C反应性蛋白–甘油三酯葡萄糖指数与心血管疾病风险之间的关联
The Association between C-Reactive Protein-Triglyceride-Glucose Index and the Risk of Cardiovascular Diseases
DOI: 10.12677/acm.2025.1561766, PDF, HTML, XML,   
作者: 饶晶晶, 何 敏, 谭黎娜, 王 越, 胡良波:广西医科大学第一临床医学院,广西 南宁;曾晓聪*:广西医科大学第一临床医学院,广西 南宁;广西医科大学第一附属医院心血管内科,广西 南宁
关键词: 心血管疾病C反应蛋白–甘油三酸酯葡萄糖指数炎症胰岛素抵抗中国卫生与退休纵向研究Cardiovascular Diseases C-Reactive Protein-Triglyceride Glucose Index Inflammation Insulin Resistance CHARLS
摘要: 目的:C-反应蛋白–甘油三酯–葡萄糖指数(CTI)已被提出作为胰岛素抵抗炎症的新生物标志物。然而,在中国人群中CTI与心血管疾病风险之间的关系仍然不清楚,旨在探讨中国普通人群中CTI与心血管疾病之间的复杂关系。方法:中国卫生与退休纵向研究(CHARLS)总共有5267名中年和老年参与者,主要终点是心血管疾病事件的发生。使用0.412 * Ln (CRP [mg/l]) + Ln (TG [mg/dl] × FPG [mg/dl])/2计算CTI。Kaplan-Meier曲线,COX比例危害模型和受限的立方样条分析用于探索CTI与心血管疾病风险之间的关联。结果:在随访期间,记录了2603例CVD病例,随着CTI四分位数(Q1→Q4)升高,心血管疾病事件数和风险比(HR)逐步递增,呈现明确的剂量–反应关系(趋势检验P < 0.001)。结论:CTI值变化与45岁及45岁以上个人的CVD风险增加显着相关,从而确认其潜在的潜力是心血管疾病风险分层的宝贵工具。
Abstract: Objective: The C-reactive protein-triglyceride-glucose index (CTI) has been proposed as a new biomarker for insulin resistance and inflammation. However, the relationship between CTI and the risk of cardiovascular diseases in the Chinese population remains unclear, aiming to explore the complex relationship between CTI and cardiovascular diseases in the general Chinese population. Method: The China Health and Retirement Longitudinal Study (CHARLS) involved a total of 5267 middle-aged and elderly participants, and the primary endpoint was the occurrence of cardiovascular disease events. CTI was calculated using 0.412 * Ln (CRP [mg/l]) + Ln (TG [mg/dl] × FPG [mg/dl])/2. The Kaplan-Meier curve, COX proportional hazards model and restricted cubic spline analysis were used to explore the association between CTI and the risk of cardiovascular diseases. Result: During the follow-up period, 2,603 cases of CVD were recorded. With the increase of the quartile of CTI (Q1→Q4), the number of cardiovascular disease events and the hazard ratio (HR) gradually increased, presenting a clear dose-response relationship (trend test P < 0.001). Conclusion: Changes in CTI values are significantly associated with an increased risk of CVD in individuals aged 45 and above, thereby confirming its potential as a valuable tool for risk stratification in CVD.
文章引用:饶晶晶, 何敏, 谭黎娜, 王越, 胡良波, 曾晓聪. C反应性蛋白–甘油三酯葡萄糖指数与心血管疾病风险之间的关联[J]. 临床医学进展, 2025, 15(6): 601-613. https://doi.org/10.12677/acm.2025.1561766

1. 引言

心血管疾病(CVD)是全球非传染性疾病死亡率的首要原因,每年约为1990万死亡[1]。在中国,自1990年以来,CVD的患病率翻了一番,在2016年达到近9400万[2]。预测表明,到2050年,这一数字将升至3560万,施加了重大压力,并对医疗保健系统(尤其是发展中国家)面临重大挑战[3] [4]。此外,预计CVD的负担将继续增加,这主要是由于人口衰老驱动[5] [6]。因此,迫切需要了解当前CVD主要类型的流行病学特征和风险因素,并实施早期预防策略以减轻不良心血管事件的风险,从而减轻CVD的整体负担。胰岛素抵抗的特征是降低了包括胰岛素介导的葡萄糖处理在内的胰岛素代谢作用的敏感性或反应能力,已被广泛鉴定为CVD发展的独立风险因素[7]。甘油三酸酯葡萄糖(TYG)指数于2008年首次提出,作为可靠的胰岛素抵抗生物标志物,已在临床中广泛使用[8] [9]。目前,大量的研究提供了有力的证据,表明TYG指数对CVD的预测作用[10]-[12]。此外,TYG指数也与心血管疾病的危险因素(例如动脉僵硬和高血压)密切相关[13] [14]。值得注意的是,多因素风险因素评估和管理对于早期预防CVD至关重要[15]。C反应蛋白(CRP)是一种非特异性炎症标,与在CVD发病率密切相关[16]。这有望在临床实践中有望对CVD进行风险分层[17]。研究表明,在CVD的主要预防中,需要对慢性炎症和动脉粥样硬化血脂异常进行联合评估和管理[16] [18]。因此,开发一个反映胰岛素抵抗和炎症作为预测心血管疾病的工具的综合指数非常重要。Ruan等人首先提出了C反应蛋白–甘油三酸酯葡萄糖指数(CTI),它全面反映了炎症和胰岛素抵抗,然后在临床研究中广泛使用[19]。CTI对患有癌症恶病质,普通人群癌症死亡率和抑郁症发病率的患者的预后表现出了强大的预测价值[20] [21]。有研究发现,CTI与美国普通人群中普遍存在的CHD有积极线性和牢固的关联,CTI可能有助于改善普通人群中普遍的CHD的检测[22]。尽管已经建立了CTI与CVD发作之间的相关性,但现有的研究主要集中在美国普通人群中。在中国人群中关于CTI和CVD风险变化之间关联尚不清楚。为了解决这些关键的研究差距,我们分析了中国卫生和退休纵向研究(CHALS)的数据,旨在探讨中国普通人群中CTI与心血管疾病之间的复杂关系,这些发现可能有助于早期识别高风险个体,尽早定制干预措施。

2. 方法

2.1. 研究设计

研究设计这项研究的数据源自Charls,这是一项持续的,基于人群的前瞻性队列研究,采用了一种多阶段分层概率抽样方法来招募来自中国28个省150个县的17,708名参与者,以确保样本的代表性和可靠性。首次全国基线调查(第1波)于2011年进行,使用标准化的问卷来收集所有参与者的基本信息,随后在2013年,2015年,2018年和2020年进行了四次随后的后续调查。有关研究设计的其他全面信息已在其他文献中进行了详细介绍[23]

2.2. 研究人口

在本研究中,最初总共招募了17,708名参与者参加基线调查。按照预定义的排除标准,将12,441名参与者排除在分析之外。排除在外的主要原因如下:第1波(wave1)时CTI缺失者(n = 6072);基线癌症患者(n = 213);年龄小于45岁或年龄数据缺失(n = 351);在wave1之前已经患心血管疾病者或数据缺失(n = 5657);结局和随访缺失者(n = 148),最终,5267名参与者有资格进行最终分析(图1)。CHARLS研究按照赫尔辛基宣言的原则进行,并获得北京大学机构审查委员会的批准(IRB 00001052-11015)。所有受试者在参与CHARLS研究前均提供了书面知情同意书。本研究按照加强流行病学观察性研究报告(STROBE)报告指南进行。

Figure 1. Flow chart of the study population

1. 研究人群流程图

2.3. CTI计算

CTI指数通过以下公式获得:CTI = 0.412 × Ln (CRP [mg/L]) + Ln (TG [mg/ dl] × FPG [mg/dl])/2。[19] CRP:C-反应蛋白;FPG:空腹血糖;TG:甘油三酯。

2.4. CVD事件的评估

研究的结果是CVD事件的发生率,通过以下标准化问题评估CVD事件:“医生是否告知您已被诊断患有心脏病发作、冠心病、心绞痛、充血性心力衰竭或其他心脏问题?”或者“你被医生告知你被诊断出中风了吗?”在随访期间报告心脏病或中风的参与者被定义为发生CVD。CVD诊断日期记录为在末次访谈日期和报告CVD事件的访谈日期之间。经过培训的访谈员对数据记录和确认实施了严格的质量控制措施,以确保数据的可靠性和准确性。

2.5. 协变量的评估

受试者的基线数据由经过培训的访问者使用结构化问卷仔细收集。调查问卷涵盖了广泛的变量,包括社会人口特征(年龄、性别、居住地区、婚姻状况、教育程度)、生活方式因素(吸烟和饮酒状况),人体测量(体重指数[BMI]),病史(糖尿病、高血压、肺病、肾病)和实验室检查结果(血红蛋白水平、白细胞[WBC]、总胆固醇[TC]、甘油三酯[TG]、高密度脂蛋白胆固醇[HDL-c]、低密度脂蛋白胆固醇[LDL-c]、血清肌酐、尿酸[UA]、高敏C反应蛋白[hsCRP])。

2.6. 定义

高血压的定义是符合以下标准之一:(1) 收缩压 ≥ 140 mmHg;(2) 舒张压 ≥ 90 mmHg;(3) 医生诊断的自我报告的高血压;(4) 服用抗高血压药物。糖尿病定义为至少符合以下标准之一:(1) 空腹血糖(FPG) ≥ 126 mg/dL;(2) 糖化血红蛋白(HbA 1c) ≥ 6.5%;(3) 和/或当前使用降糖药物;(4) 和/或医生诊断的自我报告糖尿病[24]。血脂异常通过TG ≥ 150 mg/dL、TC ≥ 240 mg/dL、HDL-C < 40 mg/dL、LDL-C ≥ 160 mg/dL、当前使用降脂药物或医生诊断的自我报告的血脂异常确定。

2.7. 统计分析

为了解决缺失数据缓解潜在偏倚,使用链式方程(MICE)进行多重插补。对于遵循正态分布的定量变量,结果以平均值和标准误表示。使用方差分析(ANOVA)评估组间差异。对于不符合正态分布的定量变量,我们提供了中位数和四分位距,并使用Kruskal-Wallis检验评价了组间差异。使用计数和百分比描述分类变量,并使用卡方检验进行统计学评价。根据CTI的四分位数,将参与者分为四组。四分位数第一四分位组(Q1) ≤ 7.11;7.11 < 四分位数第二四分位组(Q2) ≤ 7.58;7.58 < 四分位数第三四分位组(Q3) ≤ 8.14;四分位数第一四分位组(Q4) > 8.14。还将CTI作为连续变量进行评估,以增强结果的稳健性。采用Kaplan-Meier曲线和对数秩检验评估心血管疾病的发生率。使用COX回归模型研究CTI与卒中发病率之间的关系。开发了三个不同的模型以便于进行全面分析:模型1未调整任何协变量;模型2根据性别、年龄、BMI的情况进行校正;模型3根据性别、年龄、BMI、中风、关节炎、血脂异常、哮喘病、腰围、白细胞、血小板计数、血糖、肌酐、总胆固醇、甘油三酯、低密度脂蛋白胆固醇、C反应蛋白、糖化血红蛋白、尿酸、红细胞比容、血红蛋白、胱抑素C、是否有慢性病、甘油三酯葡萄糖指数、糖尿病的情况额外校正。此外,还进行了完全调整的限制性三次样条(RCS)分析,以探索CTI和心血管疾病风险之间的剂量–反应关系。进行亚组分析,以评价CTI对心血管疾病发生率的影响是否在不同人口统计学组中不同,这些分析按几个因素分层,包括年龄(<65岁和≥65岁)、性别(男性与女性)、糖尿病(是与否)、BMI (BMI分类如下:<24和≥24 kg/m2),用似然比检验检验乘性交互作用的显着性。所有统计分析均使用R软件(版本4.2.2)和Mplus软件(版本8.3)进行。认为双侧P值小于0.05具有统计学显著性。

3. 结果

3.1. 人群特征

这项研究包括了来自CHARLS的5267名参与者。受试者的平均年龄为56 ± 6岁,其中2683 (50.9%)为女性。此外,与CTI四分位数较低的相比,CTI四分位数较高的受试者,肺病、血脂异常、哮喘病和糖尿病的患病率较高。对于身体测量和实验室检查,CTI值不断升高伴随着腰围、BMI、白细胞、血糖、总胆固醇、甘油三酯、C反应蛋白、糖化血红蛋白、尿酸、红细胞比容、血红蛋白、甘油三酯葡萄糖指数水平的升高。相比之下,CTI的较高四分位数与高密度脂蛋白胆固醇水平较低相关。所有患者的人口统计学和临床特征见表1

Table 1. Patient demographics and baseline characteristics

1. 患者人口统计学资料和基线特征

CTI四分位数

特征

[ALL]

Q 1

Q 2

Q 3

Q 4

p

N = 5267

N = 1317

N = 1317

N = 1317

N = 1316

性别:

0.394

2683 (50.9%)

656 (49.8%)

658 (50.0%)

695 (52.8%)

674 (51.2%)

2584 (49.1%)

661 (50.2%)

659 (50.0%)

622 (47.2%)

642 (48.8%)

肺病:

0.018

4822 (91.6%)

1232 (93.5%)

1203 (91.3%)

1199 (91.0%)

1188 (90.3%)

445 (8.45%)

85 (6.45%)

114 (8.66%)

118 (8.96%)

128 (9.73%)

中风:

0.172

5207 (98.9%)

1309 (99.4%)

1298 (98.6%)

1302 (98.9%)

1298 (98.6%)

60 (1.14%)

8 (0.61%)

19 (1.44%)

15 (1.14%)

18 (1.37%)

精神疾病:

0.217

5197 (98.7%)

1293 (98.2%)

1303 (98.9%)

1298 (98.6%)

1303 (99.0%)

70 (1.33%)

24 (1.82%)

14 (1.06%)

19 (1.44%)

13 (0.99%)

关节炎:

0.663

3586 (68.1%)

915 (69.5%)

892 (67.7%)

891 (67.7%)

888 (67.5%)

1681 (31.9%)

402 (30.5%)

425 (32.3%)

426 (32.3%)

428 (32.5%)

血脂异常:

<0.001

5003 (95.0%)

1284 (97.5%)

1261 (95.7%)

1245 (94.5%)

1213 (92.2%)

264 (5.01%)

33 (2.51%)

56 (4.25%)

72 (5.47%)

103 (7.83%)

肝脏疾病:

0.075

5103 (96.9%)

1269 (96.4%)

1290 (97.9%)

1274 (96.7%)

1270 (96.5%)

164 (3.11%)

48 (3.64%)

27 (2.05%)

43 (3.26%)

46 (3.50%)

肾脏疾病:

0.713

5017 (95.3%)

1252 (95.1%)

1261 (95.7%)

1256 (95.4%)

1248 (94.8%)

250 (4.75%)

65 (4.94%)

56 (4.25%)

61 (4.63%)

68 (5.17%)

胃病:

<0.001

4071 (77.3%)

965 (73.3%)

1014 (77.0%)

1041 (79.0%)

1051 (79.9%)

1196 (22.7%)

352 (26.7%)

303 (23.0%)

276 (21.0%)

265 (20.1%)

哮喘病:

<0.001

5076 (96.4%)

1280 (97.2%)

1278 (97.0%)

1275 (96.8%)

1243 (94.5%)

191 (3.63%)

37 (2.81%)

39 (2.96%)

42 (3.19%)

73 (5.55%)

腰围

82.0 [76.0; 89.0]

79.0 [74.0; 84.2]

80.2 [75.0; 87.2]

83.2 [77.0; 90.0]

86.8 [79.6; 93.0]

<0.001

BMI

22.4 [20.3; 24.7]

21.6 [19.8; 23.6]

22.1 [20.2; 24.1]

22.8 [20.6; 25.2]

23.5 [21.2; 25.9]

<0.001

白细胞

5.90 [4.90; 7.10]

5.50 [4.60; 6.50]

5.72 [4.76; 6.80]

6.00 [5.00; 7.20]

6.50 [5.40; 7.80]

<0.001

平均红细胞体积

91.2 [86.5; 95.5]

91.8 [86.0; 96.0]

91.4 [86.9; 95.5]

91.4 [86.8; 95.6]

90.3 [86.0; 95.0]

0.014

血小板

206 [161; 252]

203 [161; 247]

205 [161; 251]

204 [160; 254]

211 [164; 259]

0.069

尿素氮

15.1 [12.5; 18.2]

15.3 [12.8; 18.7]

15.1 [12.6; 18.4]

15.2 [12.4; 18.0]

14.8 [12.3; 17.8]

0.001

血糖

101 [93.4; 110]

94.9 [88.4; 102]

99.2 [92.5; 107]

102 [95.0; 110]

109 [100; 127]

<0.001

肌酐

0.75 [0.64; 0.87]

0.73 [0.63; 0.85]

0.73 [0.63; 0.86]

0.76 [0.66; 0.87]

0.76 [0.64; 0.88]

<0.001

总胆固醇

187 [164; 212]

179 [159; 201]

187 [164; 208]

190 [167; 213]

196 [169; 225]

<0.001

甘油三酯

97.3 [71.7; 142]

63.7 [53.1; 77.0]

90.3 [73.5; 108]

115 [90.3; 144]

179 [129; 246]

0.000

高密度脂蛋白胆固

50.6 [41.0; 60.7]

59.1 [50.3; 68.8]

53.0 [45.6; 62.6]

48.7 [40.6; 57.6]

40.6 [34.0; 49.9]

<0.001

低密度脂蛋白胆固醇

113 [91.6; 135]

108 [89.3; 126]

116 [94.3; 136]

117 [96.3; 139]

112 [87.3; 139]

<0.001

C反应蛋白

0.89 [0.50; 1.85]

0.45 [0.32; 0.68]

0.74 [0.48; 1.16]

1.18 [0.68; 2.18]

2.25 [1.17; 5.09]

0.000

糖化血红蛋白

5.10 [4.90; 5.40]

5.00 [4.80; 5.30]

5.10 [4.80; 5.30]

5.10 [4.90; 5.40]

5.20 [4.90; 5.60]

<0.001

尿酸

4.19 [3.50; 5.01]

3.95 [3.32; 4.68]

4.10 [3.44; 4.93]

4.26 [3.57; 5.06]

4.52 [3.72; 5.35]

<0.001

红细胞比容

41.2 [37.5; 45.0]

40.8 [37.0; 44.7]

41.1 [37.2; 45.0]

41.4 [37.8; 44.9]

41.9 [38.1; 45.4]

<0.001

血红蛋白

14.1 [12.9; 15.4]

13.9 [12.7; 15.2]

14.1 [12.9; 15.5]

14.2 [13.0; 15.5]

14.3 [13.0; 15.6]

<0.001

胱抑素C

0.95 [0.84; 1.08]

0.94 [0.84; 1.06]

0.95 [0.85; 1.08]

0.97 [0.85; 1.09]

0.94 [0.81; 1.08]

<0.001

年龄

56.0 [50.0; 62.0]

55.0 [49.0; 61.0]

56.0 [49.0; 63.0]

57.0 [51.0; 63.0]

56.0 [50.0; 62.0]

<0.001

慢性病:

0.041

2332 (44.3%)

607 (46.1%)

594 (45.1%)

592 (45.0%)

539 (41.0%)

2935 (55.7%)

710 (53.9%)

723 (54.9%)

725 (55.0%)

777 (59.0%)

甘油三酯葡萄糖指数

8.51 [8.16; 8.92]

8.02 [7.82; 8.21]

8.41 [8.21; 8.59]

8.71 [8.45; 8.93]

9.23 [8.88; 9.65]

0.000

糖尿病:

<0.001

4706 (89.3%)

1280 (97.2%)

1242 (94.3%)

1184 (89.9%)

1000 (76.0%)

561 (10.7%)

37 (2.81%)

75 (5.69%)

133 (10.1%)

316 (24.0%)

吸烟:

0.242

现在

1613 (31.5%)

423 (32.9%)

407 (31.8%)

399 (31.1%)

384 (30.2%)

曾经

356 (6.96%)

72 (5.60%)

85 (6.64%)

97 (7.57%)

102 (8.03%)

从未

3148 (61.5%)

790 (61.5%)

788 (61.6%)

785 (61.3%)

785 (61.8%)

喝酒:

0.386

3395 (64.5%)

829 (62.9%)

844 (64.1%)

871 (66.1%)

851 (64.7%)

1872 (35.5%)

488 (37.1%)

473 (35.9%)

446 (33.9%)

465 (35.3%)

CTI

7.58 [7.11; 8.13]

6.81 [6.58; 6.96]

7.34 [7.22; 7.46]

7.82 [7.69; 7.97]

8.60 [8.33; 8.97]

0.000

结局:

<0.001

2664 (50.6%)

786 (59.7%)

676 (51.3%)

648 (49.2%)

554 (42.1%)

2603 (49.4%)

531 (40.3%)

641 (48.7%)

669 (50.8%)

762 (57.9%)

随访次数:

<0.001

2

1286 (24.4%)

268 (20.3%)

299 (22.7%)

331 (25.1%)

388 (29.5%)

3

979 (18.6%)

206 (15.6%)

247 (18.8%)

239 (18.1%)

287 (21.8%)

4

537 (10.2%)

111 (8.43%)

128 (9.72%)

157 (11.9%)

141 (10.7%)

5

2465 (46.8%)

732 (55.6%)

643 (48.8%)

590 (44.8%)

500 (38.0%)

3.2. CTI与心血管疾病风险之间的关系

Figure 2. Kaplan-Meier curve analysis describes the cumulative incidence of cardiovascular diseases in the quartiles of the CTI index

2. Kaplan-Meier曲线分析描述了CTI指数四分位数的心血管疾病累积发生率

在平均9年的随访期间,2603 (49.4%)名参与者经历了首次患心血管疾病。从Q1到Q4,心血管疾病发生率逐渐增加,Q1为531 (40.3%)例,Q2为641 (48.7%)例,Q3为669 (50.8%)例,Q4为762 (57.9%)例。Kaplan-Meier生存曲线表明累积发病率曲线分析显示,从Q1到Q4组,心血管疾病事件逐渐增加,观察到统计学显著差异(对数秩检验P < 0.0001) (图2)。采用COX比例风险回归模型研究CTI与心血管疾病事件之间的关系。随着CTI四分位数(Q1→Q4)升高,心血管疾病事件数(531→762)和风险比(HR)逐步递增,呈现明确的剂量–反应关系(趋势检验P < 0.001)。在调整潜在的混杂变量后(模型3),CTI每增加1个单位,心血管疾病风险增加41 (HR = 1.41, 95% CI = 1.17~1.70, P < 0.001) (表2)。此外,RCS分析揭示了CTI与所有参与者中心血管疾病事件发生率之间的非正线性关系(图3)。CTI = 6.813时,HR ≈ 1.5~2.0,表明此CTI值是心血管疾病风险显著升高的起点。CTI < 7:HR随CTI升高缓慢上升(心血管疾病风险平缓增长)。CTI 7~9:HR快速攀升,斜率陡增(心血管疾病风险加速上升)。CTI > 9:HR趋于平缓或小幅波动。这些结果表明,CTI可能有效地预测心血管疾病风险分层的指标。进一步研究表明,较高的累积CTI水平与较高的心血管疾病发生率相关。

3.3. 亚组分析

为了进一步探讨CTI与心血管疾病风险的关系,进行了亚组分析。图4结果显示,在所有的亚组中CTI的四分位数(Q1~Q4)的HR均呈现递增趋势,且高分组(Q4)风险最高(HR ≈ 1.6~1.7),表明CTI与心血管疾病风险正相关。值得注意的是,在所有亚组中,交互作用的P值均>0.05,说明年龄、性别、糖尿病史、BMI的CTI和心血管疾病的发病之间的相关性没有明显的异质性,未能显著影响CTI与心血管疾病风险的关系方向或强度。

Table 2. Relationship between CTI and the incidence of cardiovascular diseases

2. CTI与心血管疾病发病率的关系

CTI

CVD, n

模型1

模型2

模型3

HR

95% CI

p

HR

95% CI

p

HR

95% CI

p

CTI

四分位数分组

2603

1.25

1.19, 1.30

<0.001

1.24

1.19, 1.30

<0.001

1.15

1.02, 1.30

0.018

Q1

531

Q2

641

1.28

1.14, 1.43

<0.001

1.25

1.12, 1.40

<0.001

1.20

1.06, 1.36

0.005

Q3

669

1.37

1.22, 1.54

<0.001

1.33

1.18, 1.49

<0.001

1.22

1.06, 1.42

0.006

Q4

762

1.70

1.52, 1.90

<0.001

1.67

1.50, 1.87

<0.001

1.41

1.17, 1.70

<0.001

总趋势

<0.001

<0.001

<0.001

注:HR风险比,CI置信区间;模型1:未调整任何协变量;模型2:根据性别、年龄、BMI的情况进行校正;模型3:根据性别、年龄、BMI、中风、关节炎、血脂异常、哮喘病、腰围、白细胞、血小板计数、血糖、肌酐、总胆固醇、甘油三酯、低密度脂蛋白胆固醇、C反应蛋白、糖化血红蛋白、尿酸、红细胞比容、血红蛋白、胱抑素C、是否有慢性病、甘油三酯葡萄糖指数、糖尿病的情况额外校正。

4. 讨论

研究结果表明,在校正其他常规危险因素后,暴露于较高的CTI指数(无论是定义为连续变量还是分类变量)与CVD发病风险升高显著相关。由Ruan等人[19]开发的CTI是癌症患者预后评估的重要工具。该指数综合了公认的炎症生物标志物CRP和胰岛素抵抗生物标志物TyG指数。现有文献已经建立了TyG指数水平升高与心血管疾病风险增加之间的联系。具体来说,利用CHARLS数据库研究结果,表明较高的TyG指数与较高的心血管疾病风险相关[25]。Tehran Lipidya研究和Glucose研究、Kailuan研究、韩国国家健康保险服务研究和社区动脉粥样硬化风险(ARIC)研究报告称,基线或长期TyG指数水平升高与CVD事件风险增加相关[26]-[31]。TyG指数的累积暴露量、变异性和进展轨迹也与CVD事件的较高风险相关[30] [32]-[34]。此外,研究发现,TyG指数与动脉僵硬度升高独立相关,这是CVD事件的重要预测因子[35] [36]。另一方面,慢性炎症是CVD的另一个重要风险因素。炎症在动脉粥样硬化传播和CVD事件易感性中的作用已得到充分证实[37]。在众多的炎症标志物中,高敏C反应蛋白(hsCRP)因其在CVD筛查和风险重新分类中的应用而受到最多的关注。新兴风险因素协作组(ERFC)审查了54项前瞻性研究了160,309名个体,发现hsCRP浓度与冠心病、缺血性卒中和血管死亡率的风险显著相关[37]。校正所有Framingham风险变量后,与<1 mg/L水平相比,hsCRP水平 > 3 mg/L与冠心病发作风险增加60%独立相关[38]

Figure 3. Association of CTI index and risk of cardiovascular diseases

3. CTI指数的关联和心血管疾病的风险

研究中国中年人群,发现hsCRP与发生CVD的风险增加相关[39]。最近的一项研究指出,通过hsCRP评估的炎症是未来CVD事件和死亡风险的更强预测因子[16]。此外,hsCRP和TyG指数已被用于开发CRP-TyG指数(CTI),鉴于炎症和胰岛素抵抗之间的密切相关性,该指数可同时反映炎症和胰岛素抵抗状态[19]。在我们的研究中,我们分析了CHARLS数据库中5267名参与者的数据。研究结果显示,CTI水平的增加与心血管疾病的患病率之间存在显著相关性。此外,RCS分析表明CTI水平与心血管疾病事件的发生之间存在显著的非线性关系。亚组分析显示CTI与心血管疾病风险正相关,但是所有亚组中的交互作用P值均>0.05,说明年龄、性别、糖尿病史、BMI的CTI和心血管疾病的发病之间的相关性没有明显差异,提示CTI在不同年龄、性别、糖尿病状态和BMI水平下对心血管疾病风险影响是相似的,可能提示CTI的致心血管疾病机制具有跨人群普适性,而非受亚组特征显著调节;但也可能因亚组样本量不足导致检验效能低如果研究的样本量不足,统计功效不足,可能无法检测到潜在的交互作用,因此可以通过增加样本量来提高统计功效,从而更好地检测其潜在的交互作用。为了减少中老年人心血管疾病的发生率,CTI值的定期监测和及时有针对性地干预措施是必不可少的,以保持适当的水平,这可能对预防心血管疾病具有重要价值。这项研究有几个显著的优点,本研究首先,本研究设计为前瞻性、全国性的纵向队列研究,结合大量的样本量,增强了我们研究结果的可靠性。其次,我们进行了亚组分析,以评估不同人群特征之间结果的一致性,这为临床实践提供了有价值的见解。最后,CTI易于获取,提高了其在临床上的实际应用。据我们所知,本研究代表了首次在中国中老年个体的大规模前瞻性队列中对CTI与心血管疾病风险之间的纵向关联进行的研究。这强调了动态监测的重要性,并为CTI的临床应用提供了有价值的见解。总体而言,CTI是一种具有成本效益和可靠的预测因子,对评估心血管事件的发展至关重要。但是仍然有几个限制值得考虑,首先,CHARLS数据集主要代表中国的中年人群,这可能限制了我们的研究结果对45岁以下或居住在中国境外的年轻人的普遍性。其次,由于缺乏医疗记录,CVD诊断依赖于自我报告的医生评估,不可避免地引入信息和回忆偏差。尽管如此,CVD状态在每一波随访中都得到了验证和再次确认,以确保更好的质量控制。此外,CHARLS已经与著名的国际队列研究相协调,如英国老龄化纵向研究(ELSA),其中自我报告的冠心病和医疗留档之间的高度一致支持了数据的可靠性。未来的研究需要验证CTI在不同人群和临床环境中对心血管疾病的预测作用。此外,CTI和心血管疾病之间关联中潜在存在中介变量同样值得进一步研究。此外,我们可以进行干预研究,以测试修改CTI是否可以降低心血管疾病的风险。

Figure 4. Subgroup and interaction analysis of the correlation between CTI and cardiovascular disease risk

4. CTI与心血管疾病风险相关性的亚组和相互作用分析

5. 结论

总之,在全国代表性样本中,结果显示CTI与CVD风险增加显著相关。因此,应将这一直接而有效的预测因子纳入常规临床监测方案,以促进早期识别高危个体,并及时实施有针对性的干预措施。

致 谢

在此对一位给我们提供意见和指导的专家们表示由衷的感谢。

NOTES

*通讯作者。

参考文献

[1] Martin, S.S., Aday, A.W., Almarzooq, Z.I., Anderson, C.A.M., Arora, P., Avery, C.L., et al. (2024) 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation, 149, e347-e913.
[2] Liu, S., Li, Y., Zeng, X., Wang, H., Yin, P., Wang, L., et al. (2019) Burden of Cardiovascular Diseases in China, 1990-2016: Findings from the 2016 Global Burden of Disease Study. JAMA Cardiology, 4, 342-352.
https://doi.org/10.1001/jamacardio.2019.0295
[3] Zhao, D., Liu, J., Wang, M., Zhang, X. and Zhou, M. (2018) Epidemiology of Cardiovascular Disease in China: Current Features and Implications. Nature Reviews Cardiology, 16, 203-212.
https://doi.org/10.1038/s41569-018-0119-4
[4] Chong, B., Jayabaskaran, J., Jauhari, S.M., Chan, S.P., Goh, R., Kueh, M.T.W., et al. (2024) Global Burden of Cardiovascular Diseases: Projections from 2025 to 2050. European Journal of Preventive Cardiology.
https://doi.org/10.1093/eurjpc/zwae281
[5] Roth, G.A., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., et al. (2018) Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1736-1788.
https://doi.org/10.1016/s0140-6736(18)32203-7
[6] Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., et al. (2022) Aging and Aging-Related Diseases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduction and Targeted Therapy, 7, Article No. 391.
https://doi.org/10.1038/s41392-022-01251-0
[7] Hill, M.A., Yang, Y., Zhang, L., Sun, Z., Jia, G., Parrish, A.R., et al. (2021) Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease. Metabolism, 119, Article ID: 154766.
https://doi.org/10.1016/j.metabol.2021.154766
[8] Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68.
https://doi.org/10.1186/s12933-022-01511-x
[9] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[10] Wu, Z., Wang, J., Li, Z., Han, Z., Miao, X., Liu, X., et al. (2021) Triglyceride Glucose Index and Carotid Atherosclerosis Incidence in the Chinese Population: A Prospective Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2042-2050.
https://doi.org/10.1016/j.numecd.2021.03.027
[11] Jin, J., Cao, Y., Wu, L., You, X., Guo, Y., Wu, N., et al. (2018) Triglyceride Glucose Index for Predicting Cardiovascular Outcomes in Patients with Coronary Artery Disease. Journal of Thoracic Disease, 10, 6137-6146.
https://doi.org/10.21037/jtd.2018.10.79
[12] Won, K., Park, E.J., Han, D., Lee, J.H., Choi, S., Chun, E.J., et al. (2020) Triglyceride Glucose Index Is an Independent Predictor for the Progression of Coronary Artery Calcification in the Absence of Heavy Coronary Artery Calcification at Baseline. Cardiovascular Diabetology, 19, Article No. 34.
https://doi.org/10.1186/s12933-020-01008-5
[13] Fritz, J., Brozek, W., Concin, H., Nagel, G., Kerschbaum, J., Lhotta, K., et al. (2022) The Association of Excess Body Weight with Risk of ESKD Is Mediated through Insulin Resistance, Hypertension, and Hyperuricemia. Journal of the American Society of Nephrology, 33, 1377-1389.
https://doi.org/10.1681/asn.2021091263
[14] Wu, Z., Zhou, D., Liu, Y., Li, Z., Wang, J., Han, Z., et al. (2021) Association of Tyg Index and TG/HDL-C Ratio with Arterial Stiffness Progression in a Non-Normotensive Population. Cardiovascular Diabetology, 20, Article No. 134.
https://doi.org/10.1186/s12933-021-01330-6
[15] Wu, Z., Yu, S., Zhang, H., Guo, Z., Zheng, Y., Xu, Z., et al. (2022) Combined Evaluation of Arterial Stiffness, Glycemic Control and Hypertension for Macrovascular Complications in Type 2 Diabetes. Cardiovascular Diabetology, 21, Article No. 262.
https://doi.org/10.1186/s12933-022-01696-1
[16] Ridker, P.M., Bhatt, D.L., Pradhan, A.D., Glynn, R.J., MacFadyen, J.G. and Nissen, S.E. (2023) Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. The Lancet, 401, 1293-1301.
https://doi.org/10.1016/s0140-6736(23)00215-5
[17] Lawler, P.R., Bhatt, D.L., Godoy, L.C., Lüscher, T.F., Bonow, R.O., Verma, S., et al. (2020) Targeting Cardiovascular Inflammation: Next Steps in Clinical Translation. European Heart Journal, 42, 113-131.
https://doi.org/10.1093/eurheartj/ehaa099
[18] Lan, Y., Chen, G., Wu, D., Ding, X., Huang, Z., Wang, X., et al. (2023) Temporal Relationship between Atherogenic Dyslipidemia and Inflammation and Their Joint Cumulative Effect on Type 2 Diabetes Onset: A Longitudinal Cohort Study. BMC Medicine, 21, Article No. 31.
https://doi.org/10.1186/s12916-023-02729-6
[19] Ruan, G., Xie, H., Zhang, H., Liu, C., Ge, Y., Zhang, Q., et al. (2022) A Novel Inflammation and Insulin Resistance Related Indicator to Predict the Survival of Patients with Cancer. Frontiers in Endocrinology, 13, Article 905266.
https://doi.org/10.3389/fendo.2022.905266
[20] Huang, C., You, H., Zhang, Y., Li, Z., Li, M., Feng, X., et al. (2024) Association between C-Reactive Protein-Triglyceride Glucose Index and Depressive Symptoms in American Adults: Results from the NHANES 2005 to 2010. BMC Psychiatry, 24, Article No. 890.
https://doi.org/10.1186/s12888-024-06336-4
[21] Zhao, D. (2023) Value of C-Reactive Protein-Triglyceride Glucose Index in Predicting Cancer Mortality in the General Population: Results from National Health and Nutrition Examination Survey. Nutrition and Cancer, 75, 1934-1944.
https://doi.org/10.1080/01635581.2023.2273577
[22] Xu, M., Zhang, L., Xu, D., Shi, W. and Zhang, W. (2024) Usefulness of C-Reactive Protein-Triglyceride Glucose Index in Detecting Prevalent Coronary Heart Disease: Findings from the National Health and Nutrition Examination Survey 1999-2018. Frontiers in Cardiovascular Medicine, 11, Article 1485538.
https://doi.org/10.3389/fcvm.2024.1485538
[23] Zhao, Y., Hu, Y., Smith, J.P., Strauss, J. and Yang, G. (2012) Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). International Journal of Epidemiology, 43, 61-68.
https://doi.org/10.1093/ije/dys203
[24] ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., et al. (2023) Addendum. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023; 46(suppl. 1): s19-s40. Diabetes Care, 46, 1715-1715.
https://doi.org/10.2337/dc23-ad08
[25] Cui, C., Liu, L., Qi, Y., Han, N., Xu, H., Wang, Z., et al. (2024) Joint Association of Tyg Index and High Sensitivity C-Reactive Protein with Cardiovascular Disease: A National Cohort Study. Cardiovascular Diabetology, 23, Article No. 156.
https://doi.org/10.1186/s12933-024-02244-9
[26] Park, B., Lee, Y., Lee, H.S. and Jung, D. (2020) The Triglyceride-Glucose Index Predicts Ischemic Heart Disease Risk in Koreans: A Prospective Study Using National Health Insurance Service Data. Cardiovascular Diabetology, 19, Article No. 210.
https://doi.org/10.1186/s12933-020-01186-2
[27] Barzegar, N., Tohidi, M., Hasheminia, M., Azizi, F. and Hadaegh, F. (2020) The Impact of Triglyceride-Glucose Index on Incident Cardiovascular Events during 16 Years of Follow-Up: Tehran Lipid and Glucose Study. Cardiovascular Diabetology, 19, Article No. 155.
https://doi.org/10.1186/s12933-020-01121-5
[28] Tian, X., Zuo, Y., Chen, S., Liu, Q., Tao, B., Wu, S., et al. (2021) Triglyceride-Glucose Index Is Associated with the Risk of Myocardial Infarction: An 11-Year Prospective Study in the Kailuan Cohort. Cardiovascular Diabetology, 20, Article No. 19.
https://doi.org/10.1186/s12933-020-01210-5
[29] Hong, S., Han, K. and Park, C. (2020) The Triglyceride Glucose Index Is a Simple and Low-Cost Marker Associated with Atherosclerotic Cardiovascular Disease: A Population-Based Study. BMC Medicine, 18, Article No. 361.
https://doi.org/10.1186/s12916-020-01824-2
[30] Gao, J., Hao, Q., Gao, M., Zhang, K., Li, X., Wang, J., et al. (2021) Triglyceride-Glucose Index in the Development of Peripheral Artery Disease: Findings from the Atherosclerosis Risk in Communities (ARIC) Study. Cardiovascular Diabetology, 20, Article No. 126.
https://doi.org/10.1186/s12933-021-01319-1
[31] Sánchez‐Íñigo, L., Navarro‐González, D., Fernández‐Montero, A., Pastrana‐Delgado, J. and Martínez, J.A. (2016) The Tyg Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197.
https://doi.org/10.1111/eci.12583
[32] Huang, Z., Ding, X., Yue, Q., Wang, X., Chen, Z., Cai, Z., et al. (2022) Triglyceride-Glucose Index Trajectory and Stroke Incidence in Patients with Hypertension: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 141.
https://doi.org/10.1186/s12933-022-01577-7
[33] Li, H., Chen, S., Qian, F., Tian, X., Zuo, Y., Li, X., et al. (2022) Triglyceride-Glucose Index Variability and Incident Cardiovascular Disease: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 105.
https://doi.org/10.21203/rs.3.rs-1586954/v1.
[34] Xu, X., Huang, R., Lin, Y., Guo, Y., Xiong, Z., Zhong, X., et al. (2022) High Triglyceride-Glucose Index in Young Adulthood Is Associated with Incident Cardiovascular Disease and Mortality in Later Life: Insight from the CARDIA Study. Cardiovascular Diabetology, 21, Article No. 155.
https://doi.org/10.1186/s12933-022-01593-7
[35] Yan, Y., Wang, D., Sun, Y., Ma, Q., Wang, K., Liao, Y., et al. (2022) Triglyceride-Glucose Index Trajectory and Arterial Stiffness: Results from Hanzhong Adolescent Hypertension Cohort Study. Cardiovascular Diabetology, 21, Article No. 33.
https://doi.org/10.1186/s12933-022-01453-4
[36] Wu, Z., Zhou, D., Liu, Y., Li, Z., Wang, J., Han, Z., et al. (2021) Association of TyG Index and TG/HDL-C Ratio with Arterial Stiffness Progression in a Non-Normotensive Population. Cardiovascular Diabetology, 20, Article No. 134.
https://doi.org/10.1186/s12933-021-01330-6
[37] Yousuf, O., Mohanty, B.D., Martin, S.S., Joshi, P.H., Blaha, M.J., Nasir, K., et al. (2013) High-Sensitivity C-Reactive Protein and Cardiovascular Disease. Journal of the American College of Cardiology, 62, 397-408.
https://doi.org/10.1016/j.jacc.2013.05.016
[38] Buckley, D.I., Fu, R., Freeman, M., Rogers, K. and Helfand, M. (2009) C-Reactive Protein as a Risk Factor for Coronary Heart Disease: A Systematic Review and Meta-Analyses for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 151, 483-495.
https://doi.org/10.7326/0003-4819-151-7-200910060-00009
[39] Dong, Y., Wang, X., Zhang, L., Chen, Z., Zheng, C., Wang, J., et al. (2018) High-Sensitivity C Reactive Protein and Risk of Cardiovascular Disease in China-CVD Study. Journal of Epidemiology and Community Health, 73, 188-192.
https://doi.org/10.1136/jech-2018-211433