|
[1]
|
Martin, S.S., Aday, A.W., Almarzooq, Z.I., Anderson, C.A.M., Arora, P., Avery, C.L., et al. (2024) 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation, 149, e347-e913.
|
|
[2]
|
Liu, S., Li, Y., Zeng, X., Wang, H., Yin, P., Wang, L., et al. (2019) Burden of Cardiovascular Diseases in China, 1990-2016: Findings from the 2016 Global Burden of Disease Study. JAMA Cardiology, 4, 342-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhao, D., Liu, J., Wang, M., Zhang, X. and Zhou, M. (2018) Epidemiology of Cardiovascular Disease in China: Current Features and Implications. Nature Reviews Cardiology, 16, 203-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chong, B., Jayabaskaran, J., Jauhari, S.M., Chan, S.P., Goh, R., Kueh, M.T.W., et al. (2024) Global Burden of Cardiovascular Diseases: Projections from 2025 to 2050. European Journal of Preventive Cardiology. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Roth, G.A., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., et al. (2018) Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1736-1788. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., et al. (2022) Aging and Aging-Related Diseases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduction and Targeted Therapy, 7, Article No. 391. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hill, M.A., Yang, Y., Zhang, L., Sun, Z., Jia, G., Parrish, A.R., et al. (2021) Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease. Metabolism, 119, Article ID: 154766. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wu, Z., Wang, J., Li, Z., Han, Z., Miao, X., Liu, X., et al. (2021) Triglyceride Glucose Index and Carotid Atherosclerosis Incidence in the Chinese Population: A Prospective Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2042-2050. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Jin, J., Cao, Y., Wu, L., You, X., Guo, Y., Wu, N., et al. (2018) Triglyceride Glucose Index for Predicting Cardiovascular Outcomes in Patients with Coronary Artery Disease. Journal of Thoracic Disease, 10, 6137-6146. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Won, K., Park, E.J., Han, D., Lee, J.H., Choi, S., Chun, E.J., et al. (2020) Triglyceride Glucose Index Is an Independent Predictor for the Progression of Coronary Artery Calcification in the Absence of Heavy Coronary Artery Calcification at Baseline. Cardiovascular Diabetology, 19, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fritz, J., Brozek, W., Concin, H., Nagel, G., Kerschbaum, J., Lhotta, K., et al. (2022) The Association of Excess Body Weight with Risk of ESKD Is Mediated through Insulin Resistance, Hypertension, and Hyperuricemia. Journal of the American Society of Nephrology, 33, 1377-1389. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, Z., Zhou, D., Liu, Y., Li, Z., Wang, J., Han, Z., et al. (2021) Association of Tyg Index and TG/HDL-C Ratio with Arterial Stiffness Progression in a Non-Normotensive Population. Cardiovascular Diabetology, 20, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wu, Z., Yu, S., Zhang, H., Guo, Z., Zheng, Y., Xu, Z., et al. (2022) Combined Evaluation of Arterial Stiffness, Glycemic Control and Hypertension for Macrovascular Complications in Type 2 Diabetes. Cardiovascular Diabetology, 21, Article No. 262. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ridker, P.M., Bhatt, D.L., Pradhan, A.D., Glynn, R.J., MacFadyen, J.G. and Nissen, S.E. (2023) Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. The Lancet, 401, 1293-1301. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lawler, P.R., Bhatt, D.L., Godoy, L.C., Lüscher, T.F., Bonow, R.O., Verma, S., et al. (2020) Targeting Cardiovascular Inflammation: Next Steps in Clinical Translation. European Heart Journal, 42, 113-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lan, Y., Chen, G., Wu, D., Ding, X., Huang, Z., Wang, X., et al. (2023) Temporal Relationship between Atherogenic Dyslipidemia and Inflammation and Their Joint Cumulative Effect on Type 2 Diabetes Onset: A Longitudinal Cohort Study. BMC Medicine, 21, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ruan, G., Xie, H., Zhang, H., Liu, C., Ge, Y., Zhang, Q., et al. (2022) A Novel Inflammation and Insulin Resistance Related Indicator to Predict the Survival of Patients with Cancer. Frontiers in Endocrinology, 13, Article 905266. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Huang, C., You, H., Zhang, Y., Li, Z., Li, M., Feng, X., et al. (2024) Association between C-Reactive Protein-Triglyceride Glucose Index and Depressive Symptoms in American Adults: Results from the NHANES 2005 to 2010. BMC Psychiatry, 24, Article No. 890. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhao, D. (2023) Value of C-Reactive Protein-Triglyceride Glucose Index in Predicting Cancer Mortality in the General Population: Results from National Health and Nutrition Examination Survey. Nutrition and Cancer, 75, 1934-1944. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xu, M., Zhang, L., Xu, D., Shi, W. and Zhang, W. (2024) Usefulness of C-Reactive Protein-Triglyceride Glucose Index in Detecting Prevalent Coronary Heart Disease: Findings from the National Health and Nutrition Examination Survey 1999-2018. Frontiers in Cardiovascular Medicine, 11, Article 1485538. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhao, Y., Hu, Y., Smith, J.P., Strauss, J. and Yang, G. (2012) Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). International Journal of Epidemiology, 43, 61-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., et al. (2023) Addendum. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023; 46(suppl. 1): s19-s40. Diabetes Care, 46, 1715-1715. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cui, C., Liu, L., Qi, Y., Han, N., Xu, H., Wang, Z., et al. (2024) Joint Association of Tyg Index and High Sensitivity C-Reactive Protein with Cardiovascular Disease: A National Cohort Study. Cardiovascular Diabetology, 23, Article No. 156. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Park, B., Lee, Y., Lee, H.S. and Jung, D. (2020) The Triglyceride-Glucose Index Predicts Ischemic Heart Disease Risk in Koreans: A Prospective Study Using National Health Insurance Service Data. Cardiovascular Diabetology, 19, Article No. 210. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Barzegar, N., Tohidi, M., Hasheminia, M., Azizi, F. and Hadaegh, F. (2020) The Impact of Triglyceride-Glucose Index on Incident Cardiovascular Events during 16 Years of Follow-Up: Tehran Lipid and Glucose Study. Cardiovascular Diabetology, 19, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tian, X., Zuo, Y., Chen, S., Liu, Q., Tao, B., Wu, S., et al. (2021) Triglyceride-Glucose Index Is Associated with the Risk of Myocardial Infarction: An 11-Year Prospective Study in the Kailuan Cohort. Cardiovascular Diabetology, 20, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hong, S., Han, K. and Park, C. (2020) The Triglyceride Glucose Index Is a Simple and Low-Cost Marker Associated with Atherosclerotic Cardiovascular Disease: A Population-Based Study. BMC Medicine, 18, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gao, J., Hao, Q., Gao, M., Zhang, K., Li, X., Wang, J., et al. (2021) Triglyceride-Glucose Index in the Development of Peripheral Artery Disease: Findings from the Atherosclerosis Risk in Communities (ARIC) Study. Cardiovascular Diabetology, 20, Article No. 126. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sánchez‐Íñigo, L., Navarro‐González, D., Fernández‐Montero, A., Pastrana‐Delgado, J. and Martínez, J.A. (2016) The Tyg Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Huang, Z., Ding, X., Yue, Q., Wang, X., Chen, Z., Cai, Z., et al. (2022) Triglyceride-Glucose Index Trajectory and Stroke Incidence in Patients with Hypertension: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, H., Chen, S., Qian, F., Tian, X., Zuo, Y., Li, X., et al. (2022) Triglyceride-Glucose Index Variability and Incident Cardiovascular Disease: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 105. [Google Scholar] [CrossRef]
|
|
[34]
|
Xu, X., Huang, R., Lin, Y., Guo, Y., Xiong, Z., Zhong, X., et al. (2022) High Triglyceride-Glucose Index in Young Adulthood Is Associated with Incident Cardiovascular Disease and Mortality in Later Life: Insight from the CARDIA Study. Cardiovascular Diabetology, 21, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yan, Y., Wang, D., Sun, Y., Ma, Q., Wang, K., Liao, Y., et al. (2022) Triglyceride-Glucose Index Trajectory and Arterial Stiffness: Results from Hanzhong Adolescent Hypertension Cohort Study. Cardiovascular Diabetology, 21, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wu, Z., Zhou, D., Liu, Y., Li, Z., Wang, J., Han, Z., et al. (2021) Association of TyG Index and TG/HDL-C Ratio with Arterial Stiffness Progression in a Non-Normotensive Population. Cardiovascular Diabetology, 20, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yousuf, O., Mohanty, B.D., Martin, S.S., Joshi, P.H., Blaha, M.J., Nasir, K., et al. (2013) High-Sensitivity C-Reactive Protein and Cardiovascular Disease. Journal of the American College of Cardiology, 62, 397-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Buckley, D.I., Fu, R., Freeman, M., Rogers, K. and Helfand, M. (2009) C-Reactive Protein as a Risk Factor for Coronary Heart Disease: A Systematic Review and Meta-Analyses for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 151, 483-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Dong, Y., Wang, X., Zhang, L., Chen, Z., Zheng, C., Wang, J., et al. (2018) High-Sensitivity C Reactive Protein and Risk of Cardiovascular Disease in China-CVD Study. Journal of Epidemiology and Community Health, 73, 188-192. [Google Scholar] [CrossRef] [PubMed]
|