亡触发器的不同,细胞凋亡又分为了内源性凋亡和外源性凋亡。外源性凋亡是通过激活细胞质膜上的死亡受体而发生,内源性凋亡则是在没有死亡受体参与的情况下启动的[47]。内源性凋亡就是当细胞内发生改变,如线粒体、DNA损伤等,该途径被激活,比如失巢凋亡就是一种内源性凋亡,当某些细胞失去整合素介导的细胞与细胞外基质的附着作用后,该途径被激活[4]。BCL-2家族蛋白在内源性凋亡中起着重要作用,作为细胞凋亡的上游调控因子,最初被作为一种致癌基因分离出来,其功能是促进细胞存活。在哺乳动物BCL-2家族中,又有抗凋亡和促凋亡的成员[48],该蛋白家族存在一到四个BCL-2同源结构域,这些结构域介导促凋亡和抗凋亡家族成员之间的相互作用,进而激活或抑制细胞凋亡的发生[49]。生理性的细胞凋亡在动物发育过程中尤为重要,高水平的BCL-2蛋白具有抗凋亡的作用,抑制该细胞死亡途径的激活。当出现氧化应激、DNA损伤或能量代谢障碍时,BCL-2基因家族中促凋亡的成员转录表达,从而驱动凋亡信号通路,进而引起线粒体外膜通透性的改变[50]。促凋亡BCL-2蛋白(BIM、BID、BAD、NOXA和PUMA),它们仅包含BH3这一结构域,通过该结构域有效抑制抗凋亡的BCL-2相关蛋白(BCL-2、BCL-xL、MCL-1和BCL-W),进而激活促凋亡蛋白BAX和BAK,在BAX和BAK作用下,线粒体外膜形成多个低聚孔道,细胞色素c和caspase激活剂SMAC从线粒体中释放,促进下游caspase分子级联效应[49]。另外,凋亡蛋白酶激活因子1 (apoptotic protease activating factor 1, APAF1),促进caspase-9的激活,进而引起下游caspase-3和caspase-7的裂解。这些caspase可以裂解相应的蛋白质底物,导致细胞发生破坏和凋亡[51]。外源性凋亡由细胞质膜上的死亡受体介导,如TNFR1、Fas、TRAIL和TRAIL-R2,死亡受体的最主要特征是存在一段死亡结构域(DD)。当TNF与TNFR1结合并致其活化后形成复合体I,激活的TNFR1的死亡结构域(DD)会招募含有DD的适配蛋白TRADD和RIPK1,TRADD进而介导TRAF2、TRAF5、cIAP1和cIAP2的招募,这些蛋白催化复合物I上的K63连接、K48连接和K11连接的多聚泛素化。cIAP1和cIAP2生成的多聚泛素链用于招募其他复合物I组分,如线性泛素链组装复合物(LUBAC)。LUBAC由催化组分HOIP(RNF31)、HOIL1和SHARPIN组成,它们催化复合物I组分(如RIPK1、NEMO、A20、TRADD和TNFR1)上M1链的泛素化。复合物I上的泛素链还用于招募关键激酶,如TAK1-TAB1-TAB2-TAB3复合体和NEMO-IKKα-IKKβ激酶复合体,进而激活NF-kB,并对RIPK1进行抑制性磷酸化反应[47]。在活细胞中,泛素化的复合物I与经典的NF-kB通路的激活密切相关,NF-kB转录通路与促炎和促生存相关,可以调控CFLAR和TNFAIP3的表达,而这两个基因编码凋亡和炎症的关键调控因子。由TNFAIP3编码的A20是一种泛素链编辑酶,可修饰RIPK1的泛素化从而控制其激酶活性[52]。CFLAR编码多种c-FLIP亚型,其氨基酸序列与caspase-8相似但缺乏酶活性,它能够直接结合并激活caspase-8 [53]。TNF激活TNFR1后还可以促进RIPK1非依赖性细胞凋亡或RIPK1依赖性细胞凋亡(RIPK1-dependent apoptosis, RDA)。通过TNF和环己酰亚胺(cycloheximide,NF-kB下游翻译的阻断剂)处理后可诱导出RIPK1非依赖性凋亡,当RIPK1泛素化和磷酸化出现失调则会促进RDA的发生。当cIAP1、cIAP2、LUBAC或NEMO有缺失,或抑制TAK1、TBK1和IKKs,或是RIPK1激酶活性因Ub受体位点过度激活后,激活的RIPK1促进复合体IIa的形成,其组成包括RIPK1、FADD和caspase-8,进而激活caspase-8促进RDA的发生。RIPK1的激活是复合物IIa形成的关键检查点,抑制RIPK1的激酶活性可有效阻断RDA [54]

4.2. 蛛网膜下腔出血后的细胞凋亡

颅内动脉瘤破裂后的72小时内,即早期脑损伤阶段,该时期被认为是SAH预后不良的最主要因素,其潜在机制包括神经元凋亡、神经炎症、氧化应激和血脑屏障破坏[55]。经过数十年的研究发现,线粒体功能障碍所引发的细胞凋亡被认为是SAH后EBI造成神经损害的重要参与因素[56]。SAH后ROS的增加和钙超载可以介导线粒体通透性转换孔(mitochondrial permeability transition pore, mPTP)的持续开放,导致细胞色素c和凋亡诱导因子AIF从线粒体释放到细胞质中[57],在较高的ROS水平下,mPTP的长时间开放可引发ROS的爆发,从而导致线粒体和细胞的破坏。环孢素A能够抑制线粒体mPTP的开放,显著减少细胞色素c和AIF的表达,从而减轻SAH大鼠模型皮质神经元的凋亡和神经行为缺陷[58],黑皮质素1受体(melanocortin 1 receptor, MC1R)参与调控能量代谢和细胞保护,在SAH的一项研究中发发现,MC1R通过调控AMPK/SIRT1/PGC-1α信号通路,维持线粒体膜电位,减少ROS的产生,抑制caspase-3的激活,从而减轻SAH后的氧化应激和神经元凋亡[59]。SS31是一种靶向线粒体的抗氧化肽,通过激活Nrf2,增强抗氧化酶(如HO-1、NQO1)的表达,减轻氧化应激,通过激活PGC-1α,促进线粒体的生物合成和功能恢复,减少ROS的产生,抑制caspase-3的激活,从而减轻大鼠SAH后的氧化应激和神经元凋亡[60]。SAH后的内质网应激造成的神经凋亡也在近些年被逐步阐明。SAH后内质网应激的过度激活导致钙释放的异常及氧化应激,进而触发下游的级联反应,导致炎症和凋亡[61]。TXNIP是一种调节氧化应激和炎症的关键蛋白,在大鼠SAH模型中,TXNIP的表达显著上升,内质网应激标志物(如GRP78、CHOP)及凋亡相关蛋白(如caspase-3、BCL-2/Bax)也明显上升,下调TXNIP表达或药物抑制TXNIP后,内质网应激标志物及凋亡相关蛋白明显下降[62]。在SAH动物模型中,内质网应激相关的TXNIP/NLRP3炎症小体和氧化应激被激活,导致神经元凋亡,Apelin-13/APJ系统通过AMPK依赖性方式抑制内质网应激相关的炎症及神经元凋亡,从而减轻SAH后的神经损伤[63]。小胶质细胞在SAH后引发的神经炎症加重神经元凋亡,是导致SAH后神经功能损害的重要原因。小胶质细胞是中枢神经系统中的固有免疫细胞,在SAH后被激活并分化为促炎性M1型或抗炎性M2型,分别加剧或减轻神经炎症,进而影响神经元的凋亡水平。低剂量脂多糖(lipopolysaccharide, LPS),是一种免疫调节剂,在一项研究中发现,其通过USP19/FOXO1/IL-10/IL-10R1信号通路,促进小胶质细胞由促炎性的M1型向抗炎性M2型转化,从而减轻神经炎症,抑制凋亡蛋白caspase-3的激活并调节BCL-2/Bax比例,进而减轻神经功能的损害[64]。补体系统是先天免疫系统的重要组成部分,研究者在SAH的大鼠模型中发现小胶质细胞通过C3/C3aR通路加重了炎症反应,促使神经元凋亡,加剧SAH后的白质损伤[65]。SAH后除了神经元线粒体功能异常及小胶质细胞诱发炎症进而诱导神经元发生凋亡外,血红蛋白分解产物还可以直接通过激活神经元TNF受体进而诱发神经元的凋亡,研究发现,神经元细胞在血红蛋白的作用下,通过TNFR1受体进一步触发RDA (RIPK1激酶依赖性细胞凋亡),在RIPK1的特异性抑制剂Nec-1s干预后,神经元的细胞凋亡得以减轻,而体内实验进一步发现抑制RDA后SAH小鼠的神经功能缺陷得到明显改善[66]。SAH后大量的血液流入蛛网膜下腔,导致急性颅内高压,并引起广泛的炎症、氧化应激及能量代谢异常,导致内皮细胞、周细胞、星形胶质细胞等发生凋亡,血脑屏障被破坏,这是继发性脑损伤关键的病理发病机制[67]

即使度过早期脑损伤(EBI)阶段,迟发性脑缺血(DCI)仍然严重威胁患者的预后,既往的临床研究表明,脑血管痉挛是导致DCI的因素之一[68]。SAH后,血细胞内容物释放到蛛网膜下腔,诱导大量炎症因子的产生,导致神经炎症的发生和血脑屏障功能的丧失,引起神经元和内皮细胞的凋亡,该过程被认为是SAH后脑血管痉挛的可能机制。有研究发现,在动物48小时的SAH模型中,有明显的血管内皮细胞凋亡及脑血管痉挛,化合物2-PMAP通过TLR-4/NF-kB通路抑制了小胶质细胞介导的神经炎症,减轻了内皮细胞的凋亡及脑血管痉挛,实验动物的神经功能障碍得以改善[69]。SAH后,不同程度的坏死血管组织中存在凋亡,这与痉挛性动脉平滑肌细胞的增殖有关。大血管痉挛进而导致SAH后的脑缺血,持续且不可逆的损伤最终导致DCI及不良预后,细胞凋亡被认为是与迟发性神经功能恶化和长期预后不良相关的关键因素之一[55]

5. 蛛网膜下腔出血后细胞自噬与细胞凋亡的串扰

细胞自噬和细胞凋亡分别控制细胞的运转,在许多应激条件下细胞内的自噬和凋亡可以先后发生。自噬会阻断凋亡的诱导,而凋亡相关的caspase蛋白的激活又会抑制自噬。但是当出现一些特殊时,自噬或自噬相关蛋白可能诱导细胞凋亡。当细胞自噬过度降解自身胞质或细胞器时,会导致自噬性的细胞死亡。自噬和凋亡之间的转化对于维持细胞稳态和清除受损细胞显得尤为关键,在疾病的发生发展中扮演着重要角色。多数情况下,引起细胞凋亡的刺激也首先引起细胞自噬,而在细胞凋亡发生之前,抑制相关的凋亡蛋白,则会促进自噬的发生[70]

早期的研究发现,细胞内应激引起的许多信号转导途径能够同时调节自噬和凋亡,包括p53、BH3-only蛋白和BH3样物、DAPK和JNK所参与的通路。正常情况下,p53存在于细胞质中,通过与自噬蛋白FIP200作用,使得ULK1-FIP200-ATG13-ATG101复合物的形成受阻,从而抑制后续自噬体的形成[71]。当细胞处在应激条件下时,胞质内一部分p53会转位到细胞核中,与促自噬基因的启动子区结合,诱导自噬的发生。p53又可以调节促凋亡基因的转录,从而诱导凋亡[72]。还有一部分p53则会转位到线粒体中,与亲环素D (cyclophilin D)相互作用,促进线粒体膜上PTP孔道的开放,触发线粒体外膜通透作用MOMP,从而诱导线粒体自噬和凋亡的发生[73]。这种孔道在低水平的开放时,可以诱发线粒体自噬,当超过一定阈值后,则会触发细胞死亡事件的发生[74]。BH3-only蛋白和BH3样物:Beclin1作为VPS34的必要共激活因子,当BCL-2与Beclin1结合时,Beclin1无法促进自噬发生过程中PI3K的形成,自噬受到抑制,而BCL-2仍具有促进凋亡的活性,多种BH3-only蛋白,如BAD、BID、BNIP3、NIX (也称为BNIP3L)、NOXA (也称为PMAIP1)和PUMA,与BCL-2一样拥有同源结构域,可以竞争性地破坏其两者之间的结合,促进Beclin1恢复活性,进而促进自噬的发生[75]。BH3-only蛋白NIX,定位于线粒体上,可以促进线粒体自噬的发生,它的另一种蛋白BIM也可与Beclin1结合,发挥抑制自噬的作用。当Beclin1与BCL-2结合形成复合体后,BCL-2抑制凋亡的作用被继续保留,但Beclin1却丧失了促进自噬的作用。Beclin1与BCL-2之间的相互作用,可被BH3-only蛋白和BH3样物破坏,Beclin1促进自噬的活性进而得以恢复。综合以上方面,使得BH3-only蛋白和BH3样物对自噬和凋亡交互的作用显得并不明晰。从而当不同阶段的p53对BH3-only蛋白和BH3样物的表达水平进行调节时,很难去准确判断其影响[76]。DAPK可促进Beclin1的磷酸化,使其从Beclin1-BCL-2复合体中分离,此外还可以激活蛋白激酶D (PKD),后者激活VPS34的磷酸化,两种方式都会促进Beclin1-VPS34复合物的形成,促进自噬[77]。Beclin1和VPS34的磷酸化并没有使其丧失自噬生成过程中的作用,但BCL-2的磷酸化会导致其失去功能。JNK通过磷酸化BCL-2破坏BCL-2-Beclin1复合体,还通过磷酸化BIM破坏BIM-Beclin1复合体,这样既促进自噬,又促进了凋亡[78]。此外,AKT激酶介导的多种通路,对自噬和凋亡也存在双重调控[70]。雷帕霉素通过抑制mTOR信号通路,诱导自噬并激活凋亡途径,从而抑制骨肉瘤细胞的增殖并促进其凋亡[79]。细胞自噬和凋亡受到多种共同上游信号的控制,但这些过程也相互交叉调控,自噬降低了细胞发生凋亡的倾向,而凋亡程序的激活则伴随着自噬的抑制,特定情况下,也会出现自噬与凋亡同步诱导或抑制等情况,此外,在一些情况下,则是以抑制自噬,促进凋亡为主。在直肠癌的一项研究中发现,3-MA通过抑制自噬显著增强了缺氧条件下结直肠癌细胞的凋亡[80]。在高糖环境下糖尿病视网膜病变的研究中发现,高糖环境抑制了PINK1/Parkin介导的线粒体自噬,导致视网膜色素上皮细胞的凋亡增加[81]。SNAP2通过特定的修饰,改变其空间构象后,进而阻断自噬溶酶体融合,促进ROS的产生,并最终诱导细胞凋亡[82]。近些年,研究者们渴望探寻到具有多重调节作用的靶点。研究者通过化合物筛选,发现了通过调节TRADD可同时抑制RIPK1的活化和激活自噬的化合物Apostatine-1和ICCB-19,在维持细胞稳态中发挥重要作用[83]。线粒体通过其内膜的暴露参与内源性细胞凋亡过程,而线粒体内膜的暴露还会引发一种独特的凋亡性线粒体自噬,这种自噬利用了经典的自噬体形成机制,从而将受损的线粒体清除[84]。最新的一项研究中发现,泛素连接酶BIRC6通过UBC结构域抑制细胞凋亡,对细胞自噬进行抑制或促进双向的调控[85]

以往关于SAH的多项研究中发现,通过促进细胞自噬,可以有效抑制细胞凋亡的发生。曲古柳菌素(trichostatin, TSA)可以抑制组蛋白去乙酰化,从而降低组蛋白与Beclin1基因序列的结合体,增强部分转录因子与Beclin1启动子的结合,从而促进Beclin1的转录和表达,其在SAH后的24 h显著提高了Beclin1和LC3-II/LC3-I的比值,同时可降低凋亡相关蛋白Bax和cleaved-caspase3的表达,其机制可能是通过促进细胞自噬,进而吞噬受损的线粒体和一些促凋亡蛋白如Bax和caspase-3 [86]。tBHQ是一种常用Nrf2激活剂,通过激活Keap1/Nrf2/ARE通路改善脑损伤,此外,研究发现tBHQ通过Nrf2非依赖的自噬通路,减少神经元的细胞凋亡,在tBHQ治疗24小时后,观察到自噬增强和凋亡相关蛋白(BCL-2、Bax和cleaved caspase-3)的下调,SAH小鼠经治疗后的神经功能评分也得到改善[87]。通过给SAH大鼠注射二氢硫辛酸(dihydrolipoic acid, DHLA),在SAH后24小时自噬相关蛋白的表达有所增加,细胞凋亡相关蛋白的表达有所下调,并减轻了神经功能缺损。LAMP1可以促进自噬体的形成和自噬进程,研究发现LAMP1在SAH后逐渐下降,其表达随着自噬的变化而变化,通过DHLA增加了神经元LAMP1和Beclin1的表达,且提高LC3-II、Beclin1、ATG5、BCL-2的表达,降低了p62、Bax和cleaved caspase-3的表达,增强SAH后的自噬并减轻SAH后的神经元凋亡[88]。在SAH小鼠中发现,DNMT1促进MFGE8启动子区甲基化并下调MFGE8水平;恢复MFGE8下调P2X7R,并通过限制PI3k/Akt/mTOR的激活促进自噬,减少海马神经元的凋亡,对SAH小鼠的脑组织发挥保护作用[89]。另一项研究发现,caspases可能是自噬和凋亡之间串扰的分子开关节点,骨桥蛋白(osteopontin, OPN)通过调节caspase-3和Beclin1之间的相互作用,激活大鼠SAH后24小时的自噬,抑制凋亡[90]。进一步的研究发现,OPN通过FAK-ERK信号通路增强大鼠神经元自噬,进而减少细胞凋亡,减轻大鼠蛛网膜下腔出血后的脑损伤[91]。在血管内穿孔的大鼠SAH模型中,注射小分子ULK1激动剂BL-918,在SAH诱导前将PINK1-siRNA注入侧脑室,而ULK1抑制剂SBI在SAH建模前进行腹膜内给药,研究显示,SAH后p-ULK1、PINK1、Parkin和LC3II的表达水平升高,BL-918使p-ULK1、PINK1、Parkin、LC3II、BCL-XL和BCL-2的表达增加,同时抑制了Bax和cleaved caspase-3的表达,表现出抗氧化应激和抗凋亡作用,并使大鼠的神经功能改善,降低脑水含量和血脑屏障通透性,BL-918的积极作用可分别被SBI和PINK1siRNA逆转,表明BL-918可能通过ULK1/PINK1/Parkin途径促进线粒体自噬,消除受损的线粒体,进而减少细胞凋亡的发生[92]

SAH后自噬的发生并非完全抑制凋亡,例如,一项研究发现FGF-2通过激活PI3K/Akt通路来抑制SAH后的自噬,起到神经保护的作用,其原因可能是SAH后受损的线粒体促进大量未成熟的自噬体的产生,这些自噬体在SAH后失去了正常的吞噬功能,受损的线粒体与未成熟的自噬体进一步加重了细胞凋亡[44];另一项研究中发现,褪黑素可能通过抑制ROS-MST1途径减少了SAH后的细胞自噬和凋亡,进而改善SAH引起的神经功能损伤和脑组织水肿。褪黑素通过减弱氧化应激、抑制神经炎症及减少神经元凋亡等改善细胞间环境,因此,褪黑素下调自噬,以响应细胞间环境的改善。细胞激酶MST1可能是通过改变BCL-2、Bax和Beclin1的表达或关联来调节凋亡和自噬的关键分子,SAH后脑内活性氧含量增加,增加的活性氧促进MST1的裂解为cl-MST1,cl-MST1被转移到细胞核中并磷酸化多个组蛋白,进而诱导神经元细胞凋亡。同时,MST1介导的Beclin1磷酸化水平下降和BCL-2表达减少导致BCL-2/Beclin1复合物的解离,从而增强细胞自噬[46] [93]

在SAH早期自噬的激活多具有保护作用,能够减少神经元凋亡并改善脑损伤,然而,过度自噬又会加剧神经元的损伤,引起细胞凋亡的增多。两者之间的交互关系与细胞所处环境高度相关,如何调控两者之间的复杂关系,仍需进一步探索其具体机制。

6. 总结展望

蛛网膜下腔出血(SAH)涉及众多病理生理过程和广泛的细胞内信号通路事件,细胞凋亡和细胞自噬是两个关键的生物学过程,它们共同参与了蛛网膜下腔出血后脑损伤的发生与发展。两者之间存在的广泛交互作用,为未来的治疗策略提供了丰富的研究基础。筛选有效的作用靶点进而精准调控自噬活性以发挥其保护作用,同时减轻凋亡途径的激活,实施综合治疗的策略,对于减轻SAH患者的脑损伤及提高远期的生活质量具有重要意义。目前的研究虽取得一定进展,但仍需要进一步探索两者之间的相互作用机制,以期为SAH患者提供更有效的治疗手段。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Pirault, J. and Bäck, M. (2018) Lipoxin and Resolvin Receptors Transducing the Resolution of Inflammation in Cardiovascular Disease. Frontiers in Pharmacology, 9, Article 1273.
https://doi.org/10.3389/fphar.2018.01273
[2] Zhang, Z., Zhang, A., Liu, Y., Hu, X., Fang, Y., Wang, X., et al. (2022) New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria. Current Neuropharmacology, 20, 1278-1296.
https://doi.org/10.2174/1570159x19666211101103646
[3] Friedrich, V., Flores, R. and Sehba, F.A. (2012) Cell Death Starts Early after Subarachnoid Hemorrhage. Neuroscience Letters, 512, 6-11.
https://doi.org/10.1016/j.neulet.2012.01.036
[4] Sun, B., Yang, S., Li, S. and Hang, C. (2018) Melatonin Upregulates Nuclear Factor Erythroid-2 Related Factor 2 (Nrf2) and Mediates Mitophagy to Protect against Early Brain Injury after Subarachnoid Hemorrhage. Medical Science Monitor, 24, 6422-6430.
https://doi.org/10.12659/msm.909221
[5] Fang, Y., Chen, S., Reis, C. and Zhang, J. (2018) The Role of Autophagy in Subarachnoid Hemorrhage: An Update. Current Neuropharmacology, 16, 1255-1266.
https://doi.org/10.2174/1570159x15666170406142631
[6] Lauzier, D.C., Jayaraman, K., Yuan, J.Y., Diwan, D., Vellimana, A.K., Osbun, J.W., et al. (2023) Early Brain Injury after Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke, 54, 1426-1440.
https://doi.org/10.1161/strokeaha.122.040072
[7] Daneman, R. and Prat, A. (2015) The Blood-Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7, a020412.
https://doi.org/10.1101/cshperspect.a020412
[8] Zhang, T., Xu, S., Wu, P., Zhou, K., Wu, L., Xie, Z., et al. (2019) Mitoquinone Attenuates Blood-Brain Barrier Disruption through Nrf2/Phb2/Opa1 Pathway after Subarachnoid Hemorrhage in Rats. Experimental Neurology, 317, 1-9.
https://doi.org/10.1016/j.expneurol.2019.02.009
[9] Zhang, X., Wu, Q., Zhang, Q., Lu, Y., Liu, J., Li, W., et al. (2017) Resveratrol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage via Inhibition of NLRP3 Inflammasome Activation. Frontiers in Neuroscience, 11, Article 611.
https://doi.org/10.3389/fnins.2017.00611
[10] Guo, Y., Liu, X., Liu, D., Li, K., Wang, C., Liu, Y., et al. (2019) Inhibition of BECN1 Suppresses Lipid Peroxidation by Increasing System XC-Activity in Early Brain Injury after Subarachnoid Hemorrhage. Journal of Molecular Neuroscience, 67, 622-631.
https://doi.org/10.1007/s12031-019-01272-5
[11] Zhang, J., Zhang, Z., Wang, X., Liu, Y., Yu, Q., Wang, K., et al. (2023) Connection between Oxidative Stress and Subcellular Organelle in Subarachnoid Hemorrhage: Novel Mechanisms and Therapeutic Implications. CNS Neuroscience & Therapeutics, 29, 3672-3683.
https://doi.org/10.1111/cns.14348
[12] Figueroa, S., Oset-Gasque, M.J., Arce, C., Martinez-Honduvilla, C.J. and González, M.P. (2006) Mitochondrial Involvement in Nitric Oxide-Induced Cellular Death in Cortical Neurons in Culture. Journal of Neuroscience Research, 83, 441-449.
https://doi.org/10.1002/jnr.20739
[13] Kaur, J. and Debnath, J. (2015) Autophagy at the Crossroads of Catabolism and Anabolism. Nature Reviews Molecular Cell Biology, 16, 461-472.
https://doi.org/10.1038/nrm4024
[14] Glick, D., Barth, S. and Macleod, K.F. (2010) Autophagy: Cellular and Molecular Mechanisms. The Journal of Pathology, 221, 3-12.
https://doi.org/10.1002/path.2697
[15] Cuervo, A.M. (2011) Chaperone-Mediated Autophagy: Dice’s ‘Wild’ Idea about Lysosomal Selectivity. Nature Reviews Molecular Cell Biology, 12, 535-541.
https://doi.org/10.1038/nrm3150
[16] Szwed, A., Kim, E. and Jacinto, E. (2021) Regulation and Metabolic Functions of mTORC1 and mTORC2. Physiological Reviews, 101, 1371-1426.
https://doi.org/10.1152/physrev.00026.2020
[17] Heckmann, B.L. and Green, D.R. (2019) LC3-Associated Phagocytosis at a Glance. Journal of Cell Science, 132, jcs222984.
https://doi.org/10.1242/jcs.222984
[18] Shanware, N.P., Bray, K. and Abraham, R.T. (2013) The PI3K, Metabolic, and Autophagy Networks: Interactive Partners in Cellular Health and Disease. Annual Review of Pharmacology and Toxicology, 53, 89-106.
https://doi.org/10.1146/annurev-pharmtox-010611-134717
[19] Young, L.N., Goerdeler, F. and Hurley, J.H. (2019) Structural Pathway for Allosteric Activation of the Autophagic PI 3-Kinase Complex I. Proceedings of the National Academy of Sciences, 116, 21508-21513.
https://doi.org/10.1073/pnas.1911612116
[20] Sil, P., Muse, G. and Martinez, J. (2018) A Ravenous Defense: Canonical and Non-Canonical Autophagy in Immunity. Current Opinion in Immunology, 50, 21-31.
https://doi.org/10.1016/j.coi.2017.10.004
[21] De Tito, S., Hervás, J.H., van Vliet, A.R. and Tooze, S.A. (2020) The Golgi as an Assembly Line to the Autophagosome. Trends in Biochemical Sciences, 45, 484-496.
https://doi.org/10.1016/j.tibs.2020.03.010
[22] Kim, Y.C. and Guan, K. (2015) mTOR: A Pharmacologic Target for Autophagy Regulation. Journal of Clinical Investigation, 125, 25-32.
https://doi.org/10.1172/jci73939
[23] Ferreri, A., Lang, V., Kaufmann, R. and Buerger, C. (2022) mTORC1 Activity in Psoriatic Lesions Is Mediated by Aberrant Regulation through the Tuberous Sclerosis Complex. Cells, 11, Article 2847.
https://doi.org/10.3390/cells11182847
[24] Liu, G.Y. and Sabatini, D.M. (2020) mTOR at the Nexus of Nutrition, Growth, Ageing and Disease. Nature Reviews Molecular Cell Biology, 21, 183-203.
https://doi.org/10.1038/s41580-019-0199-y
[25] Marafie, S.K., Al-Mulla, F. and Abubaker, J. (2024) mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. International Journal of Molecular Sciences, 25, Article 6141.
https://doi.org/10.3390/ijms25116141
[26] Zhou, B., Kreuzer, J., Kumsta, C., Wu, L., Kamer, K.J., Cedillo, L., et al. (2019) Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell, 177, 299-314.
https://doi.org/10.1016/j.cell.2019.02.013
[27] Takahashi, Y., Meyerkord, C.L. and Wang, H. (2008) Bargaining Membranes for Autophagosome Formation: Regulation of Autophagy and Tumorigenesis by Bif-1/Endophilin B1. Autophagy, 4, 121-124.
https://doi.org/10.4161/auto.5265
[28] Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., et al. (2008) A Role for the NAD-Dependent Deacetylase Sirt1 in the Regulation of Autophagy. Proceedings of the National Academy of Sciences, 105, 3374-3379.
https://doi.org/10.1073/pnas.0712145105
[29] Lu, Y., Li, Z., Zhang, S., Zhang, T., Liu, Y. and Zhang, L. (2023) Cellular Mitophagy: Mechanism, Roles in Diseases and Small Molecule Pharmacological Regulation. Theranostics, 13, 736-766.
https://doi.org/10.7150/thno.79876
[30] Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., et al. (2015) The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy. Nature, 524, 309-314.
https://doi.org/10.1038/nature14893
[31] Nguyen, T.D., Shaid, S., Vakhrusheva, O., Koschade, S.E., Klann, K., Thölken, M., et al. (2019) Loss of the Selective Autophagy Receptor P62 Impairs Murine Myeloid Leukemia Progression and Mitophagy. Blood, 133, 168-179.
https://doi.org/10.1182/blood-2018-02-833475
[32] Tang, Y., Wang, L., Yi, T., Xu, J., Wang, J., Qin, J., et al. (2021) Synergistic Effects of Autophagy/Mitophagy Inhibitors and Magnolol Promote Apoptosis and Antitumor Efficacy. Acta Pharmaceutica Sinica B, 11, 3966-3982.
https://doi.org/10.1016/j.apsb.2021.06.007
[33] Qiu, Y., Wang, J., Li, H., Yang, B., Wang, J., He, Q., et al. (2021) Emerging Views of OPTN (Optineurin) Function in the Autophagic Process Associated with Disease. Autophagy, 18, 73-85.
https://doi.org/10.1080/15548627.2021.1908722
[34] Xu, X., Chen, Y., Fei, S., Jiang, X., Zhou, X., Xue, Y., et al. (2025) PPTC7 Acts as an Essential Co-Factor of the SCFFBXL4 Ubiquitin Ligase Complex to Restrict BNIP3/3l-Dependent Mitophagy. Cell Death & Disease, 16, Article No. 145.
https://doi.org/10.1038/s41419-025-07463-w
[35] Lee, J., He, Y., Sagher, O., Keep, R., Hua, Y. and Xi, G. (2009) Activated Autophagy Pathway in Experimental Subarachnoid Hemorrhage. Brain Research, 1287, 126-135.
https://doi.org/10.1016/j.brainres.2009.06.028
[36] Jing, C.-H., Wang, L., Liu, P.-P., Wu, C., Ruan, D. and Chen, G. (2012) Autophagy Activation Is Associated with Neuroprotection against Apoptosis via a Mitochondrial Pathway in a Rat Model of Subarachnoid Hemorrhage. Neuroscience, 213, 144-153.
https://doi.org/10.1016/j.neuroscience.2012.03.055
[37] Wang, Z., Shi, X., Yin, J., Zuo, G., Zhang, J. and Chen, G. (2011) Role of Autophagy in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Molecular Neuroscience, 46, 192-202.
https://doi.org/10.1007/s12031-011-9575-6
[38] Tao, Q., Qiu, X., Li, C., Zhou, J., Gu, L., Zhang, L., et al. (2022) S100A8 Regulates Autophagy-Dependent Ferroptosis in Microglia after Experimental Subarachnoid Hemorrhage. Experimental Neurology, 357, Article 114171.
https://doi.org/10.1016/j.expneurol.2022.114171
[39] Cao, S., Shrestha, S., Li, J., Yu, X., Chen, J., Yan, F., et al. (2017) Melatonin-Mediated Mitophagy Protects against Early Brain Injury after Subarachnoid Hemorrhage through Inhibition of NLRP3 Inflammasome Activation. Scientific Reports, 7, Article No. 2417.
https://doi.org/10.1038/s41598-017-02679-z
[40] Zhang, J., Yuan, G., Liang, T., Pan, P., Li, X., Li, H., et al. (2020) Nix Plays a Neuroprotective Role in Early Brain Injury after Experimental Subarachnoid Hemorrhage in Rats. Frontiers in Neuroscience, 14, Article 245.
https://doi.org/10.3389/fnins.2020.00245
[41] Zhang, T., Wu, P., Budbazar, E., Zhu, Q., Sun, C., Mo, J., et al. (2019) Mitophagy Reduces Oxidative Stress via Keap1 (Kelch-Like Epichlorohydrin-Associated Protein 1)/Nrf2 (Nuclear Factor-E2-Related Factor 2)/PHB2 (Prohibitin 2) Pathway after Subarachnoid Hemorrhage in Rats. Stroke, 50, 978-988.
https://doi.org/10.1161/strokeaha.118.021590
[42] Zhang, Y., Zhang, T., Li, Y., Guo, Y., Liu, B., Tian, Y., et al. (2022) Metformin Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Rats via AMPK-Dependent Mitophagy. Experimental Neurology, 353, Article 114055.
https://doi.org/10.1016/j.expneurol.2022.114055
[43] Zou, Y., Tao, Z., Li, P., Yang, J., Xu, Q., Xu, X., et al. (2025) Clemastine Attenuates Subarachnoid Haemorrhage Pathology in a Mouse Model via Nrf2/Sqstm1-Mediated Autophagy. British Journal of Pharmacology, 182, 2730-2753.
https://doi.org/10.1111/bph.17465
[44] Wang, Y., Pan, X., Liu, G., Liu, Z., Zhang, C., Chen, T., et al. (2021) FGF-2 Suppresses Neuronal Autophagy by Regulating the PI3K/Akt Pathway in Subarachnoid Hemorrhage. Brain Research Bulletin, 173, 132-140.
https://doi.org/10.1016/j.brainresbull.2021.05.017
[45] Liu, Y., Li, J., Wang, Z., Yu, Z. and Chen, G. (2013) Attenuation of Early Brain Injury and Learning Deficits Following Experimental Subarachnoid Hemorrhage Secondary to Cystatin C: Possible Involvement of the Autophagy Pathway. Molecular Neurobiology, 49, 1043-1054.
https://doi.org/10.1007/s12035-013-8579-3
[46] Shi, L., Liang, F., Zheng, J., Zhou, K., Chen, S., Yu, J., et al. (2018) Melatonin Regulates Apoptosis and Autophagy via ROS-MST1 Pathway in Subarachnoid Hemorrhage. Frontiers in Molecular Neuroscience, 11, Article 93.
https://doi.org/10.3389/fnmol.2018.00093
[47] Roberts, J.Z., Crawford, N. and Longley, D.B. (2021) The Role of Ubiquitination in Apoptosis and Necroptosis. Cell Death & Differentiation, 29, 272-284.
https://doi.org/10.1038/s41418-021-00922-9
[48] Warren, C.F.A., Wong-Brown, M.W. and Bowden, N.A. (2019) BCL-2 Family Isoforms in Apoptosis and Cancer. Cell Death & Disease, 10, Article No. 177.
https://doi.org/10.1038/s41419-019-1407-6
[49] Green, D.R. (2022) The Mitochondrial Pathway of Apoptosis Part II: The BCL-2 Protein Family. Cold Spring Harbor Perspectives in Biology, 14, a041046.
https://doi.org/10.1101/cshperspect.a041046
[50] Czabotar, P.E. and Garcia-Saez, A.J. (2023) Mechanisms of BCL-2 Family Proteins in Mitochondrial Apoptosis. Nature Reviews Molecular Cell Biology, 24, 732-748.
https://doi.org/10.1038/s41580-023-00629-4
[51] Li, Y., Zhou, M., Hu, Q., Bai, X., Huang, W., Scheres, S.H.W., et al. (2017) Mechanistic Insights into Caspase-9 Activation by the Structure of the Apoptosome Holoenzyme. Proceedings of the National Academy of Sciences, 114, 1542-1547.
https://doi.org/10.1073/pnas.1620626114
[52] Julien, O. and Wells, J.A. (2017) Caspases and Their Substrates. Cell Death & Differentiation, 24, 1380-1389.
https://doi.org/10.1038/cdd.2017.44
[53] Priem, D., van Loo, G. and Bertrand, M.J.M. (2020) A20 and Cell Death-Driven Inflammation. Trends in Immunology, 41, 421-435.
https://doi.org/10.1016/j.it.2020.03.001
[54] Yang, C., Lien, C., Tseng, Y., Tu, Y., Kulczyk, A.W., Lu, Y., et al. (2024) Deciphering DED Assembly Mechanisms in Fadd-Procaspase-8-Cflip Complexes Regulating Apoptosis. Nature Communications, 15, Article No. 3791.
https://doi.org/10.1038/s41467-024-47990-2
[55] Yuan, J., Amin, P. and Ofengeim, D. (2018) Necroptosis and Ripk1-Mediated Neuroinflammation in CNS Diseases. Nature Reviews Neuroscience, 20, 19-33.
https://doi.org/10.1038/s41583-018-0093-1
[56] Tian, Q., Liu, S., Han, S., Zhang, W., Qin, X., Chen, J., et al. (2022) The Mechanism and Relevant Mediators Associated with Neuronal Apoptosis and Potential Therapeutic Targets in Subarachnoid Hemorrhage. Neural Regeneration Research.
https://doi.org/10.4103/1673-5374.346542
[57] Mo, J., Enkhjargal, B., Travis, Z.D., Zhou, K., Wu, P., Zhang, G., et al. (2019) AVE 0991 Attenuates Oxidative Stress and Neuronal Apoptosis via Mas/PKA/CREB/UCP-2 Pathway after Subarachnoid Hemorrhage in Rats. Redox Biology, 20, 75-86.
https://doi.org/10.1016/j.redox.2018.09.022
[58] Yan, H., Zhang, D., Hao, S., Li, K. and Hang, C. (2014) Role of Mitochondrial Calcium Uniporter in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Molecular Neurobiology, 52, 1637-1647.
https://doi.org/10.1007/s12035-014-8942-z
[59] Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and Ros-Induced ROS Release. Physiological Reviews, 94, 909-950.
https://doi.org/10.1152/physrev.00026.2013
[60] Xu, W., Yan, J., Ocak, U., Lenahan, C., Shao, A., Tang, J., et al. (2021) Melanocortin 1 Receptor Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Controlling Mitochondrial Metabolism via AMPK/Sirt1/Pgc-1α Pathway in Rats. Theranostics, 11, 522-539.
https://doi.org/10.7150/thno.49426
[61] Zhou, J., Shen, R., Makale, E.C., Zhong, W., Chen, Z. and Huang, Q. (2022) SS31 Confers Cerebral Protection by Reversing Mitochondrial Dysfunction in Early Brain Injury Following Subarachnoid Hemorrhage, via the Nrf2-and Pgc-1α-Dependent Pathways. Neurochemical Research, 48, 1580-1595.
https://doi.org/10.1007/s11064-022-03850-3
[62] Liang, Y., Fu, W., Tang, Y., Ye, H., Wang, Y., Sun, C., et al. (2024) Selective Activation of G Protein-Coupled Estrogen Receptor 1 (GPER1) Reduces ER Stress and Pyroptosis via AMPK Signaling Pathway in Experimental Subarachnoid Hemorrhage. Molecular Neurobiology, 62, 871-884.
https://doi.org/10.1007/s12035-024-04312-3
[63] Zhao, Q., Che, X., Zhang, H., Fan, P., Tan, G., Liu, L., et al. (2017) Thioredoxin-Interacting Protein Links Endoplasmic Reticulum Stress to Inflammatory Brain Injury and Apoptosis after Subarachnoid Haemorrhage. Journal of Neuroinflammation, 14, Article No. 104.
https://doi.org/10.1186/s12974-017-0878-6
[64] Xu, W., Li, T., Gao, L., Zheng, J., Yan, J., Zhang, J., et al. (2019) Apelin-13/APJ System Attenuates Early Brain Injury via Suppression of Endoplasmic Reticulum Stress-Associated TXNIP/NLRP3 Inflammasome Activation and Oxidative Stress in a AMPK-Dependent Manner after Subarachnoid Hemorrhage in Rats. Journal of Neuroinflammation, 16, Article No. 247.
https://doi.org/10.1186/s12974-019-1620-3
[65] Tao, W., Zhang, G., Liu, C., Jin, L., Li, X. and Yang, S. (2023) Low-Dose LPS Alleviates Early Brain Injury after SAH by Modulating Microglial M1/M2 Polarization via USP19/FOXO1/IL-10/IL-10R1 Signaling. Redox Biology, 66, Article 102863.
https://doi.org/10.1016/j.redox.2023.102863
[66] Yang, L., Wu, J., Zhang, F., Zhang, L., Zhang, X., Zhou, J., et al. (2024) Microglia Aggravate White Matter Injury via C3/C3AR Pathway after Experimental Subarachnoid Hemorrhage. Experimental Neurology, 379, Article 114853.
https://doi.org/10.1016/j.expneurol.2024.114853
[67] Wu, Y., Xu, Y., Sun, J., Dai, K., Wang, Z. and Zhang, J. (2024) Inhibiting Ripk1-Driven Neuroinflammation and Neuronal Apoptosis Mitigates Brain Injury Following Experimental Subarachnoid Hemorrhage. Experimental Neurology, 374, Article 114705.
https://doi.org/10.1016/j.expneurol.2024.114705
[68] Labak, C.M., Shammassian, B.H., Zhou, X. and Alkhachroum, A. (2022) Multimodality Monitoring for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage: A Mini Review. Frontiers in Neurology, 13, Article 869107.
https://doi.org/10.3389/fneur.2022.869107
[69] Wu, C., Tsai, H., Su, Y., Tsai, C., Lu, Y. and Lin, C. (2022) 2-PMAP Ameliorates Cerebral Vasospasm and Brain Injury after Subarachnoid Hemorrhage by Regulating Neuro-Inflammation in Rats. Cells, 11, Article 242.
https://doi.org/10.3390/cells11020242
[70] Mariño, G., Niso-Santano, M., Baehrecke, E.H. and Kroemer, G. (2014) Self-Consumption: The Interplay of Autophagy and Apoptosis. Nature Reviews Molecular Cell Biology, 15, 81-94.
https://doi.org/10.1038/nrm3735
[71] Morselli, E., Shen, S., Ruckenstuhl, C., Bauer, M.A., Mariño, G., Galluzzi, L., et al. (2011) P53 Inhibits Autophagy by Interacting with the Human Ortholog of Yeast Atg17, RB1CC1/FIP200. Cell Cycle, 10, 2763-2769.
https://doi.org/10.4161/cc.10.16.16868
[72] White, E. (2016) Autophagy and P53. Cold Spring Harbor Perspectives in Medicine, 6, a026120.
https://doi.org/10.1101/cshperspect.a026120
[73] Vaseva, A.V., Marchenko, N.D., Ji, K., Tsirka, S.E., Holzmann, S. and Moll, U.M. (2012) P53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis. Cell, 149, 1536-1548.
https://doi.org/10.1016/j.cell.2012.05.014
[74] Galluzzi, L., Kepp, O. and Kroemer, G. (2012) Mitochondria: Master Regulators of Danger Signalling. Nature Reviews Molecular Cell Biology, 13, 780-788.
https://doi.org/10.1038/nrm3479
[75] Malik, S.A., Orhon, I., Morselli, E., Criollo, A., Shen, S., Mariño, G., et al. (2011) BH3 Mimetics Activate Multiple Pro-Autophagic Pathways. Oncogene, 30, 3918-3929.
https://doi.org/10.1038/onc.2011.104
[76] Gross, A. and Katz, S.G. (2017) Non-Apoptotic Functions of BCL-2 Family Proteins. Cell Death & Differentiation, 24, 1348-1358.
https://doi.org/10.1038/cdd.2017.22
[77] Eisenberg-Lerner, A. and Kimchi, A. (2011) PKD Is a Kinase of Vps34 That Mediates Ros-Induced Autophagy Downstream of DAPK. Cell Death & Differentiation, 19, 788-797.
https://doi.org/10.1038/cdd.2011.149
[78] Xu, H. and Qin, Z. (2019) Beclin 1, Bcl-2 and Autophagy. In: Advances in Experimental Medicine and Biology, Springer, 109-126.
https://doi.org/10.1007/978-981-15-0602-4_5
[79] Yu, W.X., Lu, C., Wang, B., et al. (2020) Effects of Rapamycin on Osteosarcoma Cell Proliferation and Apoptosis by Inducing Autophagy. European Review for Medical and Pharmacological Sciences, 24, 915-921.
[80] Dong, Y., Wu, Y., Zhao, G.L., et al. (2019) Inhibition of Autophagy by 3-MA Promotes Hypoxia-Induced Apoptosis in Human Colorectal Cancer Cells. European Review for Medical and Pharmacological Sciences, 23, 1047-1054.
[81] Zhang, Y., Xi, X., Mei, Y., Zhao, X., Zhou, L., Ma, M., et al. (2019) High-Glucose Induces Retinal Pigment Epithelium Mitochondrial Pathways of Apoptosis and Inhibits Mitophagy by Regulating ROS/PINK1/Parkin Signal Pathway. Biomedicine & Pharmacotherapy, 111, 1315-1325.
https://doi.org/10.1016/j.biopha.2019.01.034
[82] Pellegrini, F.R., De Martino, S., Fianco, G., Ventura, I., Valente, D., Fiore, M., et al. (2023) Blockage of Autophagosome-Lysosome Fusion through SNAP29 O-Glcnacylation Promotes Apoptosis via ROS Production. Autophagy, 19, 2078-2093.
https://doi.org/10.1080/15548627.2023.2170962
[83] Xu, D., Zhao, H., Jin, M., Zhu, H., Shan, B., Geng, J., et al. (2020) Modulating TRADD to Restore Cellular Homeostasis and Inhibit Apoptosis. Nature, 587, 133-138.
https://doi.org/10.1038/s41586-020-2757-z
[84] Saunders, T.L., Windley, S.P., Gervinskas, G., Balka, K.R., Rowe, C., Lane, R., et al. (2024) Exposure of the Inner Mitochondrial Membrane Triggers Apoptotic Mitophagy. Cell Death & Differentiation, 31, 335-347.
https://doi.org/10.1038/s41418-024-01260-2
[85] Liu, S., Jiang, T., Bu, F., Zhao, J., Wang, G., Yang, G., et al. (2024) Molecular Mechanisms Underlying the Birc6-Mediated Regulation of Apoptosis and Autophagy. Nature Communications, 15, Article No. 891.
https://doi.org/10.1038/s41467-024-45222-1
[86] Shao, A., Wang, Z., Wu, H., Dong, X., Li, Y., Tu, S., et al. (2014) Enhancement of Autophagy by Histone Deacetylase Inhibitor Trichostatin A Ameliorates Neuronal Apoptosis after Subarachnoid Hemorrhage in Rats. Molecular Neurobiology, 53, 18-27.
https://doi.org/10.1007/s12035-014-8986-0
[87] Li, T., Sun, K., Wang, H., Zhou, M., Ding, K., Lu, X., et al. (2015) Tert-Butylhydroquinone Ameliorates Early Brain Injury after Experimental Subarachnoid Hemorrhage in Mice by Enhancing Nrf2-Independent Autophagy. Neurochemical Research, 40, 1829-1838.
https://doi.org/10.1007/s11064-015-1672-4
[88] Zhou, K., Enkhjargal, B., Mo, J., Zhang, T., Zhu, Q., Wu, P., et al. (2021) Dihydrolipoic Acid Enhances Autophagy and Alleviates Neurological Deficits after Subarachnoid Hemorrhage in Rats. Experimental Neurology, 342, Article 113752.
https://doi.org/10.1016/j.expneurol.2021.113752
[89] Zou, L., Xu, S., Wang, C., Wu, P., Xu, C. and Shi, H. (2023) Methylated MFGE8 Promotes Early Brain Injury after Subarachnoid Hemorrhage and Inhibiting Autophagy of Nerve Cell. Translational Stroke Research, 16, 350-367.
https://doi.org/10.1007/s12975-023-01217-6
[90] Sun, C., Enkhjargal, B., Reis, C., Zhou, K., Xie, Z., Wu, L., et al. (2019) Osteopontin Attenuates Early Brain Injury through Regulating Autophagy-Apoptosis Interaction after Subarachnoid Hemorrhage in Rats. CNS Neuroscience & Therapeutics, 25, 1162-1172.
https://doi.org/10.1111/cns.13199
[91] Sun, C., Enkhjargal, B., Reis, C., Zhang, T., Zhu, Q., Zhou, K., et al. (2019) Osteopontin-Enhanced Autophagy Attenuates Early Brain Injury via FAK-ERK Pathway and Improves Long-Term Outcome after Subarachnoid Hemorrhage in Rats. Cells, 8, Article 980.
https://doi.org/10.3390/cells8090980
[92] Yang, J., Wu, Q., Li, Y., Zhang, Y., Lan, S., Yuan, K., et al. (2024) BL-918 Alleviates Oxidative Stress in Rats after Subarachnoid Hemorrhage by Promoting Mitophagy through the ULK1/PINK1/Parkin Pathway. Free Radical Biology and Medicine, 224, 846-861.
https://doi.org/10.1016/j.freeradbiomed.2024.10.261
[93] Dhingra, R. and Kirshenbaum, L.A. (2013) Mst-1 Switches between Cardiac Cell Life and Death. Nature Medicine, 19, 1367-1368.
https://doi.org/10.1038/nm.3371