[1]
|
朱大龙. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
|
[2]
|
Xu, Z. and Ran, X. (2016) Diabetic Foot Care in China: Challenges and Strategy. The Lancet Diabetes & Endocrinology, 4, 297-298. https://doi.org/10.1016/s2213-8587(16)00051-6
|
[3]
|
Alavi, A., Sibbald, R.G., Mayer, D., Goodman, L., Botros, M., Armstrong, D.G., et al. (2014) Diabetic Foot Ulcers. Part I. Pathophysiology and Prevention. Journal of the American Academy of Dermatology, 70, 1.e1-1.e18. https://doi.org/10.1016/j.jaad.2013.06.055
|
[4]
|
Vijayakumar, V., Samal, S.K., Mohanty, S. and Nayak, S.K. (2019) Recent Advancements in Biopolymer and Metal Nanoparticle-Based Materials in Diabetic Wound Healing Management. International Journal of Biological Macromolecules, 122, 137-148. https://doi.org/10.1016/j.ijbiomac.2018.10.120
|
[5]
|
Morris, S.D. (2002) Heat Shock Proteins and the Skin. Clinical and Experimental Dermatology, 27, 220-224. https://doi.org/10.1046/j.1365-2230.2002.01012.x
|
[6]
|
Sottile, M.L. and Nadin, S.B. (2018) Heat Shock Proteins and DNA Repair Mechanisms: An Updated Overview. Cell Stress and Chaperones, 23, 303-315. https://doi.org/10.1007/s12192-017-0843-4
|
[7]
|
许樟荣. 糖尿病足病的防治[J]. 中华糖尿病杂志, 2009, 1(5): 386-389.
|
[8]
|
何蕊, 刘芳. 糖尿病周围神经病变导致糖尿病足的机制[J]. 中华医学杂志, 2016, 96(32): 2536-2538.
|
[9]
|
Thangarajah, H., Yao, D., Chang, E.I., Shi, Y., Jazayeri, L., Vial, I.N., et al. (2009) The Molecular Basis for Impaired Hypoxia-Induced VEGF Expression in Diabetic Tissues. Proceedings of the National Academy of Sciences, 106, 13505-13510. https://doi.org/10.1073/pnas.0906670106
|
[10]
|
Okizaki, S., Ito, Y., Hosono, K., et al. (2015) Suppressed Recruitment of Alternatively Activated Macrophages Reduces TGF-beta1 and Impairs Wound Healing in Streptozotocin-Induced Diabetic Mice. Biomedicine & Pharmacotherapy, 70, 317-325.
|
[11]
|
Christopherson, K. (2003) The Impact of Diabetes on Wound Healing: Implications of Microcirculatory Changes. British Journal of Community Nursing, 8, S6-S13. https://doi.org/10.12968/bjcn.2003.8.sup6.12552
|
[12]
|
Krishnan, S.T.M., Quattrini, C., Jeziorska, M., Malik, R.A. and Rayman, G. (2007) Neurovascular Factors in Wound Healing in the Foot Skin of Type 2 Diabetic Subjects. Diabetes Care, 30, 3058-3062. https://doi.org/10.2337/dc07-1421
|
[13]
|
Bozaykut, P., Ozer, N.K. and Karademir, B. (2014) Regulation of Protein Turnover by Heat Shock Proteins. Free Radical Biology and Medicine, 77, 195-209. https://doi.org/10.1016/j.freeradbiomed.2014.08.012
|
[14]
|
Ritossa, F. (1962) A New Puffing Pattern Induced by Temperature Shock and DNP in Drosophila. Experientia, 18, 571-573. https://doi.org/10.1007/bf02172188
|
[15]
|
Tissiéres, A., Mitchell, H.K. and Tracy, U.M. (1974) Protein Synthesis in Salivary Glands of Drosophila Melanogaster: Relation to Chromosome Puffs. Journal of Molecular Biology, 84, 389-398. https://doi.org/10.1016/0022-2836(74)90447-1
|
[16]
|
李庆伟, 徐静, 李瑶. 热休克蛋白进化及生物学功能研究进展[J]. 辽宁师范大学学报(自然科学版), 2024, 47(1): 78-85.
|
[17]
|
林晶晶, 张倍宁, 姜楠, 等. 热休克蛋白在创伤愈合过程中的作用研究进展[J]. 中华卫生应急电子杂志, 2017(6): 375-377.
|
[18]
|
陈欣, 戈海泽. 热休克蛋白90与肺癌相关性研究进展[J]. 黑龙江医学, 2020, 44(10): 1467-1469.
|
[19]
|
Zuehlke, A.D., Moses, M.A. and Neckers, L. (2017) Heat Shock Protein 90: Its Inhibition and Function. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, Article ID: 20160527. https://doi.org/10.1098/rstb.2016.0527
|
[20]
|
Welch, W.J. (1992) Mammalian Stress Response: Cell Physiology, Structure/Function of Stress Proteins, and Implications for Medicine and Disease. Physiological Reviews, 72, 1063-1081. https://doi.org/10.1152/physrev.1992.72.4.1063
|
[21]
|
Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U. and Pavletich, N.P. (1997) Crystal Structure of an Hsp90-Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent. Cell, 89, 239-250. https://doi.org/10.1016/s0092-8674(00)80203-2
|
[22]
|
Hoter, A., El-Sabban, M.E. and Naim, H.Y. (2018) The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. International Journal of Molecular Sciences, 19, Article No. 2560. https://doi.org/10.3390/ijms19092560
|
[23]
|
Liao, Z., Wang, B., Liu, W., Xu, Q., Hou, L., Song, J., et al. (2021) Dysfunction of Chaperone-Mediated Autophagy in Human Diseases. Molecular and Cellular Biochemistry, 476, 1439-1454. https://doi.org/10.1007/s11010-020-04006-z
|
[24]
|
Vartholomaiou, E., Madon-Simon, M., Hagmann, S., Mühlebach, G., Wurst, W., Floss, T., et al. (2017) Cytosolic Hsp90α and Its Mitochondrial Isoform Trap1 Are Differentially Required in a Breast Cancer Model. Oncotarget, 8, 17428-17442. https://doi.org/10.18632/oncotarget.15659
|
[25]
|
Pearl, L.H. (2016) Review: The HSP90 Molecular Chaperone—An Enigmatic ATPase. Biopolymers, 105, 594-607. https://doi.org/10.1002/bip.22835
|
[26]
|
卞欢, 王颖, 徐寒梅. 外泌体在糖尿病发生发展过程中的作用研究进展[J]. 药学进展, 2019, 43(7): 527-534.
|
[27]
|
Cheng, C., Sahu, D., Tsen, F., Zhao, Z., Fan, J., Kim, R., et al. (2011) A Fragment of Secreted Hsp90α Carries Properties That Enable It to Accelerate Effectively both Acute and Diabetic Wound Healing in Mice. Journal of Clinical Investigation, 121, 4348-4361. https://doi.org/10.1172/jci46475
|
[28]
|
Cheng, C., Fan, J., Zhao, Z., T. Woodley, D. and Li, W. (2010) Secreted Heat Shock Protein-90α: A More Effective and Safer Target for Anti-Cancer Drugs? Current Signal Transduction Therapy, 5, 121-127. https://doi.org/10.2174/157436210791112208
|
[29]
|
Li, W., Li, Y., Guan, S., Fan, J., Cheng, C., Bright, A.M., et al. (2007) Extracellular Heat Shock Protein-90α: Linking Hypoxia to Skin Cell Motility and Wound Healing. The EMBO Journal, 26, 1221-1233. https://doi.org/10.1038/sj.emboj.7601579
|
[30]
|
Cheng, C., Fan, J., Fedesco, M., Guan, S., Li, Y., Bandyopadhyay, B., et al. (2008) Transforming Growth Factor α (TGFα)-Stimulated Secretion of Hsp90α: Using the Receptor LRP-1/CD91 to Promote Human Skin Cell Migration against a TGFβ-Rich Environment during Wound Healing. Molecular and Cellular Biology, 28, 3344-3358. https://doi.org/10.1128/mcb.01287-07
|
[31]
|
Zhang, Y., Bai, X., Wang, Y., Li, N., Li, X., Han, F., et al. (2014) Role for Heat Shock Protein 90α in the Proliferation and Migration of Hacat Cells and in the Deep Second-Degree Burn Wound Healing in Mice. PLOS ONE, 9, e103723. https://doi.org/10.1371/journal.pone.0103723
|
[32]
|
Bruns, A.F., Yuldasheva, N., Latham, A.M., Bao, L., Pellet-Many, C., Frankel, P., et al. (2012) A Heat-Shock Protein Axis Regulates VEGFR2 Proteolysis, Blood Vessel Development and Repair. PLOS ONE, 7, e48539. https://doi.org/10.1371/journal.pone.0048539
|
[33]
|
Lincoln, V., Tang, X., Chen, M. and Li, W. (2019) Extracellular HSP90α versus Intracellular HSP90β in Wound Healing and Cancer. In: Asea, A.A.A. and Kaur, P., Eds., Heat Shock Proteins in Signaling Pathways, Springer International Publishing, 289-315. https://doi.org/10.1007/978-3-030-03952-3_15
|
[34]
|
Bhatia, A., O'Brien, K., Chen, M., Woodley, D.T. and Li, W. (2016) Keratinocyte-Secreted Heat Shock Protein-90alpha: Leading Wound Reepithelialization and Closure. Advances in Wound Care, 5, 176-184. https://doi.org/10.1089/wound.2014.0620
|