[1]
|
Martin, S.S., Aday, A.W., Almarzooq, Z.I., Anderson, C.A.M., Arora, P., Avery, C.L., et al. (2024) 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation, 149, e347-e913.
|
[2]
|
Liu, S., Li, Y., Zeng, X., Wang, H., Yin, P., Wang, L., et al. (2019) Burden of Cardiovascular Diseases in China, 1990-2016: Findings from the 2016 Global Burden of Disease Study. JAMA Cardiology, 4, 342-352. https://doi.org/10.1001/jamacardio.2019.0295
|
[3]
|
Zhao, D., Liu, J., Wang, M., Zhang, X. and Zhou, M. (2018) Epidemiology of Cardiovascular Disease in China: Current Features and Implications. Nature Reviews Cardiology, 16, 203-212. https://doi.org/10.1038/s41569-018-0119-4
|
[4]
|
Chong, B., Jayabaskaran, J., Jauhari, S.M., Chan, S.P., Goh, R., Kueh, M.T.W., et al. (2024) Global Burden of Cardiovascular Diseases: Projections from 2025 to 2050. European Journal of Preventive Cardiology. https://doi.org/10.1093/eurjpc/zwae281
|
[5]
|
Roth, G.A., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., et al. (2018) Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1736-1788. https://doi.org/10.1016/s0140-6736(18)32203-7
|
[6]
|
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., et al. (2022) Aging and Aging-Related Diseases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduction and Targeted Therapy, 7, Article No. 391. https://doi.org/10.1038/s41392-022-01251-0
|
[7]
|
Hill, M.A., Yang, Y., Zhang, L., Sun, Z., Jia, G., Parrish, A.R., et al. (2021) Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease. Metabolism, 119, Article ID: 154766. https://doi.org/10.1016/j.metabol.2021.154766
|
[8]
|
Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68. https://doi.org/10.1186/s12933-022-01511-x
|
[9]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. https://doi.org/10.1089/met.2008.0034
|
[10]
|
Wu, Z., Wang, J., Li, Z., Han, Z., Miao, X., Liu, X., et al. (2021) Triglyceride Glucose Index and Carotid Atherosclerosis Incidence in the Chinese Population: A Prospective Cohort Study. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2042-2050. https://doi.org/10.1016/j.numecd.2021.03.027
|
[11]
|
Jin, J., Cao, Y., Wu, L., You, X., Guo, Y., Wu, N., et al. (2018) Triglyceride Glucose Index for Predicting Cardiovascular Outcomes in Patients with Coronary Artery Disease. Journal of Thoracic Disease, 10, 6137-6146. https://doi.org/10.21037/jtd.2018.10.79
|
[12]
|
Won, K., Park, E.J., Han, D., Lee, J.H., Choi, S., Chun, E.J., et al. (2020) Triglyceride Glucose Index Is an Independent Predictor for the Progression of Coronary Artery Calcification in the Absence of Heavy Coronary Artery Calcification at Baseline. Cardiovascular Diabetology, 19, Article No. 34. https://doi.org/10.1186/s12933-020-01008-5
|
[13]
|
Fritz, J., Brozek, W., Concin, H., Nagel, G., Kerschbaum, J., Lhotta, K., et al. (2022) The Association of Excess Body Weight with Risk of ESKD Is Mediated through Insulin Resistance, Hypertension, and Hyperuricemia. Journal of the American Society of Nephrology, 33, 1377-1389. https://doi.org/10.1681/asn.2021091263
|
[14]
|
Wu, Z., Zhou, D., Liu, Y., Li, Z., Wang, J., Han, Z., et al. (2021) Association of Tyg Index and TG/HDL-C Ratio with Arterial Stiffness Progression in a Non-Normotensive Population. Cardiovascular Diabetology, 20, Article No. 134. https://doi.org/10.1186/s12933-021-01330-6
|
[15]
|
Wu, Z., Yu, S., Zhang, H., Guo, Z., Zheng, Y., Xu, Z., et al. (2022) Combined Evaluation of Arterial Stiffness, Glycemic Control and Hypertension for Macrovascular Complications in Type 2 Diabetes. Cardiovascular Diabetology, 21, Article No. 262. https://doi.org/10.1186/s12933-022-01696-1
|
[16]
|
Ridker, P.M., Bhatt, D.L., Pradhan, A.D., Glynn, R.J., MacFadyen, J.G. and Nissen, S.E. (2023) Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. The Lancet, 401, 1293-1301. https://doi.org/10.1016/s0140-6736(23)00215-5
|
[17]
|
Lawler, P.R., Bhatt, D.L., Godoy, L.C., Lüscher, T.F., Bonow, R.O., Verma, S., et al. (2020) Targeting Cardiovascular Inflammation: Next Steps in Clinical Translation. European Heart Journal, 42, 113-131. https://doi.org/10.1093/eurheartj/ehaa099
|
[18]
|
Lan, Y., Chen, G., Wu, D., Ding, X., Huang, Z., Wang, X., et al. (2023) Temporal Relationship between Atherogenic Dyslipidemia and Inflammation and Their Joint Cumulative Effect on Type 2 Diabetes Onset: A Longitudinal Cohort Study. BMC Medicine, 21, Article No. 31. https://doi.org/10.1186/s12916-023-02729-6
|
[19]
|
Ruan, G., Xie, H., Zhang, H., Liu, C., Ge, Y., Zhang, Q., et al. (2022) A Novel Inflammation and Insulin Resistance Related Indicator to Predict the Survival of Patients with Cancer. Frontiers in Endocrinology, 13, Article 905266. https://doi.org/10.3389/fendo.2022.905266
|
[20]
|
Huang, C., You, H., Zhang, Y., Li, Z., Li, M., Feng, X., et al. (2024) Association between C-Reactive Protein-Triglyceride Glucose Index and Depressive Symptoms in American Adults: Results from the NHANES 2005 to 2010. BMC Psychiatry, 24, Article No. 890. https://doi.org/10.1186/s12888-024-06336-4
|
[21]
|
Zhao, D. (2023) Value of C-Reactive Protein-Triglyceride Glucose Index in Predicting Cancer Mortality in the General Population: Results from National Health and Nutrition Examination Survey. Nutrition and Cancer, 75, 1934-1944. https://doi.org/10.1080/01635581.2023.2273577
|
[22]
|
Xu, M., Zhang, L., Xu, D., Shi, W. and Zhang, W. (2024) Usefulness of C-Reactive Protein-Triglyceride Glucose Index in Detecting Prevalent Coronary Heart Disease: Findings from the National Health and Nutrition Examination Survey 1999-2018. Frontiers in Cardiovascular Medicine, 11, Article 1485538. https://doi.org/10.3389/fcvm.2024.1485538
|
[23]
|
Zhao, Y., Hu, Y., Smith, J.P., Strauss, J. and Yang, G. (2012) Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). International Journal of Epidemiology, 43, 61-68. https://doi.org/10.1093/ije/dys203
|
[24]
|
ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., et al. (2023) Addendum. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023; 46(suppl. 1): s19-s40. Diabetes Care, 46, 1715-1715. https://doi.org/10.2337/dc23-ad08
|
[25]
|
Cui, C., Liu, L., Qi, Y., Han, N., Xu, H., Wang, Z., et al. (2024) Joint Association of Tyg Index and High Sensitivity C-Reactive Protein with Cardiovascular Disease: A National Cohort Study. Cardiovascular Diabetology, 23, Article No. 156. https://doi.org/10.1186/s12933-024-02244-9
|
[26]
|
Park, B., Lee, Y., Lee, H.S. and Jung, D. (2020) The Triglyceride-Glucose Index Predicts Ischemic Heart Disease Risk in Koreans: A Prospective Study Using National Health Insurance Service Data. Cardiovascular Diabetology, 19, Article No. 210. https://doi.org/10.1186/s12933-020-01186-2
|
[27]
|
Barzegar, N., Tohidi, M., Hasheminia, M., Azizi, F. and Hadaegh, F. (2020) The Impact of Triglyceride-Glucose Index on Incident Cardiovascular Events during 16 Years of Follow-Up: Tehran Lipid and Glucose Study. Cardiovascular Diabetology, 19, Article No. 155. https://doi.org/10.1186/s12933-020-01121-5
|
[28]
|
Tian, X., Zuo, Y., Chen, S., Liu, Q., Tao, B., Wu, S., et al. (2021) Triglyceride-Glucose Index Is Associated with the Risk of Myocardial Infarction: An 11-Year Prospective Study in the Kailuan Cohort. Cardiovascular Diabetology, 20, Article No. 19. https://doi.org/10.1186/s12933-020-01210-5
|
[29]
|
Hong, S., Han, K. and Park, C. (2020) The Triglyceride Glucose Index Is a Simple and Low-Cost Marker Associated with Atherosclerotic Cardiovascular Disease: A Population-Based Study. BMC Medicine, 18, Article No. 361. https://doi.org/10.1186/s12916-020-01824-2
|
[30]
|
Gao, J., Hao, Q., Gao, M., Zhang, K., Li, X., Wang, J., et al. (2021) Triglyceride-Glucose Index in the Development of Peripheral Artery Disease: Findings from the Atherosclerosis Risk in Communities (ARIC) Study. Cardiovascular Diabetology, 20, Article No. 126. https://doi.org/10.1186/s12933-021-01319-1
|
[31]
|
Sánchez‐Íñigo, L., Navarro‐González, D., Fernández‐Montero, A., Pastrana‐Delgado, J. and Martínez, J.A. (2016) The Tyg Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197. https://doi.org/10.1111/eci.12583
|
[32]
|
Huang, Z., Ding, X., Yue, Q., Wang, X., Chen, Z., Cai, Z., et al. (2022) Triglyceride-Glucose Index Trajectory and Stroke Incidence in Patients with Hypertension: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 141. https://doi.org/10.1186/s12933-022-01577-7
|
[33]
|
Li, H., Chen, S., Qian, F., Tian, X., Zuo, Y., Li, X., et al. (2022) Triglyceride-Glucose Index Variability and Incident Cardiovascular Disease: A Prospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 105. https://doi.org/10.21203/rs.3.rs-1586954/v1.
|
[34]
|
Xu, X., Huang, R., Lin, Y., Guo, Y., Xiong, Z., Zhong, X., et al. (2022) High Triglyceride-Glucose Index in Young Adulthood Is Associated with Incident Cardiovascular Disease and Mortality in Later Life: Insight from the CARDIA Study. Cardiovascular Diabetology, 21, Article No. 155. https://doi.org/10.1186/s12933-022-01593-7
|
[35]
|
Yan, Y., Wang, D., Sun, Y., Ma, Q., Wang, K., Liao, Y., et al. (2022) Triglyceride-Glucose Index Trajectory and Arterial Stiffness: Results from Hanzhong Adolescent Hypertension Cohort Study. Cardiovascular Diabetology, 21, Article No. 33. https://doi.org/10.1186/s12933-022-01453-4
|
[36]
|
Wu, Z., Zhou, D., Liu, Y., Li, Z., Wang, J., Han, Z., et al. (2021) Association of TyG Index and TG/HDL-C Ratio with Arterial Stiffness Progression in a Non-Normotensive Population. Cardiovascular Diabetology, 20, Article No. 134. https://doi.org/10.1186/s12933-021-01330-6
|
[37]
|
Yousuf, O., Mohanty, B.D., Martin, S.S., Joshi, P.H., Blaha, M.J., Nasir, K., et al. (2013) High-Sensitivity C-Reactive Protein and Cardiovascular Disease. Journal of the American College of Cardiology, 62, 397-408. https://doi.org/10.1016/j.jacc.2013.05.016
|
[38]
|
Buckley, D.I., Fu, R., Freeman, M., Rogers, K. and Helfand, M. (2009) C-Reactive Protein as a Risk Factor for Coronary Heart Disease: A Systematic Review and Meta-Analyses for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 151, 483-495. https://doi.org/10.7326/0003-4819-151-7-200910060-00009
|
[39]
|
Dong, Y., Wang, X., Zhang, L., Chen, Z., Zheng, C., Wang, J., et al. (2018) High-Sensitivity C Reactive Protein and Risk of Cardiovascular Disease in China-CVD Study. Journal of Epidemiology and Community Health, 73, 188-192. https://doi.org/10.1136/jech-2018-211433
|