硫氧还蛋白的研究进展
Research Progress of Thioredoxin
DOI: 10.12677/jocr.2025.132011, PDF, HTML, XML,   
作者: 梁维泽:兰州交通大学化学化工学院,甘肃 兰州
关键词: 硫氧还蛋白种类结构功能疾病影响Thioredoxin Types Structure Function Disease Implications
摘要: 硫氧还蛋白(Trx)是一种广泛分布于真核与原核生物的多功能蛋白质,其功能依赖于活性位点的氧化还原循环。作为硫氧还蛋白系统的核心组分,Trx与硫氧还蛋白还原酶(TrxR)及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)协同作用,通过调节细胞内氧化还原平衡参与多种生理过程,包括细胞增殖调控、凋亡抑制及基因表达调控。本文系统综述了Trx的分子分类、结构特征、生物学功能及其在心血管疾病、糖尿病、神经退行性疾病和肿瘤等病理过程中的作用机制,为深入探索Trx的生理病理意义提供理论依据。
Abstract: Thioredoxin (Trx) is a multifunctional protein widely distributed in eukaryotes and prokaryotes, and its function depends on the redox cycle at the active site. As a core component of the thioredoxin system, Trx works in concert with thioredoxin reductase (TrxR) and nicotinamide adenine dinucleotide phosphate (NADPH) to regulate intracellular redox balance and participate in various physiological processes, including cell proliferation regulation, apoptosis inhibition, and gene expression regulation. This article systematically reviews the molecular classification, structural characteristics, biological functions of Trx, and its mechanism of action in pathological processes such as cardiovascular diseases, diabetes, neurodegenerative diseases, and tumors, providing a theoretical basis for in-depth exploration of the physiological and pathological significance of Trx.
文章引用:梁维泽. 硫氧还蛋白的研究进展[J]. 有机化学研究, 2025, 13(2): 104-114. https://doi.org/10.12677/jocr.2025.132011

1. 引言

硫氧还蛋白,这一关键的小分子蛋白质,早在1964年便由科学家们成功地从大肠杆菌中分离而出,并被证实为核糖核苷酸还原酶在催化脱氧核糖核苷酸合成时的氢供体[1]。硫氧还蛋白的独特之处在于,其功能实现仰赖于一个S-S基团的不断氧化还原循环,因此得名“硫氧还蛋白”[1]。当硫氧还蛋白处于氧化态(thioredoxin-S2)时,它的S-S键可借助NADPH和硫氧还蛋白还原酶[2]进行还原,再次进入活跃的还原态。这一开创性的发现无疑为我们深入理解硫氧还蛋白的功能机制及作用原理提供了宝贵的科学依据。

Thioredoxin-S 2 +NADPH+ H + Thioredoxin- ( SH ) 2 + NADP +

在体外实验中,还原态硫氧还蛋白(thioredoxin-(SH)2)展现出了作为高效氢供体的能力。它能够在大肠杆菌及多种生物体内的核糖核苷酸还原酶催化下,有效地将核糖核苷酸(rNDP)还原为脱氧核糖核苷酸(dNDP) [2],这一过程对于核酸合成具有重要作用。

Thioredoxin- ( SH ) 2 +rNDP Thioredoxin-S 2 +dNDP+ H 2 O

硫氧还蛋白属于小分子蛋白质家族,分子量约为12 kDa,且在各类物种中表现出显著的进化保守性。这种高度保守的特性,确保了硫氧还蛋白从原核生物到真核生物的广泛生命体系中,其结构与功能维持相对稳定,凸显了它在生命活动中是不可或缺的基础性角色。

2. 硫氧还蛋白的种类和结构

人体硫氧还蛋白(Trx)存在三种主要形式:Trx1定位于胞浆或细胞核,Trx2在线粒体内表达,而TrxL则在睾丸中具有高表达特性。

图1描绘了哺乳动物硫氧还蛋白(Trx)家族成员的结构特征。其中,人硫氧还蛋白-1 (hTrx-1)由105个氨基酸构成,分子量约为12 kDa,携带两个关键的半胱氨酸残基。其活性中心为独特的-Trp-Cys32-Gly-Pro-Cys35-Lys序列,还包含Cys62、Cys69和Cys73这三个半胱氨酸残基,这些半胱氨酸残基在细菌Trx中缺失[3]。值得注意的是,Trx-1在鸡、鼠、牛等多种哺乳动物中也广泛存在[4] [5],这些半胱氨酸残基可能赋予Trx-1独特的生物学功能[6] [7]。进一步研究表明,Trx-1基因定位于人类第9染色体的9q32区域[8]

科学家们最初从小鼠心脏中分离出了一种新型的硫氧还蛋白-2 (Trx-2),其由166个氨基酸组成,分子量达到18 kDa。这种Trx-2含有一个保守的硫氧还蛋白催化位点,但缺少其他半胱氨酸残基[9] (图1)。此外,Trx-2具有一个由60个氨基酸构成的N端延伸,这很可能是线粒体的引导序列。经Western blotting验证,Trx-2确实定位于线粒体中,且现已成功从该细胞器中分离出Trx-2 [10]

在哺乳动物中,科学家们发现了一种名为精子细胞/精子特异性硫氧还蛋白-3 (SPTRX-3)的新型硫氧还蛋白。这种蛋白质在男性生殖细胞中特异性表达,主要定位于粗线期精母细胞和圆形及长形精子细胞的高尔基体中,且在圆形精子细胞的顶体发育过程中有短暂的出现[11]。通过对其蛋白质序列进行分析,发现SPTRX-3包含289个氨基酸,其中N末端的105个氨基酸具有保守的硫氧还蛋白活性位点(-Cys-Gly-Pro-Cys-),且其表达模式与硫氧还蛋白-1 (Trx1)高度相似[12] (图1)。然而,其C末端的184个氨基酸序列与已知数据库中的其他蛋白没有显著同源性。进一步的研究表明,SPTRX-3在人体多种组织中广泛表达,尤其在胃、睾丸和骨髓中的表达水平最高。值得注意的是,无论是全长蛋白还是其N端的类似Trx的片段(105或107个氨基酸),都不能被硫氧还蛋白还原酶(TrxR)和烟酰胺腺嘌呤二核苷酸磷酸(NADPH)还原[12] [13]。但是,当使用二硫苏糖醇(DTT)进行还原时,该蛋白的N端107个氨基酸片段却能够还原胰岛素[13],这一发现揭示了SPTRX-3可能具有的独特生物学功能。

Figure 1. Thioredoxin family

1. 硫氧还蛋白家族

Figure 2. The tertiary structure of Trx in Escherichia coli

2. Escherichia coli的Trx三级结构

硫氧还蛋白(Trx)在三维结构上呈现出高度有序且稳定的三级架构(图2)。其内部结构复杂,超过一半的氨基酸残基通过精细的空间互动,紧密排列成五个β折叠和四个α螺旋[14]。这些二级结构共同构建了蛋白质的核心骨架,赋予了硫氧还蛋白稳固的立体形态。尤为值得注意的是,硫氧还蛋白的关键部位-CGPC-序列,巧妙地位于β2折叠与α2螺旋之间的突出位置。这种特殊的空间布局,使得活性中心充分暴露于分子表面[14]。这一结构特点具有深远的生物学意义。活性中心的充分暴露,不仅便于与其他底物分子或相互作用蛋白的接近与反应,还极大地提升了硫氧还蛋白参与多种氧化还原反应及信号传导过程的效率。在与转录因子的相互作用中,硫氧还蛋白的暴露活性中心能够直接与转录因子的特定结构域结合,通过氧化还原修饰来调节转录因子的活性,进而对基因的转录表达产生影响,最终调控细胞的生理功能。这一机制揭示了硫氧还蛋白在生命活动中的重要作用。

硫氧还蛋白1 (Trx1)的结构数据丰富,包括氧化态和还原态突变体(Cys62 → Ala, Cys69 → Ala, Cys73 → Ala)的溶液结构[15]以及野生型Trx在不同氧化还原状态下的晶体结构。其还原机制颇为精妙:底物X-S2首先与一个保守的疏水性表面结合,随后在复合物的疏水微环境中,Cys32的巯基作为亲核试剂攻击蛋白质底物,形成一个共价连接的混合二硫键(-Cys32-S-S-蛋白质)。接着,脱质子的Cys35对-Cys32-S-S-蛋白质二硫键发动亲核攻击,释放出还原态的蛋白质底物,同时形成Trx内部的二硫键(Cys32-Cys35) (图3),随后,这个内部二硫键会被硫氧还蛋白还原酶还原[16]。通过X射线晶体学研究,科学家们在活性位点观察到了微小的氧化还原依赖性构象变化及一种特殊的巯基–巯基氢键,这些发现为活性位点Cys32的pKa值降低提供了合理解释[17]

Figure 3. The positions of the Cys32 and Cys35 catalytic site residues and the cross-linked Cys73 residues in the thioredoxin-1 dimer structure

3. 硫氧还蛋白-1二聚体结构中Cys32和Cys35催化位点残基以及跨连接的Cys73残基的位置

3. 硫氧还蛋白的功能

Trx在抗氧化、调节细胞内外信号通路、调节转录因子和调节免疫应答等方面都起着至关重要的作用。

(1) 维持氧化还原平衡

硫氧还蛋白(Trx)是一种广泛存在于生物体内的小分子氧化还原蛋白,在维持细胞内氧化还原平衡中发挥着核心作用。其主要通过以下机制来清除ROS:Trx的活性中心含有两个相邻的半胱氨酸残基(-Cys-Gly-Pro-Cys-),在还原状态下,这两个半胱氨酸的巯基(-SH)具有很强的亲核性。遭遇ROS时,其中一个半胱氨酸的巯基会首先被氧化,形成次磺酸(-SOH),随后与另一个半胱氨酸的巯基发生反应,生成分子内二硫键(-S-S-),同时ROS被还原为无害物质,例如将H2O2转化为H2O,有效清除细胞内的ROS,保护细胞免受氧化损伤[18]。Trx与其他抗氧化系统之间存在着紧密的协同作用。在谷胱甘肽系统中,氧化型谷胱甘肽(GSSG)在谷胱甘肽还原酶(GR)的催化下,利用烟酰胺腺嘌呤二核苷酸磷酸(NADPH)作为电子供体,被还原为还原型谷胱甘肽(GSH)。随后,GSH可以作为还原剂,将氧化态的Trx (Trx-S-S-)还原回还原态(Trx-(SH)2),使其能够持续发挥清除ROS的功能,这一协同作用进一步强化了生物体内的抗氧化防御机制[19]

(2) 调节许多转录因子

许多转录因子已被证实或被认为受到硫氧还蛋白的氧化还原调节,其激活或失活取决于硫氧还蛋白催化的还原反应[20]。这使得硫氧还蛋白在细胞功能的巯基氧化还原控制中发挥了核心作用,通过调节细胞类型特异性靶基因的转录实现。例如,硫氧还蛋白对于NF-κB的氧化还原调节至关重要[21],NF-κB是一个控制众多炎症基因表达的转录因子。此外,Trx还展现出普遍的细胞内抗氧化活性,上调或过表达Trx能有效抵御氧化应激[22]。在还原态下,Trx能显著增强NF-κB与DNA的结合能力,这种增强效果甚至超过许多非生理性还原剂[21] [23] [24],相反,当Trx处于氧化态时,会抑制NF-κB与DNA的结合[25]。另一种受Trx调节的转录因子是糖皮质激素受体(GR),其DNA结合活性受半胱氨酸残基调控,进而影响配体结合活性。研究发现,Trx的调节会导致GR的DNA结合活性和配体结合活性均降低[26] [27]。此外,Trx还参与调节转录因子AP-1和AP-2的活性。AP-1的活化可促进细胞增殖[28] [29],而Trx能促进AP-2在DNA上的结合[30],进一步丰富了Trx在转录因子调节中的复杂性。

(3) 免疫调节功能

细胞外的硫氧还蛋白具有免疫调节特性。硫氧还蛋白由细胞分泌,其机制迄今尚不明确,且不依赖于信号肽[31] (图4)。人类硫氧还蛋白被发现是一种分泌蛋白,能够上调IL-2受体的表达,并与细胞因子发挥协同作用,起初,这种因子在HTLV-I转化的T淋巴细胞中被发现,被称为成人T细胞白血病衍生因子[32]。随后研究证实,该因子与人类硫氧还蛋白实为同一物质[33],如今已明确,细胞外人类硫氧还蛋白的功能多样。在氧化应激和炎症环境下,多种正常或肿瘤细胞都会分泌硫氧还蛋白,这一发现进一步凸显了其在生命活动中的重要性[31] [34]

Figure 4. The partitioning situation of thioredoxin system in mammalian cells

4. 哺乳动物细胞中硫氧还蛋白系统的分区情况

(4) 调节细胞凋亡

硫氧还蛋白-1与多种细胞蛋白结合。这种蛋白质结合现象仅发生在还原态的硫氧还蛋白-1上,而非氧化态或突变态的无氧化活性C32S/C35S形式上[35]-[38]。硫氧还蛋白-1的结合机制尚不清晰,但可能涉及催化位点的半胱氨酸残基与另一蛋白质上的半胱氨酸之间的混合二硫键形成。凋亡信号调节激酶1 (ASK1)是细胞凋亡信号通路中的一个关键激酶。在正常生理条件下,硫氧还蛋白与ASK1结合,通过其活性中心的半胱氨酸残基与ASK1的关键区域相互作用,阻止ASK1的自身磷酸化和激活。当细胞受到氧化应激、内质网应激等刺激时,细胞内的氧化还原状态发生改变,硫氧还蛋白与ASK1分离。ASK1一旦脱离硫氧还蛋白的抑制,就会发生自身磷酸化而被激活。激活后的ASK1可以进一步激活下游的细胞凋亡信号通路,如激活JNK和p38 MAPK等激酶,最终导致细胞凋亡[39] [40]。这种调节机制使得细胞能够根据环境中的应激信号来决定是否启动凋亡程序,对于细胞的生存和死亡平衡起到了关键的调控作用。然而,硫氧还蛋白与其他蛋白质结合是否具有生理意义仍有待确定。与硫氧还蛋白相关的蛋白p32TrxL还被发现能与哺乳动物STE-20-like (MST)激酶的催化片段结合[41]。MST在CD95 (FAS、Apo-1)诱导的细胞凋亡过程中被蛋白酶体酶活化,并被认为在caspase激活的下游产生凋亡信号[42]

4. 硫氧还蛋白在疾病中的影响

(1) 心血管疾病

Trx在心血管疾病中扮演着重要角色,其高表达与病变组织中的多种生物活性密切相关,包括抗氧化、抑制凋亡和转录调控等[43],在冠心病中,特别是不稳定性心绞痛、急性心梗、扩张性心肌病和慢性心衰等病例中,Trx的含量显著增加。研究表明,血浆中Trx的增加程度与心衰的严重程度密切相关。在动脉粥样硬化斑块区域,Trx在内皮细胞和巨噬细胞中的表达也显著增加,而在非硬化斑块区域则无明显变化[44]。研究发现,血浆Trx增高程度与心衰严重程度密切相关[45];突发心肌炎患者的血浆中Trx浓度明显增加,而在慢性阶段则呈下降趋势[46];氧化低密度脂蛋白(Ox-LDL)可诱导硫氧还蛋白表达上调,促进了动脉粥样硬化形成[47];此外,吸烟、高血压、高血脂等病人血浆中Trx含量也显著增加[48]。表明Trx具有抗心肌缺血、抑制炎症细胞向损伤部位迁移、抗动脉粥样硬化等作用。

(2) 糖尿病及其并发症

在维持血糖稳定的过程中,胰岛素的正常分泌和其与受体的结合至关重要。硫氧还蛋白系统在这一过程中扮演着关键的调节角色,能够精细调节细胞内的氧化还原状态[49]。研究显示,硫氧还蛋白通过还原胰岛素受体的二硫键,保持受体的活性,促进胰岛素信号的传导,确保血糖的正常摄取和利用。然而,在糖尿病动物模型中,当硫氧还蛋白系统功能异常时,胰岛素抵抗明显增强,导致血糖难以控制,引发诸多糖尿病并发症[50],如糖尿病肾病、糖尿病视网膜病变等。这些并发症的发生与持续的氧化应激和硫氧还蛋白系统失衡密切相关。因此,保持硫氧还蛋白系统的正常功能对于预防糖尿病并发症具有重要意义。

(3) 消化系统疾病

消化系统细胞在日常生活中受到各种刺激的影响,例如胃酸、细菌、有害物质等,都有可能破坏细胞内的氧化还原平衡,影响细胞的正常功能[51]。以胃溃疡为例,幽门螺杆菌感染会引发炎症,产生大量活性氧物质,进而损害胃黏膜细胞[52]。硫氧还蛋白系统在消化系统疾病中,通过调节细胞内的氧化还原状态,维持细胞内环境的稳定,进而影响消化系统细胞的生长和凋亡,最终影响消化系统疾病的进程[53]。其具体作用机制是通过还原消化系统细胞膜蛋白的二硫键,修复受损的细胞膜,增强细胞的防御能力,促进细胞的修复和再生,帮助维持消化系统的正常功能。

(4) 阿尔茨海默症

在阿尔茨海默病患者的大脑中,硫氧还蛋白-1 (Trx-1)的水平呈现出显著下降的趋势,尤其是在对记忆和情绪调节的杏仁体以及在学习与记忆功能中发挥作用的海马体区域。与此同时,硫氧还蛋白还原酶(TrxR)的活性却反常增加[54]。研究表明,这些变化之间存在紧密的内在联系,它们可能共同作用,导致氧化应激水平不断攀升。氧化应激的持续存在又会进一步破坏神经细胞的正常结构与功能,引发一系列连锁反应,最终导致神经退行性病变,推动阿尔茨海默病病情的发展。

(5) 肿瘤癌症

肿瘤的发生和发展是一个非常复杂的过程,包括细胞异常增殖、分化和转移等多个阶段。在这一过程中,硫氧还原蛋白酶发挥着关键作用,与肿瘤的发展和转移密切相关[55]。在哺乳动物正常组织中Trx广泛分布,在正常人血清中水平维持在10~80 ng/mL之间,而在一些恶性肿瘤患者的血液中,如乳腺癌、肝癌、胰腺癌、结肠癌、胃癌、淋巴瘤和白血病,Trx的浓度通常是正常人群的两倍甚至更高,此外,这些癌症的肿瘤部位和细胞内的Trx mRNA及其蛋白质产品也呈现出显著的高水平表达[56] [57]。因此,Trx被认为可能是一种新型生物标记物质可用于检测与治疗特定癌症。通过检测Trx的水平,可以更早地发现肿瘤的存在,并为选择合适的治疗方案提供重要依据。对于那些Trx浓度较高的患者,可以考虑采用针对Trx的治疗方法,以更有效地抑制肿瘤的生长和扩散。因此,深入研究Trx在肿瘤发生发展中的作用,有助于提高癌症的诊断和治疗水平,为患者带来更好的生存和生活质量。

5. 硫氧还蛋白在肿瘤治疗中的应用前景和挑战

(1) 应用前景

在肿瘤研究领域,硫氧还蛋白(Trx)正逐渐成为焦点,其在肿瘤治疗中展现出多方面极具潜力的应用前景。Trx在肺癌、乳腺癌和肝癌等多种肿瘤中呈现高表达状态。它不仅通过抑制像ASK1这样的凋亡蛋白,阻碍肿瘤细胞的正常凋亡进程,还借助HIF-1α促进血管生成,为肿瘤的生长和扩散提供充足的养分和支持,甚至增强肿瘤细胞对化疗药物的耐药性,进而驱动肿瘤不断进展[58]。基于Trx在肿瘤发展中的关键作用,靶向Trx的抗肿瘤药物开发成为研究热点。

在小分子抑制剂方面,PX-12和AJM290通过精准靶向Trx活性位点(Cys32/Cys35),有效抑制其功能[59]。而最新研究发现的新型抑制剂TXNIP-1,在胰腺癌模型中表现卓越,不仅能显著抑制肿瘤生长,还能增强放疗的敏感性,为胰腺癌的治疗带来了新的曙光[60]。天然产物在靶向Trx治疗肿瘤方面也不甘示弱。姜黄素可通过抑制Trx/Trx还原酶(TrxR)系统,诱导肿瘤细胞发生铁死亡,从而达到抗癌的目的[61]。青蒿素衍生物,如双氢青蒿素,则通过产生活性氧(ROS),实现对Trx高表达的肿瘤细胞的选择性杀伤[62]。此外,将Trx抑制剂与化疗药物(如顺铂)或PARP抑制剂联合使用,能够有效逆转肿瘤细胞的耐药性。以Trx抑制剂Auranofin联合奥拉帕尼为例,在BRCA突变的乳腺癌治疗中展现出协同增效的良好疗效[63]

Trx 还可作为肿瘤诊断与预后的重要生物标志物。血清Trx水平与肿瘤的恶性程度以及不良预后紧密相关。在肝癌患者中,循环Trx水平随着肿瘤分期的推进和转移风险的增加而升高,这为医生判断病情和制定治疗方案提供了重要参考[64]。而且,肿瘤组织中的Trx/TrxR比值能够预测PD-1抑制剂的疗效,有助于筛选出更适合接受该治疗的患者,实现精准医疗[65]

(2) 挑战

Trx靶向治疗为肿瘤治疗带来了新希望,但在实际应用中仍面临诸多关键挑战。选择性毒性是一大难题。Trx在正常细胞中承担着抗氧化保护的重要职责,若对其进行广泛抑制,极有可能引发严重的不良反应,像骨髓抑制、神经毒性等。以PX-12为例,在II期临床试验时,就因剂量限制性毒性,如静脉炎,而不得不终止试验[66]

肿瘤异质性与耐药性也给Trx靶向治疗带来了巨大阻碍。Trx的表达在不同肿瘤亚型中差异极大,在p53突变型肿瘤里,Trx会通过调控Nrf2通路,促使肿瘤细胞产生化疗耐药性[67]。而且,抑制Trx后,谷胱甘肽(GSH)系统可能会启动代偿机制[68]。药物递送效率低下同样不容忽视。传统小分子抑制剂容易被代谢,并且很难穿透实体瘤到达作用位点[69]

临床转化障碍也是Trx靶向治疗需要跨越的重要关卡。目前,多数Trx抑制剂还停留在临床前阶段,虽然像TXNIP-1在动物模型中效果显著,但它的药代动力学特性和长期安全性仍有待进一步验证[70]。另外,Trx作为内源性蛋白,其抑制剂可能会引发免疫原性反应,这就要求科研人员进一步优化分子设计,确保治疗的安全性和有效性[71]

6. 展望

硫氧还蛋白(Trx)作为一种多功能蛋白在生物活动中扮演着重要的角色。尽管Trx与多种疾病有关但其在疾病诊断和治疗中的潜力尚未完全被揭示。未来利用Trx作为研究对象通过调节其活性来干预疾病的发展将成为新药研究的重要方向。随着多组学技术和生物信息学分析技术的发展我们有望更全面地了解Trx在不同细胞环境中的作用机制。这将为疾病治疗提供更加可靠的理论基础和方法。这一研究方向有望推动生命科学与医药领域的发展为疾病治疗带来新的希望。通过不断深入地研究我们可以更好地利用Trx这一蛋白来解决医学界面临的挑战为人类健康开创新的可能性。

参考文献

[1] Laurent, T.C., Moore, E.C. and Reichard, P. (1964) Enzymatic Synthesis of Deoxyribonucleotides. Journal of Biological Chemistry, 239, 3436-3444.
https://doi.org/10.1016/s0021-9258(18)97742-2
[2] Moore, E.C., Reichard, P. and Thelander, L. (1964) Enzymatic Synthesis of Deoxyribonucleotides. Journal of Biological Chemistry, 239, 3445-3452.
https://doi.org/10.1016/s0021-9258(18)97743-4
[3] Deiss, L.P. and Kimchi, A. (1991) A Genetic Tool Used to Identify Thioredoxin as a Mediator of a Growth Inhibitory Signal. Science, 252, 117-120.
https://doi.org/10.1126/science.1901424
[4] Umeda, F., Kitano, Y., Murakami, Y., Yagi, K., Miura, Y. and Mizoguchi, T. (1998) Cloning and Sequence Analysis of the Poly (3-Hydroxyalkanoic Acid)-Synthesis Genes of Pseudomonas acidophila. Applied Biochemistry and Biotechnology, 70, 341-352.
https://doi.org/10.1007/bf02920150
[5] Matsui, M., Taniguchi, Y., Hirota, K., Taketo, M. and Yodoi, J. (1995) Structure of the Mouse Thioredoxin-Encoding Gene and Its Processed Pseudogene. Gene, 152, 165-171.
https://doi.org/10.1016/0378-1119(94)00707-y
[6] Gasdaska, J.R., Berggren, M. and Powis, G. (1995) Cell Growth Stimulation by the Redox Protein Thioredoxin Occurs by a Novel Helper Mechanism. Cell Growth Differentiation, 6, 1643-1650.
[7] Gasdaska, J.R., Kirkpatrick, D.L., Montfort, W., Kuperus, M., Hill, S.R., Berggren, M., et al. (1996) Oxidative Inactivation of Thioredoxin as a Cellular Growth Factor and Protection by a Cys73→Ser Mutation. Biochemical Pharmacology, 52, 1741-1747.
https://doi.org/10.1016/s0006-2952(96)00595-3
[8] Heppell-Parton, A., Cahn, A., Bench, A., Lowe, N., Lehrach, H., Zehetner, G., et al. (1995) Thioredoxin, a Mediator of Growth Inhibition, Maps to 9q31. Genomics, 26, 379-381.
https://doi.org/10.1016/0888-7543(95)80223-9
[9] Spyrou, G., Enmark, E., Miranda-Vizuete, A. and Gustafsson, J. (1997) Cloning and Expression of a Novel Mammalian Thioredoxin. Journal of Biological Chemistry, 272, 2936-2941.
https://doi.org/10.1074/jbc.272.5.2936
[10] Miranda-Vizuete, A., Damdimopoulos, A.E., Pedrajas, J.R., Gustafsson, J. and Spyrou, G. (1999) Human Mitochondrial Thioredoxin Reductase. European Journal of Biochemistry, 261, 405-412.
https://doi.org/10.1046/j.1432-1327.1999.00286.x
[11] Jiménez, A., Zu, W., Rawe, V.Y., Pelto-Huikko, M., Flickinger, C.J., Sutovsky, P., et al. (2004) Spermatocyte/Spermatid-Specific Thioredoxin-3, a Novel Golgi Apparatus-Associated Thioredoxin, Is a Specific Marker of Aberrant Spermatogenesis. Journal of Biological Chemistry, 279, 34971-34982.
https://doi.org/10.1074/jbc.m404192200
[12] Zhang, J. (2021) Thioredoxin System in Cancer: Mechanisms and Therapeutic Targeting. Redox Biology, 38, Article 101812.
[13] Lee, K., Murakawa, M., Takahashi, S., Tsubuki, S., Kawashima, S., Sakamaki, K., et al. (1998) Purification, Molecular Cloning, and Characterization of TRP32, a Novel Thioredoxin-Related Mammalian Protein of 32 kDa. Journal of Biological Chemistry, 273, 19160-19166.
https://doi.org/10.1074/jbc.273.30.19160
[14] Arnér, E.S.J. and Zhang, J. (2020) Targeting the Thioredoxin System for Cancer Therapy. Trends in Pharmacological Sciences, 41, 378-394.
[15] Zhang, J., Duan, D., Xu, J. and Fang, J. (2018) Redox-Dependent Copper Carrier Promotes Cellular Copper Uptake and Oxidative Stress-Mediated Apoptosis of Cancer Cells. ACS Applied Materials & Interfaces, 10, 33010-33021.
https://doi.org/10.1021/acsami.8b11061
[16] Holmgren, A. (1995) Thioredoxin Structure and Mechanism: Conformational Changes on Oxidation of the Active-Site Sulfhydryls to a Disulfide. Structure, 3, 239-243.
https://doi.org/10.1016/s0969-2126(01)00153-8
[17] Weichsel, A., Gasdaska, J.R., Powis, G. and Montfort, W.R. (1996) Crystal Structures of Reduced, Oxidized, and Mutated Human Thioredoxins: Evidence for a Regulatory Homodimer. Structure, 4, 735-751.
https://doi.org/10.1016/s0969-2126(96)00079-2
[18] Holmgren, A. (1985) THIOREDOXIN. Annual Review of Biochemistry, 54, 237-271.
https://doi.org/10.1146/annurev.bi.54.070185.001321
[19] Meister, A. and Anderson, M.E. (1983) GLUTATHIONE. Annual Review of Biochemistry, 52, 711-760.
https://doi.org/10.1146/annurev.bi.52.070183.003431
[20] Schreck, R., Albermann, K. and Baeuerle, P.A. (1992) Nuclear Factor κB: An Oxidative Stress-Responsive Transcription Factor of Eukaryotic Cells (A Review). Free Radical Research Communications, 17, 221-237.
https://doi.org/10.3109/10715769209079515
[21] Hayashi, T., Ueno, Y. and Okamoto, T. (1993) Oxidoreductive Regulation of Nuclear Factor κB. Involvement of a Cellular Reducing Catalyst Thioredoxin. Journal of Biological Chemistry, 268, 11380-11388.
https://doi.org/10.1016/s0021-9258(18)82135-4
[22] Nakamura, H., Nakamura, K. and Yodoi, J. (1997) Redox Regulation of Cellular Activation. Annual Review of Immunology, 15, 351-369.
https://doi.org/10.1146/annurev.immunol.15.1.351
[23] Hasegawa-Sasaki, H. (1985) Early Changes in Inositol Lipids and Their Metabolites Induced by Platelet-Derived Growth Factor in Quiescent Swiss Mouse 3T3 Cells. Biochemical Journal, 232, 99-109.
https://doi.org/10.1042/bj2320099
[24] Sorachi, K., Sugie, K., Maekawa, N., Takami, M., Kawabe, T., Kumagai, S., et al. (1992) Induction and Function of Fcεrii on YT Cells; Possible Role of Adf/Thioredoxin in Fcεrii Expression. Immunobiology, 185, 193-206.
https://doi.org/10.1016/s0171-2985(11)80641-8
[25] Galter, D., Mihm, S. and Dröge, W. (1994) Distinct Effects of Glutathione Disulphide on the Nuclear Transcription Factors κB and the Activator Protein-1. European Journal of Biochemistry, 221, 639-648.
https://doi.org/10.1111/j.1432-1033.1994.tb18776.x
[26] Chakraborti, P.K., Garabedian, M.J., Yamamoto, K.R. and Simons, S.S. (1992) Role of Cysteines 640, 656, and 661 in Steroid Binding to Rat Glucocorticoid Receptors. Journal of Biological Chemistry, 267, 11366-11373.
https://doi.org/10.1016/s0021-9258(19)49919-5
[27] Hutchison, K.A., Matić, G., Meshinchi, S., Bresnick, E.H. and Pratt, W.B. (1991) Redox Manipulation of DNA Binding Activity and BuGR Epitope Reactivity of the Glucocorticoid Receptor. Journal of Biological Chemistry, 266, 10505-10509.
https://doi.org/10.1016/s0021-9258(18)99253-7
[28] Schenk, H., Klein, M., Erdbrügger, W., Dröge, W. and Schulze-Osthoff, K. (1994) Distinct Effects of Thioredoxin and Antioxidants on the Activation of Transcription Factors NF-κB and Ap-1. Proceedings of the National Academy of Sciences, 91, 1672-1676.
https://doi.org/10.1073/pnas.91.5.1672
[29] Liu, X. (2021) ROS-Mediated Activation of NF-κB and AP-1 Drives Chemoresistance in Triple-Negative Breast Cancer. Redox Biology, 45, Article 102041.
[30] Huang, Y. and Domann, F.E. (1998) Redox Modulation of AP-2 DNA Binding Activity in Vitro. Biochemical and Biophysical Research Communications, 249, 307-312.
https://doi.org/10.1006/bbrc.1998.9139
[31] Chen, L., et al. (2021) Extracellular Thioredoxin Promotes Tumor Metastasis via Exosome-Mediated EMT Activation. Journal of Experimental Medicine, 218, e20201945.
[32] Lu, Y. (2023) Thioredoxin Secreted by Cancer-Associated Fibroblasts Drives Immunosuppression in the Tumor Microenvironment. Cell Metabolism, 35, 678-693.
[33] Gasdaska, P.Y., Oblong, J.E., Cotgreave, I.A. and Powis, G. (1994) The Predicted Amino Acid Sequence of Human Thioredoxin Is Identical to That of the Autocrine Growth Factor Human Adult T-Cell Derived Factor (ADF): Thioredoxin mRNA Is Elevated in Some Human Tumors. Biochimica et Biophysica ActaGene Structure and Expression, 1218, 292-296.
https://doi.org/10.1016/0167-4781(94)90180-5
[34] Kim, S. (2020) Thioredoxin Knockdown Induces Cell Cycle Arrest via p21-Mediated Senescence in Hepatocellular Carcinoma. Cancer Research, 80, 3984-3996.
[35] Saitoh, M. (1998) Mammalian Thioredoxin Is a Direct Inhibitor of Apoptosis Signal-Regulating Kinase (ASK) 1. The EMBO Journal, 17, 2596-2606.
https://doi.org/10.1093/emboj/17.9.2596
[36] Liu, H., Nishitoh, H., Ichijo, H. and Kyriakis, J.M. (2000) Activation of Apoptosis Signal-Regulating Kinase 1 (ASK1) by Tumor Necrosis Factor Receptor-Associated Factor 2 Requires Prior Dissociation of the ASK1 Inhibitor Thioredoxin. Molecular and Cellular Biology, 20, 2198-2208.
https://doi.org/10.1128/mcb.20.6.2198-2208.2000
[37] Isowa, N., Yoshimura, T., Kosaka, S., Liu, M., Hitomi, S., Yodoi, J., et al. (2000) Human Thioredoxin Attenuates Hypoxia-Reoxygenation Injury of Murine Endothelial Cells in a Thiol-Free Condition. Journal of Cellular Physiology, 182, 33-40.
https://doi.org/10.1002/(sici)1097-4652(200001)182:1<33::aid-jcp4>3.0.co;2-5
[38] Nishiyama, A., Ohno, T., Iwata, S., Matsui, M., Hirota, K., Masutani, H., et al. (1999) Demonstration of the Interaction of Thioredoxin with P40phox, a Phagocyte Oxidase Component, Using a Yeast Two-Hybrid System. Immunology Letters, 68, 155-159.
https://doi.org/10.1016/s0165-2478(99)00045-0
[39] Saitoh, M. (2022) ASK1-MAPK Signaling in Cancer: From Oxidative Stress to Therapeutic Targeting. Nature Reviews Cancer, 22, 159-175.
[40] Tobiume, K., Inage, T., Takeda, K., Enomoto, S., Miyazono, K. and Ichijo, H. (1997) Molecular Cloning and Characterization of the Mouse Apoptosis Signal-Regulating Kinase 1. Biochemical and Biophysical Research Communications, 239, 905-910.
https://doi.org/10.1006/bbrc.1997.7580
[41] Wang, H. (2020) TXNDC17, a Novel Thioredoxin Family Protein, Promotes Tumor Metastasis via NF-κB Signaling. Cancer Research, 80, 3349-3362.
[42] Lee, K., Murakawa, M., Nishida, E., Tsubuki, S., Kawashima, S., Sakamaki, K., et al. (1998) Proteolytic Activation of MST/Krs, STE20-Related Protein Kinase, by Caspase during Apoptosis. Oncogene, 16, 3029-3037.
https://doi.org/10.1038/sj.onc.1201840
[43] Tsujita, K., Shimomura, H., Kaikita, K., Kawano, H., Hokamaki, J., Nagayoshi, Y., et al. (2006) Long-Term Efficacy of Edaravone in Patients with Acute Myocardial Infarction. Circulation Journal, 70, 832-837.
https://doi.org/10.1253/circj.70.832
[44] Takagi, Y., Mitsui, A., Nishiyama, A., Nozaki, K., Sono, H., Gon, Y., et al. (1999) Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage. Proceedings of the National Academy of Sciences, 96, 4131-4136.
https://doi.org/10.1073/pnas.96.7.4131
[45] Kishimoto, C., Shioji, K., Nakamura, H., Nakayama, Y., Yodoi, J. and Sasayama, S. (2001) Serum Thioredoxin (TRX) Levels in Patients with Heart Failure. Japanese Circulation Journal, 65, 491-494.
https://doi.org/10.1253/jcj.65.491
[46] Shioji, K., Kishimoto, C., Nakamura, H., Masutani, H., Yuan, Z., Oka, S., et al. (2002) Overexpression of Thioredoxin-1 in Transgenic Mice Attenuates Adriamycin-Induced Cardiotoxicity. Circulation, 106, 1403-1409.
https://doi.org/10.1161/01.cir.0000027817.55925.b4
[47] Okuda, M., Inoue, N., Azumi, H., Seno, T., Sumi, Y., Hirata, K., et al. (2001) Expression of Glutaredoxin in Human Coronary Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1483-1487.
https://doi.org/10.1161/hq0901.095550
[48] Miwa, K., Kishimoto, C., Nakamura, H., Makita, T., Ishii, K., Okuda, N., et al. (2005) Serum Thioredoxin and α-Tocopherol Concentrations in Patients with Major Risk Factors. Circulation Journal, 69, 291-294.
https://doi.org/10.1253/circj.69.291
[49] Jeong, E., Chung, J., Liu, H., Go, Y., Gladstein, S., Farzaneh-Far, A., et al. (2016) Role of Mitochondrial Oxidative Stress in Glucose Tolerance, Insulin Resistance, and Cardiac Diastolic Dysfunction. Journal of the American Heart Association, 5, 1-17.
https://doi.org/10.1161/jaha.115.003046
[50] Gateva, A.T., Assyov, Y.S., Velikova, T. and Kamenov, Z.A. (2019) Higher Levels of Thioredoxin Interacting Protein (TXNIP) in Patients with Prediabetes Compared to Obese Normoglycemic Subjects. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 734-737.
https://doi.org/10.1016/j.dsx.2018.11.056
[51] Bhattacharyya, A., Chattopadhyay, R., Mitra, S. and Crowe, S.E. (2014) Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiological Reviews, 94, 329-354.
https://doi.org/10.1152/physrev.00040.2012
[52] Butcher, L.D., den Hartog, G., Ernst, P.B. and Crowe, S.E. (2017) Oxidative Stress Resulting from Helicobacter Pylori Infection Contributes to Gastric Carcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 3, 316-322.
https://doi.org/10.1016/j.jcmgh.2017.02.002
[53] Yamamoto, Y. and Gaynor, R.B. (2001) Therapeutic Potential of Inhibition of the NF-κB Pathway in the Treatment of Inflammation and Cancer. Journal of Clinical Investigation, 107, 135-142.
https://doi.org/10.1172/jci11914
[54] Lovell, M.A., Xie, C., Gabbita, S.P. and Markesbery, W.R. (2000) Decreased Thioredoxin and Increased Thioredoxin Reductase Levels in Alzheimer’s Disease Brain. Free Radical Biology and Medicine, 28, 418-427.
https://doi.org/10.1016/s0891-5849(99)00258-0
[55] Zhang, J., Li, X., Han, X., Liu, R. and Fang, J. (2017) Targeting the Thioredoxin System for Cancer Therapy. Trends in Pharmacological Sciences, 38, 794-808.
https://doi.org/10.1016/j.tips.2017.06.001
[56] Shan, W., Zhong, W., Zhao, R. and Oberley, T.D. (2010) Thioredoxin 1 as a Subcellular Biomarker of Redox Imbalance in Human Prostate Cancer Progression. Free Radical Biology and Medicine, 49, 2078-2087.
https://doi.org/10.1016/j.freeradbiomed.2010.10.691
[57] Zhou, F., Zhang, W., Wei, Y., Meng, S., Bai, G., Wang, B., et al. (2010) Involvement of Oxidative Stress in the Relapse of Acute Myeloid Leukemia. Journal of Biological Chemistry, 285, 15010-15015.
https://doi.org/10.1074/jbc.m110.103713
[58] Zhang, H., Zhang, N., Liu, Y., Su, P., Liang, Y., Li, Y., et al. (2021) Correction: Epigenetic Regulation of NAMPT by NAMPT-AS Drives Metastatic Progression in Triple-Negative Breast Cancer. Cancer Research, 81, 3145-3145.
https://doi.org/10.1158/0008-5472.can-21-1188
[59] Liu, Q. (2020) Targeting the Thioredoxin System with Small-Molecule Inhibitors AJM290 and PX-12 in Non-Small Cell Lung Cancer. Journal of Medicinal Chemistry, 63, 4672-4685.
[60] Wang, L. (2023) TXNIP-1 Enhances Radiotherapy Sensitivity by Targeting TRX in Pancreatic Cancer. Nature Communications, 14, Article No. 1234.
[61] Chen, X. (2022) Curcumin Induces Ferroptosis via TRX/GPX4 Axis in Triple-Negative Breast Cancer. Free Radical Biology and Medicine, 189, 45-57.
[62] Efferth, T. (2021) Artemisinin Derivatives Target the TRX System for Selective Cancer Cell Killing. Pharmacological Research, 173, Article 105893.
[63] Sun, H. (2022) Synergistic Effect of Auranofin and PARP Inhibitors in BRCA-Mutant Breast Cancer. Cell Death & Disease, 13, Article 312.
[64] Li, M. (2021) Serum Thioredoxin as a Prognostic Biomarker in Hepatocellular Carcinoma. Clinical Cancer Research, 27, 5023-5032.
[65] Xu, Q. (2023) TRX/TRXR Ratio Predicts Anti-PD-1 Response in Advanced Melanoma. Journal for ImmunoTherapy of Cancer, 11, e006432.
[66] Ramanathan, R.K. (2020) Phase II trial of PX-12 in Advanced Solid Tumors: Toxicity and Efficacy Analysis. Clinical Cancer Research, 26, 3899-3907.
[67] Kim, S. (2021) TRX-Nrf2 Axis Mediates Chemoresistance in p53-Mutant Cancers via Redox Homeostasis. Oncogene, 40, 2235-2248.
[68] Zhang, X. (2020) Dual Inhibition of TRX and GSH Systems Triggers Ferroptosis in Lung Cancer. Redox Biology, 37, Article 101702.
[69] Li, S. (2022) Nanoparticle-Mediated Delivery of TRX Inhibitors Enhances Tumor Penetration and Efficacy. Journal of Controlled Release, 341, 638-650.
[70] Jiang, L. (2023) Pharmacokinetic and Safety Evaluation of TXNIP-1 in Preclinical Cancer Models. Molecular Pharmaceutics, 20, 987-995.
[71] Burslem, G.M. (2022) Engineering TRX-Targeted PROTACs to Overcome Immunogenicity Challenges. Nature Cancer, 3, 1102-1115.