[1]
|
Laurent, T.C., Moore, E.C. and Reichard, P. (1964) Enzymatic Synthesis of Deoxyribonucleotides. Journal of Biological Chemistry, 239, 3436-3444. https://doi.org/10.1016/s0021-9258(18)97742-2
|
[2]
|
Moore, E.C., Reichard, P. and Thelander, L. (1964) Enzymatic Synthesis of Deoxyribonucleotides. Journal of Biological Chemistry, 239, 3445-3452. https://doi.org/10.1016/s0021-9258(18)97743-4
|
[3]
|
Deiss, L.P. and Kimchi, A. (1991) A Genetic Tool Used to Identify Thioredoxin as a Mediator of a Growth Inhibitory Signal. Science, 252, 117-120. https://doi.org/10.1126/science.1901424
|
[4]
|
Umeda, F., Kitano, Y., Murakami, Y., Yagi, K., Miura, Y. and Mizoguchi, T. (1998) Cloning and Sequence Analysis of the Poly (3-Hydroxyalkanoic Acid)-Synthesis Genes of Pseudomonas acidophila. Applied Biochemistry and Biotechnology, 70, 341-352. https://doi.org/10.1007/bf02920150
|
[5]
|
Matsui, M., Taniguchi, Y., Hirota, K., Taketo, M. and Yodoi, J. (1995) Structure of the Mouse Thioredoxin-Encoding Gene and Its Processed Pseudogene. Gene, 152, 165-171. https://doi.org/10.1016/0378-1119(94)00707-y
|
[6]
|
Gasdaska, J.R., Berggren, M. and Powis, G. (1995) Cell Growth Stimulation by the Redox Protein Thioredoxin Occurs by a Novel Helper Mechanism. Cell Growth Differentiation, 6, 1643-1650.
|
[7]
|
Gasdaska, J.R., Kirkpatrick, D.L., Montfort, W., Kuperus, M., Hill, S.R., Berggren, M., et al. (1996) Oxidative Inactivation of Thioredoxin as a Cellular Growth Factor and Protection by a Cys73→Ser Mutation. Biochemical Pharmacology, 52, 1741-1747. https://doi.org/10.1016/s0006-2952(96)00595-3
|
[8]
|
Heppell-Parton, A., Cahn, A., Bench, A., Lowe, N., Lehrach, H., Zehetner, G., et al. (1995) Thioredoxin, a Mediator of Growth Inhibition, Maps to 9q31. Genomics, 26, 379-381. https://doi.org/10.1016/0888-7543(95)80223-9
|
[9]
|
Spyrou, G., Enmark, E., Miranda-Vizuete, A. and Gustafsson, J. (1997) Cloning and Expression of a Novel Mammalian Thioredoxin. Journal of Biological Chemistry, 272, 2936-2941. https://doi.org/10.1074/jbc.272.5.2936
|
[10]
|
Miranda-Vizuete, A., Damdimopoulos, A.E., Pedrajas, J.R., Gustafsson, J. and Spyrou, G. (1999) Human Mitochondrial Thioredoxin Reductase. European Journal of Biochemistry, 261, 405-412. https://doi.org/10.1046/j.1432-1327.1999.00286.x
|
[11]
|
Jiménez, A., Zu, W., Rawe, V.Y., Pelto-Huikko, M., Flickinger, C.J., Sutovsky, P., et al. (2004) Spermatocyte/Spermatid-Specific Thioredoxin-3, a Novel Golgi Apparatus-Associated Thioredoxin, Is a Specific Marker of Aberrant Spermatogenesis. Journal of Biological Chemistry, 279, 34971-34982. https://doi.org/10.1074/jbc.m404192200
|
[12]
|
Zhang, J. (2021) Thioredoxin System in Cancer: Mechanisms and Therapeutic Targeting. Redox Biology, 38, Article 101812.
|
[13]
|
Lee, K., Murakawa, M., Takahashi, S., Tsubuki, S., Kawashima, S., Sakamaki, K., et al. (1998) Purification, Molecular Cloning, and Characterization of TRP32, a Novel Thioredoxin-Related Mammalian Protein of 32 kDa. Journal of Biological Chemistry, 273, 19160-19166. https://doi.org/10.1074/jbc.273.30.19160
|
[14]
|
Arnér, E.S.J. and Zhang, J. (2020) Targeting the Thioredoxin System for Cancer Therapy. Trends in Pharmacological Sciences, 41, 378-394.
|
[15]
|
Zhang, J., Duan, D., Xu, J. and Fang, J. (2018) Redox-Dependent Copper Carrier Promotes Cellular Copper Uptake and Oxidative Stress-Mediated Apoptosis of Cancer Cells. ACS Applied Materials & Interfaces, 10, 33010-33021. https://doi.org/10.1021/acsami.8b11061
|
[16]
|
Holmgren, A. (1995) Thioredoxin Structure and Mechanism: Conformational Changes on Oxidation of the Active-Site Sulfhydryls to a Disulfide. Structure, 3, 239-243. https://doi.org/10.1016/s0969-2126(01)00153-8
|
[17]
|
Weichsel, A., Gasdaska, J.R., Powis, G. and Montfort, W.R. (1996) Crystal Structures of Reduced, Oxidized, and Mutated Human Thioredoxins: Evidence for a Regulatory Homodimer. Structure, 4, 735-751. https://doi.org/10.1016/s0969-2126(96)00079-2
|
[18]
|
Holmgren, A. (1985) THIOREDOXIN. Annual Review of Biochemistry, 54, 237-271. https://doi.org/10.1146/annurev.bi.54.070185.001321
|
[19]
|
Meister, A. and Anderson, M.E. (1983) GLUTATHIONE. Annual Review of Biochemistry, 52, 711-760. https://doi.org/10.1146/annurev.bi.52.070183.003431
|
[20]
|
Schreck, R., Albermann, K. and Baeuerle, P.A. (1992) Nuclear Factor κB: An Oxidative Stress-Responsive Transcription Factor of Eukaryotic Cells (A Review). Free Radical Research Communications, 17, 221-237. https://doi.org/10.3109/10715769209079515
|
[21]
|
Hayashi, T., Ueno, Y. and Okamoto, T. (1993) Oxidoreductive Regulation of Nuclear Factor κB. Involvement of a Cellular Reducing Catalyst Thioredoxin. Journal of Biological Chemistry, 268, 11380-11388. https://doi.org/10.1016/s0021-9258(18)82135-4
|
[22]
|
Nakamura, H., Nakamura, K. and Yodoi, J. (1997) Redox Regulation of Cellular Activation. Annual Review of Immunology, 15, 351-369. https://doi.org/10.1146/annurev.immunol.15.1.351
|
[23]
|
Hasegawa-Sasaki, H. (1985) Early Changes in Inositol Lipids and Their Metabolites Induced by Platelet-Derived Growth Factor in Quiescent Swiss Mouse 3T3 Cells. Biochemical Journal, 232, 99-109. https://doi.org/10.1042/bj2320099
|
[24]
|
Sorachi, K., Sugie, K., Maekawa, N., Takami, M., Kawabe, T., Kumagai, S., et al. (1992) Induction and Function of Fcεrii on YT Cells; Possible Role of Adf/Thioredoxin in Fcεrii Expression. Immunobiology, 185, 193-206. https://doi.org/10.1016/s0171-2985(11)80641-8
|
[25]
|
Galter, D., Mihm, S. and Dröge, W. (1994) Distinct Effects of Glutathione Disulphide on the Nuclear Transcription Factors κB and the Activator Protein-1. European Journal of Biochemistry, 221, 639-648. https://doi.org/10.1111/j.1432-1033.1994.tb18776.x
|
[26]
|
Chakraborti, P.K., Garabedian, M.J., Yamamoto, K.R. and Simons, S.S. (1992) Role of Cysteines 640, 656, and 661 in Steroid Binding to Rat Glucocorticoid Receptors. Journal of Biological Chemistry, 267, 11366-11373. https://doi.org/10.1016/s0021-9258(19)49919-5
|
[27]
|
Hutchison, K.A., Matić, G., Meshinchi, S., Bresnick, E.H. and Pratt, W.B. (1991) Redox Manipulation of DNA Binding Activity and BuGR Epitope Reactivity of the Glucocorticoid Receptor. Journal of Biological Chemistry, 266, 10505-10509. https://doi.org/10.1016/s0021-9258(18)99253-7
|
[28]
|
Schenk, H., Klein, M., Erdbrügger, W., Dröge, W. and Schulze-Osthoff, K. (1994) Distinct Effects of Thioredoxin and Antioxidants on the Activation of Transcription Factors NF-κB and Ap-1. Proceedings of the National Academy of Sciences, 91, 1672-1676. https://doi.org/10.1073/pnas.91.5.1672
|
[29]
|
Liu, X. (2021) ROS-Mediated Activation of NF-κB and AP-1 Drives Chemoresistance in Triple-Negative Breast Cancer. Redox Biology, 45, Article 102041.
|
[30]
|
Huang, Y. and Domann, F.E. (1998) Redox Modulation of AP-2 DNA Binding Activity in Vitro. Biochemical and Biophysical Research Communications, 249, 307-312. https://doi.org/10.1006/bbrc.1998.9139
|
[31]
|
Chen, L., et al. (2021) Extracellular Thioredoxin Promotes Tumor Metastasis via Exosome-Mediated EMT Activation. Journal of Experimental Medicine, 218, e20201945.
|
[32]
|
Lu, Y. (2023) Thioredoxin Secreted by Cancer-Associated Fibroblasts Drives Immunosuppression in the Tumor Microenvironment. Cell Metabolism, 35, 678-693.
|
[33]
|
Gasdaska, P.Y., Oblong, J.E., Cotgreave, I.A. and Powis, G. (1994) The Predicted Amino Acid Sequence of Human Thioredoxin Is Identical to That of the Autocrine Growth Factor Human Adult T-Cell Derived Factor (ADF): Thioredoxin mRNA Is Elevated in Some Human Tumors. Biochimica et Biophysica Acta—Gene Structure and Expression, 1218, 292-296. https://doi.org/10.1016/0167-4781(94)90180-5
|
[34]
|
Kim, S. (2020) Thioredoxin Knockdown Induces Cell Cycle Arrest via p21-Mediated Senescence in Hepatocellular Carcinoma. Cancer Research, 80, 3984-3996.
|
[35]
|
Saitoh, M. (1998) Mammalian Thioredoxin Is a Direct Inhibitor of Apoptosis Signal-Regulating Kinase (ASK) 1. The EMBO Journal, 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
|
[36]
|
Liu, H., Nishitoh, H., Ichijo, H. and Kyriakis, J.M. (2000) Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by Tumor Necrosis Factor Receptor-Associated Factor 2 Requires Prior Dissociation of the ASK1 Inhibitor Thioredoxin. Molecular and Cellular Biology, 20, 2198-2208. https://doi.org/10.1128/mcb.20.6.2198-2208.2000
|
[37]
|
Isowa, N., Yoshimura, T., Kosaka, S., Liu, M., Hitomi, S., Yodoi, J., et al. (2000) Human Thioredoxin Attenuates Hypoxia-Reoxygenation Injury of Murine Endothelial Cells in a Thiol-Free Condition. Journal of Cellular Physiology, 182, 33-40. https://doi.org/10.1002/(sici)1097-4652(200001)182:1<33::aid-jcp4>3.0.co;2-5
|
[38]
|
Nishiyama, A., Ohno, T., Iwata, S., Matsui, M., Hirota, K., Masutani, H., et al. (1999) Demonstration of the Interaction of Thioredoxin with P40phox, a Phagocyte Oxidase Component, Using a Yeast Two-Hybrid System. Immunology Letters, 68, 155-159. https://doi.org/10.1016/s0165-2478(99)00045-0
|
[39]
|
Saitoh, M. (2022) ASK1-MAPK Signaling in Cancer: From Oxidative Stress to Therapeutic Targeting. Nature Reviews Cancer, 22, 159-175.
|
[40]
|
Tobiume, K., Inage, T., Takeda, K., Enomoto, S., Miyazono, K. and Ichijo, H. (1997) Molecular Cloning and Characterization of the Mouse Apoptosis Signal-Regulating Kinase 1. Biochemical and Biophysical Research Communications, 239, 905-910. https://doi.org/10.1006/bbrc.1997.7580
|
[41]
|
Wang, H. (2020) TXNDC17, a Novel Thioredoxin Family Protein, Promotes Tumor Metastasis via NF-κB Signaling. Cancer Research, 80, 3349-3362.
|
[42]
|
Lee, K., Murakawa, M., Nishida, E., Tsubuki, S., Kawashima, S., Sakamaki, K., et al. (1998) Proteolytic Activation of MST/Krs, STE20-Related Protein Kinase, by Caspase during Apoptosis. Oncogene, 16, 3029-3037. https://doi.org/10.1038/sj.onc.1201840
|
[43]
|
Tsujita, K., Shimomura, H., Kaikita, K., Kawano, H., Hokamaki, J., Nagayoshi, Y., et al. (2006) Long-Term Efficacy of Edaravone in Patients with Acute Myocardial Infarction. Circulation Journal, 70, 832-837. https://doi.org/10.1253/circj.70.832
|
[44]
|
Takagi, Y., Mitsui, A., Nishiyama, A., Nozaki, K., Sono, H., Gon, Y., et al. (1999) Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage. Proceedings of the National Academy of Sciences, 96, 4131-4136. https://doi.org/10.1073/pnas.96.7.4131
|
[45]
|
Kishimoto, C., Shioji, K., Nakamura, H., Nakayama, Y., Yodoi, J. and Sasayama, S. (2001) Serum Thioredoxin (TRX) Levels in Patients with Heart Failure. Japanese Circulation Journal, 65, 491-494. https://doi.org/10.1253/jcj.65.491
|
[46]
|
Shioji, K., Kishimoto, C., Nakamura, H., Masutani, H., Yuan, Z., Oka, S., et al. (2002) Overexpression of Thioredoxin-1 in Transgenic Mice Attenuates Adriamycin-Induced Cardiotoxicity. Circulation, 106, 1403-1409. https://doi.org/10.1161/01.cir.0000027817.55925.b4
|
[47]
|
Okuda, M., Inoue, N., Azumi, H., Seno, T., Sumi, Y., Hirata, K., et al. (2001) Expression of Glutaredoxin in Human Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1483-1487. https://doi.org/10.1161/hq0901.095550
|
[48]
|
Miwa, K., Kishimoto, C., Nakamura, H., Makita, T., Ishii, K., Okuda, N., et al. (2005) Serum Thioredoxin and α-Tocopherol Concentrations in Patients with Major Risk Factors. Circulation Journal, 69, 291-294. https://doi.org/10.1253/circj.69.291
|
[49]
|
Jeong, E., Chung, J., Liu, H., Go, Y., Gladstein, S., Farzaneh-Far, A., et al. (2016) Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction. Journal of the American Heart Association, 5, 1-17. https://doi.org/10.1161/jaha.115.003046
|
[50]
|
Gateva, A.T., Assyov, Y.S., Velikova, T. and Kamenov, Z.A. (2019) Higher Levels of Thioredoxin Interacting Protein (TXNIP) in Patients with Prediabetes Compared to Obese Normoglycemic Subjects. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 734-737. https://doi.org/10.1016/j.dsx.2018.11.056
|
[51]
|
Bhattacharyya, A., Chattopadhyay, R., Mitra, S. and Crowe, S.E. (2014) Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiological Reviews, 94, 329-354. https://doi.org/10.1152/physrev.00040.2012
|
[52]
|
Butcher, L.D., den Hartog, G., Ernst, P.B. and Crowe, S.E. (2017) Oxidative Stress Resulting from Helicobacter Pylori Infection Contributes to Gastric Carcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 3, 316-322. https://doi.org/10.1016/j.jcmgh.2017.02.002
|
[53]
|
Yamamoto, Y. and Gaynor, R.B. (2001) Therapeutic Potential of Inhibition of the NF-κB Pathway in the Treatment of Inflammation and Cancer. Journal of Clinical Investigation, 107, 135-142. https://doi.org/10.1172/jci11914
|
[54]
|
Lovell, M.A., Xie, C., Gabbita, S.P. and Markesbery, W.R. (2000) Decreased Thioredoxin and Increased Thioredoxin Reductase Levels in Alzheimer’s Disease Brain. Free Radical Biology and Medicine, 28, 418-427. https://doi.org/10.1016/s0891-5849(99)00258-0
|
[55]
|
Zhang, J., Li, X., Han, X., Liu, R. and Fang, J. (2017) Targeting the Thioredoxin System for Cancer Therapy. Trends in Pharmacological Sciences, 38, 794-808. https://doi.org/10.1016/j.tips.2017.06.001
|
[56]
|
Shan, W., Zhong, W., Zhao, R. and Oberley, T.D. (2010) Thioredoxin 1 as a Subcellular Biomarker of Redox Imbalance in Human Prostate Cancer Progression. Free Radical Biology and Medicine, 49, 2078-2087. https://doi.org/10.1016/j.freeradbiomed.2010.10.691
|
[57]
|
Zhou, F., Zhang, W., Wei, Y., Meng, S., Bai, G., Wang, B., et al. (2010) Involvement of Oxidative Stress in the Relapse of Acute Myeloid Leukemia. Journal of Biological Chemistry, 285, 15010-15015. https://doi.org/10.1074/jbc.m110.103713
|
[58]
|
Zhang, H., Zhang, N., Liu, Y., Su, P., Liang, Y., Li, Y., et al. (2021) Correction: Epigenetic Regulation of NAMPT by NAMPT-AS Drives Metastatic Progression in Triple-Negative Breast Cancer. Cancer Research, 81, 3145-3145. https://doi.org/10.1158/0008-5472.can-21-1188
|
[59]
|
Liu, Q. (2020) Targeting the Thioredoxin System with Small-Molecule Inhibitors AJM290 and PX-12 in Non-Small Cell Lung Cancer. Journal of Medicinal Chemistry, 63, 4672-4685.
|
[60]
|
Wang, L. (2023) TXNIP-1 Enhances Radiotherapy Sensitivity by Targeting TRX in Pancreatic Cancer. Nature Communications, 14, Article No. 1234.
|
[61]
|
Chen, X. (2022) Curcumin Induces Ferroptosis via TRX/GPX4 Axis in Triple-Negative Breast Cancer. Free Radical Biology and Medicine, 189, 45-57.
|
[62]
|
Efferth, T. (2021) Artemisinin Derivatives Target the TRX System for Selective Cancer Cell Killing. Pharmacological Research, 173, Article 105893.
|
[63]
|
Sun, H. (2022) Synergistic Effect of Auranofin and PARP Inhibitors in BRCA-Mutant Breast Cancer. Cell Death & Disease, 13, Article 312.
|
[64]
|
Li, M. (2021) Serum Thioredoxin as a Prognostic Biomarker in Hepatocellular Carcinoma. Clinical Cancer Research, 27, 5023-5032.
|
[65]
|
Xu, Q. (2023) TRX/TRXR Ratio Predicts Anti-PD-1 Response in Advanced Melanoma. Journal for ImmunoTherapy of Cancer, 11, e006432.
|
[66]
|
Ramanathan, R.K. (2020) Phase II trial of PX-12 in Advanced Solid Tumors: Toxicity and Efficacy Analysis. Clinical Cancer Research, 26, 3899-3907.
|
[67]
|
Kim, S. (2021) TRX-Nrf2 Axis Mediates Chemoresistance in p53-Mutant Cancers via Redox Homeostasis. Oncogene, 40, 2235-2248.
|
[68]
|
Zhang, X. (2020) Dual Inhibition of TRX and GSH Systems Triggers Ferroptosis in Lung Cancer. Redox Biology, 37, Article 101702.
|
[69]
|
Li, S. (2022) Nanoparticle-Mediated Delivery of TRX Inhibitors Enhances Tumor Penetration and Efficacy. Journal of Controlled Release, 341, 638-650.
|
[70]
|
Jiang, L. (2023) Pharmacokinetic and Safety Evaluation of TXNIP-1 in Preclinical Cancer Models. Molecular Pharmaceutics, 20, 987-995.
|
[71]
|
Burslem, G.M. (2022) Engineering TRX-Targeted PROTACs to Overcome Immunogenicity Challenges. Nature Cancer, 3, 1102-1115.
|